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Abstract 

 

In order to achieve better understanding of the hydrological cycle and the 

distribution of global precipitation, various microwave satellite platforms have been 

launched in the past to allow significant advance in precipitation measurement from 

directly measuring microwave radiances and reflectivity from space.  Nevertheless, 

ambiguities in precipitation estimation from the only use of sets of brightness temperature 

measurements could lead to significant error. These ambiguities can be reduced with the 

addition of complementary data sets that until this point have not been employed in 

retrieval algorithms.  In this paper, the potential improvements to estimating precipitation 

that are possible by combining observed brightness temperature measurements with other 

available sources of information will be investigated.   

One way of passive microwave precipitation retrieval for the satellite-borne 

microwave radiometers is to be accomplished by the use of physical inversion-based 

algorithms, which uses Cloud Radiation Databases (CRDs). CRDs are composed of a 

large amount of vertical microphysical profiles, which are produced by various cloud 

resolving model simulations, and their corresponding brightness temperatures are 

calculated by radiative transfer model using the microphysical profiles as input. 

Unfortunately, the relationship between the simulated microphysical profiles and 

the simulated multi-spectral brightness temperatures is not strictly unique. Therefore 

during precipitation retrieval, given a set of observed brightness temperatures, one can 

often match sets of microphysical profiles with strongly differing precipitation outcomes. 

To improve precipitation estimation, additional constraints are needed.  
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Fortunately, such constraints are virtually always available in the form of recent 

or short-term projections of the synoptic situation, which dramatically reduces the 

number of applicable profiles in the database, when the profiles include the synoptic 

situation in effect when the profiles were simulated.  The Cloud Dynamics and Radiation 

Database (CDRD) is an attempt to include this additional information in the CRD to 

increase the available constraints in selecting applicable database entries used in the 

estimation procedure. This additional information includes the dynamical and 

theromodynamical structure of the atmosphere, which are stored as dynamical and 

theromodynamical tags in the CDRD.  By using a Bayesian-based statistical estimation 

method, it is expected that more appropriate microphysical profiles can be chosen and 

thus precipitation retrieval uncertainties can be reduced.  

 In this study, the degree to which uncertainty in precipitation estimation can be 

reduced through the addition of these dynamic and thermodynamic constraints will be 

estimated quantitatively. This will be accomplished through a procedure whereby a 

CDRD of 120 cloud resolving model simulations will be statistically analyzed to 

determine the impact which several of the strongest dynamic and thermodynamic 

constraints have on the variance in the predicted columnar liquid water paths, ice water 

paths, and surface rain rates associated with simulated multichannel brightness 

temperatures.   
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1. Introduction 

Passive microwave remote sensing started about 30 years ago and has provided us 

tremendous amount of precipitation data. This helps us to gain valuable knowledge about 

precipitation systems, regional and global hydrologic cycle and to improve upon weather 

and climate forecasts. Smith et al. (2007) states that “globally distributed, continuous, and 

high-quality” precipitation “intensity, accumulation, and temporal evolution” 

measurements are important for a wide range of research and applications, such as short 

term weather forecasting and rainfall data assimilation for numerical weather prediction 

models, prediction of regional and global scale hydrologic cycles, monitoring global 

climate trends, and development of rain rate retrieval products and verification techniques 

for rain gauges.  

Satellite rain estimate products are a valuable supplement to land-based rain 

gauges and radar data because they can continuously monitor the variable and spatially 

heterogeneous rainfall pattern over space and time domain. Moreover, there is a lack of 

rain gauge networks over ocean and remote land areas as well as insufficient good quality 

precipitation data from high precision precipitation sensors over land where they are 

measured. More accurate global coverage of precipitation is made possible with passive 

microwave remote sensing from space. This data provides important inputs for 

hydrological models for regional and global analyses to allow for drought and flood 

monitoring.  

Microwave radiances sensed by remote sensing platforms over satellite footprints 

are mostly converted to brightness temperatures (BTs) through Rayleigh-Jeans 

approximation. A spectral array of observed BTs are then used to estimate precipitation 
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through rainfall retrieval algorithms. The Goddard Profiling Algorithm (GPROF; 

Kummerow et al. 2001) is a commonly used algorithm and is applied to datasets from the 

Special Sensor Microwave/Imager (SSM/I), Tropical Rainfall Measuring Mission 

TRMM Microwave Imager (TMI), and the Advanced Microwave Scanning Radiometer – 

Earth Observing System (AMSR-E).  

BTs are matched with similar microphysical precipitation structures to estimate 

precipitation rates through a “retrieval algorithm”. The algorithm makes use of an a-priori 

database that is composed of microphysical profiles that are simulated by cloud resolving 

model to represent a few different types of precipitation systems’ vertical microphysical 

structures and properties consisting of information about the hydrometeor sizes, shapes, 

and distributions. These profiles are then related to microwave BTs and surface 

precipitation rates.  

For a given set of multispectral microwave observations at a given location, there 

is no single unique hydrometeor profile that could match the observations. Instead, 

various configurations of hydrometeors could be radiometrically consistent with a set of 

BTs observation such that iterative methods in finding a unique solution would not 

essentially result in a better estimate (Smith et al., 1994). In addition, Panegrossi et al. 

(1998) points out that it is crucial to identify the typology of the observed precipitation 

event and associated it with appropriate hydrometeor profiles that are generated by 

simulations that share similar microphysics and environmental features in order to 

improve retrieval precision and accuracy of profiles.  

Hoch (2006) suggests that the microphysical profiles retrieved from a priori 

Cloud Radiation Database (CRD) are all mixed from simulations of various 
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environmental features. Although for a CRD to be statistically significant for retrieval in 

a particular region, it has to include sufficient cloud resolving model simulations that can 

represent various regimes of precipitation that happen under different atmospheric 

environments and seasons for a given location. The accuracy of the retrieved 

microphysical profiles are improved by matching the multispectral set of observed 

brightness temperatures to the simulated BTs in the CRD. Hoch (2006) has proposed a 

new approach which uses a Cloud Dynamics and Radiation Database (CDRD), which is 

an extension to the CRD by including of dynamical and thermodynamical information in 

the form of “dynamical tags” for each individual profiles in the database. This potential 

information of the synoptic states of the atmosphere is relatively new to be explored in 

retrieval process that uses Bayesian estimation methods. This additional knowledge of a 

precipitation event’s synoptic situation, geographical, and temporal location will be 

embedded in the “dynamical tags” and to be exploited in a tag-based Bayesian data 

mining technique so to be used as environmental constraints during the Bayesian retrieval 

process to select a more atmospheric dynamically relevant subset of microphysical 

profiles that are more consistent with the atmospheric environment in which the 

precipitation event occurs. Several studies (e.g., Hoch, 2006; Casella et al., 2009; Sanò et 

al., 2010) have shown that there is potential to reduce variability of retrieved 

microphysical profiles by including the dynamical tags in the retrieval process and thus 

increase the accuracy of the retrieved microphysical profiles.  

This study will focus on determining quantitatively how much particular 

dynamical tags used in conjunction with short term model predictions and satellite 

derived brightness temperatures observations can potentially reduce uncertainty in the 
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diagnosis of microphysical properties and associated precipitation rates. This thesis is 

organized as follows. Chapter 2 reviews the scientific background of this research. Basic 

concepts of passive microwave radiation transfer through precipitating clouds over land 

and ocean will be described. Then the history of passive microwave remote sensing of 

precipitation will be presented, with discussions of both the currently available and future 

passive microwave remote sensing missions. Microwave imagers that are on board as 

part of the mission include SSM/I, AMSR, TRMM, and the upcoming Global 

Precipitation Measurement (GPM). Furthermore the different types of precipitation 

retrieval algorithms will be summarized. Commonly used data mining techniques will be 

discussed. 

 Chapter 3 explains the CDRD concept in more detail. Microphysical profile, 

dynamic and thermodynamic tag variables are presented. Database tags are selected 

based on their ability to distinguish differing atmospheric environments. In addition, the 

tools that are used in this study to construct the CDRD system are described in this 

chapter. They are: 1) Bayesian theorem, 2) A cloud resolving model: University of 

Wisconsin – Nonhydrostatic Modeling System (UW-NMS), and 3) A radiative transfer 

model. 

 Chapter 4 displays database statistics through scatter plots and correlation 

coefficients between the dynamic tags and the targeted microphysical variables (TMVs). 

Multiple linear regression models are used to determine the additional variances of each 

of the TMVs that a dynamic tag or a combination of tags could explain in addition to 

what the multichannel BTs could explain. Results will be presented and discussed in this 

chapter. Chapter 5 offers conclusions and suggests future work. 
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2. Scientific Background 

2.1 Remote Sensing in the Microwave Region 

 

Passive microwave instruments sense terrestrial radiation from about 5- to 200-

GHz. They can observe clouds, precipitation, and water vapor, monitor land and sea 

surfaces, and get temperature and humidity profiling of the atmosphere. Microwave 

remote sensing of precipitation is achieved by sensing microwave radiances observed at 

the top of atmosphere, which majorly come from two sources: the Earth’s surface and 

atmospheric constituents. The radiances emitted from the surface differ depending mainly 

on the type of surfaces (ocean or land) and the temperature of the surface. Atmospheric 

constituents such as water vapor, liquid and frozen hydrometeors can absorb, emit, and 

scatter radiation to contribute to changes in radiances observed at the top of the 

atmosphere. In other words, precipitation estimates by microwave remote sensing 

involves sensing the cloud water droplets below the freezing level, rain water droplets 

below the cloud, and ice particles in the cloud above the freezing level.  Lower frequency 

(below 50-GHz) Microwave channels are more sensitive to thermal emission from liquid 

water droplets, so this emission effect dominates the atmospheric effects while higher 

frequency (above 50-GHz) channels are affected more by the scattering of ice particles. 

Various cloud and precipitation particle properties such as size, shape, and vertical 

distribution can affect the emission and scattering signatures.  Through the distinctive 

differences between dominate effects in the atmosphere between liquid and ice particles 

reveal by BTs signatures of both lower and higher frequency channels, algorithms were 

first developed based on the emission method that utilizes emission information from the 
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lower frequency channels, and the scattering method that gets scattering information from 

the higher frequency channels.  

 

2.1.1 Emission Method 

 

The emission method is employed over the ocean at frequencies less than 50-

GHz. Radiances that are emitted by the ocean can be represented as !T, where !, the 

ocean surface emissivity is relatively low (! ! 0.5), and T, the sea surface temperature is 

around 300K. Therefore the ocean has a uniform radiometrically cold background and the 

atmosphere is highly transparent under most circumstances. Any raindrops and cloud 

droplets from a precipitating cloud, water vapor, and oxygen over the ocean would 

absorb and emit radiation at their own thermodynamic temperature and thus increase the 

observed BTs at the top of the atmosphere can form a significant contrast to the cold 

ocean background. The absorption and emission is proportional to the droplets’ masses. 

By holding the ocean surface temperature and emissivity constant, increase rain rate or 

increasing cloud thickness would result an increase in BTs seen at the top of the 

atmosphere. This method does not apply very well over land because of the more highly 

variable land surface emissivity (!~0.9). It is more difficult to discriminate the radiances 

emitted by cloud water and rain droplets from the radiometrically warm surface 

background due to the lack of contrast.      

There are studies that show how each frequency’s BTs behave with increasing 

rain rate (Wu and Weinman, 1984 and Adler et al., 1991). At 10-GHz, the BTs are more 

strongly sensitive to liquid droplets but not ice particles. At 19-GHz, the BTs start to 

decrease sooner than those at 10-GHz with increasing rain rates because of the stronger 

effect of ice due to shorter wavelength. At 36-GHz, the effect of ice is even more 
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dominant and the BTs start to be depressed sooner than those at 19-GHz. The BTs mainly 

respond to stronger rain rates at this frequency than in lower frequencies. At higher rain 

rates, the sensitivity to rain rates decrease until it reaches zero as the column is saturated 

for low frequency channels. 

2.1.2 Scattering Method 

This method is mainly used over land using frequencies above 50-GHz. In higher 

frequencies, the emission effects on upwelling BTs are no longer dominant, instead 

scattering from ice particles above the freezing level of clouds play a larger role in the 

contribution of lowering BTs seen at the top of the atmosphere. The presence of ice 

particles help to scatter the upwelling radiation from the surface and liquid hydrometeors 

and depress the observed BTs. The rain estimates that use this method are not as direct as 

those using the emission method because it senses the amount of ice in a column but not 

the amount of rain itself.  

2.2 History of Passive Microwave Remote Sensing  

Passive microwave remote sensing of precipitation first started in late 1970s after 

Nimbus-5 Electrically Scanning Microwave Radiometer (ESMR-5) was launched. In 

1978, the first multispectral passive microwave radiometer, the Nimbus 7 Scanning 

Multichannel Microwave Radiometer (SMMR) was launched. Almost a decade later, the 

Special Sensor Microwave/Imager (SSM/I; Hollinger et al., 1987), a sun-synchronous 

polar orbiting satellite as part of the Defense Meteorological Satellite Program (DMSP) 

was launched in 1987, which not only has increased the quality of data but also further 

nourished the development of rain rate retrieval algorithms for use in operational passive 

microwave satellite sensors (Hollinger, 1989; 1991).  
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The launch of Tropical Rainfall Measuring Mission (TRMM; Kummerow et al., 

1998) on 27
th

 of November 1997 has marked another important point in passive 

microwave remote sensing. As the name hints, the main purpose of the mission was to 

provide data over the tropical regions of the globe.  A lot of understanding in tropical 

rainfall has been accomplished through this mission. TRMM has the TRMM Microwave 

Imager (TMI) and the Precipitation Radar (PR) onboard. The frequencies on TMI is 

similar to those on SSM/I, but TMI has the extra 10.7-GHz channel, which is designed to 

give a more linear response for high rain rates associated with tropical precipitation 

systems. The higher spatial resolution and wider swath width of TMI make it better than 

SSM/I. The TMI featured coverage of the tropics about 1 to 2 times per day depending on 

the latitude. PR is incredibly helpful in improving retrievals from algorithms. One of the 

key features of the PR is its functionality in providing three-dimensional maps of storm 

structures. Beside the TMI and the PR, TRMM also includes a Lightning Imaging Sensor 

and a Clouds and The Earth´s Radiant Energy System.  

The Advanced Scanning Microwave Radiometer – Earth Observing System 

onboard Aqua (AMSR-E; Kawanishi et al., 2003) was launched on the 4
th

 of May 2002 

and it has a higher spatial resolution that could improve precipitation retrieval in 

comparison to older devices. Table 1 shows how the characteristics of all sensors with 

microwave remote sensing capability and the microwave instruments evolved since their 

start of the new precipitation-measuring era. There is an improvement in spectral 

coverage, swath width, and spatial resolution due to improvements in the reflector and 

the addition of 6.295-GHz channels. The swath is 1445 km. The AMSR-E measures 

horizontally and vertically polarized BTs at six different frequencies and its function is to 
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retrieve data consisting of variables related to the precipitation but also things like sea 

surface winds, temperature and ice concentrations.  

 

Microwave 

Imager 

Operating 

Period 

Type of 

Scan 

Central 

Frequencies 

(GHz) & 

Polarization 

FOV            
(km x km) 

Swath 

Width (km) 

19.35 V + H 69 x 43 

22.235 V 60 x 40 

37.0 V + H 37 x 29 

SSM/I 1987-

present 

Conical 

85.50 V + H 15 x 13 

1400 

10.65 V + H 37 x 63 

19.35 V+ H 18 x 30 

21.3 V 18 x 23 

37.0 V+ H 9 x 16 

TMI 1997-

present 

Conical 

85.5 V + H 5 x 7 

780 

6.925 V + H 43 x 75 

10.65 V + H 29 x 51 

18.7 V + H 16 x 27 

23.8 V  14 x 21 

36.5 V+H 9 x 14 

AMSR-E 1998-2020 Conical 

89.0 V + H 4 x 6 

1600 

10.65 V + H 19 x 32 

18.70 V + H 11 x 18 

23.80 V  9 x 15 

36.5 V + H 9 x 14 

89.0 V+H 4 x 7 

166   

GPM Expect 

launch 

date: July 

2013 

Conical 

183   

850 

 

Table 1. Current and future satellite platforms information.  

 

 

Global Precipitation Measurement (GPM; Smith et al., 1994; Smith et al., 2007) is 

the forthcoming satellite mission that is expected to be launched in 2013 and will bring 

improvements in precipitation monitoring and to also improve understanding of the 
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precipitation physics globally. One of the goals set for the mission is also to try to 

provide freshwater availability indicators.  It involves international collaborations 

between space agencies, research and hydro meteorological forecast services, various US, 

Japanese, and European research teams, and individual scientists (Smith et al, 2007). The 

GPM center constellation will include a core satellite, with a dual-frequency precipitation 

radar (DPR) and a multichannel microwave imager (GMI), which is similar to the 

TRMM design but only with better radar capabilities, so to have greater measurement 

sensitivity to light rain and cold-season solid precipitation. Moreover GPM will have an 

orbit that will cover not only the tropics, but to higher latitudes of 65-70°. GPM will use 

the constellation of operational radiometers to provide global, three hourly precipitation 

products.  The communication between the satellites will be through a transfer standard 

for inter-calibration of constellation radiometers.  

 

2.3 Microwave Precipitation Retrieval Algorithms  

The development of microwave precipitation retrieval algorithms for operational 

use on microwave sensors has flourished since the launch of DMSP SMM/I in 1987 and 

has been ongoing research for the last 25 years. Wilheit et al. (1977) is one of the earliest 

algorithms designed by using a single spectral measurement, 19-GHz or 37-GHz 

channels, to estimate a single rainfall parameter through a BT-rain rate relationship.  

Since late 1980s, there emerge a few main categories of algorithms to estimate 

surface rain rates: 1. Statistically-derived algorithms, 2. Quasi-physical algorithms and 3.  

Physical inversion-based algorithms.  Many statistically-derived algorithms are based on 

each channel’s response to precipitation-sized particle in its effects on upwelling 
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radiation (Kidd et al., 1998).  If the size of the precipitation particle is small compared to 

the wavelength of the radiation, emission effect that alters the upwelling radiation 

dominates; but once the size of the precipitation particle is more comparable to the 

wavelength of the radiation, the scattering effects dominate in causing extinction of 

upwelling radiation (Fowler et al., 1979). Statistical regressions between measured single 

channel or multichannel BTs dataset and rainfall amounts from rain gauges or radar 

measurements are derived and used in this type of algorithm (Smith et al., 1998). Berg 

and Chase (1992) is an example of this type of algorithm that uses the lower frequencies 

channels, 19-, 22-, and 37-GHz BTs as independent variables to capture the emission 

effects on upwelling radiation caused by the liquid precipitation particles. Todd and 

Bailey (1995) is another example that utilizes a single channel, 85-GHz for its dominated 

scattering signals, to estimate rainfall in the mid latitudes.  A polarization corrected 

temperature has been formulated to eliminate the radiation variability contributed by 

surface emissions. Kidd et al. (1998) discusses the advantages and disadvantages of this 

type of algorithm and they can be summarized as follows. One major disadvantage is that 

there is a predominance of light rain rates than heavy rain rates in the observations, which 

in turn would make the statistical relationships for heavy rain rate insignificant. 

Moreover, statistically-derived empirically calibrated algorithms are not stable with 

regard to retrieval accuracy because of variations in BTs, therefore the rain rate 

relationship can vary depending on the physical mechanisms that cause the precipitation 

in the situation (Mugnai et al., 1993). The main advantage of this type of algorithm is that 

it uses simple formulations and does not require heavy computing resources. 
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 Quasi-physical algorithms estimate rain rate through theoretically-derived 

functions of rain rates and BTs by the use of radiative transfer calculations and cloud 

models (Smith et al., 1998). Alder et al (1993; 1994) uses cloud model generated rain 

rates and radiative transfer calculated 85-GHz BTs to generate a linear regression to be 

used in the retrieval.  Alder’s algorithm is also an example of scattering algorithm, since 

only 85-GHz is being considered. Liu and Curry (1992) present an algorithm that is 

derived from the results of a radiative transfer model of plane-parallel clouds and both 

emission and scattering signatures to determine the amount and the nature of the 

precipitation. Horizontally polarized brightness temperatures at 19- and 85-GHz are used 

to form a linear function, which is used as a parameter to relate to rain rates. Spencer et 

al. (1989) introduces an algorithm that uses scattering information taken from the 

polarized corrected temperature, which is derived from radiative transfer calculation 

considering the dual-polarization 85-GHz brightness temperatures. Petty (1994b) notes 

that this type of algorithms only requires simple algebraic and logical operations thus 

they do not require heavy computing resources. However, these algorithms have not 

included any processes that can differentiate and alter BTs-rain rate relationships 

dynamically that are caused by varying precipitation microphysics and spatial variability 

of precipitation in different precipitating environments and background BTs differences, 

which are associated with the varying surface background types (Petty, 1994b).  

Several studies (e.g., Smith and Mugnai, 1988, 1989; Smith et al., 1992a) have 

shown that multichannel microwave BTs have a more direct relationship with the vertical 

distribution and amount of various hydrometeors than surface rain rate. ,-./.! /0123./!

456.!73/.!08!0-.!2.6.98:;.<0!8=!multichannel physical inversion-based algorithms (e.g. 
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Olson, 1989; Mugnai et al, 1993; Kummerow and Giglio, 1994; Petty, 1994a; 

Kummerow et al., 2001), which use different frequencies to detect microphysical 

quantities and distributions at different levels. Physical inversion-based algorithms 

retrieve the rain rate and/or vertical distribution of various hydrometeor categories via 

multichannel BTs inversion. Some algorithms in this category might retrieve vertical 

profiles of various hydrometeors first, before rain rate is being diagnosed from the 

retrieved profiles. They use an a-priori database that includes detailed hydrometeor 

profiles that are part of cloud resolving model’s simulations, coupled with explicit 

radiative transfer calculations for each of the profiles to yield the associated multichannel 

BTs. During the retrieval, probabilistic methods such as the Bayesian method are used to 

estimate rain rate. This method does not only provide one single solution, instead it will 

be able to provide a probability distribution of solutions that are most likely to be 

applicable to the atmospheric state at the time at which the rain rate is being retrieved 

(Stephens and Kummerow, 2007).  

The GPROF algorithm, which is the operational retrieval algorithm for TMI, also 

uses a physical Bayesian approach (Kummerow et al., 1996, 2001). It uses a-priori large 

database of hydrometeor profiles that are generated by simulations by cloud resolving 

models and each hydrometeor profile’s associated upwelling microwave BTs are 

calculated through radiative transfer calculations. During retrieval, the whole database of 

hydrometeor profiles is scanned to match a given set of observed multichannel 

microwave BTs to the profiles in the database that correspond more consistently with 

those observed BTs. Olson et al. (2007) describes that surface precipitation rates, latent 

heat profiles, scattering indices and polarization indices by Petty (1994a), and a term to 
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differentiate area fraction of convective and stratiform rain, which depends on the size of 

the satellite footprint, and the freezing level are all GPROF estimated profile parameters. 

Those precipitation and latent heat profiles that have an associated set of BTs that are 

radiatively consistent with the observed BTs contribute more strongly in the final 

estimation of rain rates. This type of algorithm is more complex, requires heavy 

computational resources, and a lot of microphysical assumptions have to be made in the 

microphysical profiles simulating process by cloud resolving models and also in the 

forward radiative transfer calculation (Petty, 1994b). However, this type of algorithm is 

able to consider the BTs changing relationship with rain rates that is due to the different 

dynamics involved in various types of precipitation systems.   

Petty (1994b) describes another type of physical inversion-based algorithm for 

retrieving rain rate over the ocean with SSM/I that does not require the use of 

microphysical assumptions. Instead of directly inverting raw BTs, it inverts the 

normalized polarizations for 19.35-, 37-, and 85.5-GHz together with an 85.5-GHz 

scattering index, which is sensitive to the ice particles.  The normalized polarizations 

have more direct relationships to the amount of column optical depth that is affected by 

the amount of liquid water present, because the normalized polarization indices can help 

to factor out the radiation extinction only due to liquid water from the part that is due to 

polarized ocean background and the presence of water vapor and ice aloft. Background 

variability is caused by differences in surface wind speeds and roughness, as explained in 

Petty (1994a). It mainly uses 19-GHz and 37-GHz for rain rates retrieval, and 85.5-GHz 

to provide more information in heavy rain conditions.  
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Tassa et al. (2003) presents another physical inversion-based algorithm that uses 

the Bayesian method. The retrieval scheme is trained by outputs from simulations created 

by a cloud-resolving model, together with associated output multichannel microwave 

BTs from radiative transfer models. The output vertical hydrometeor structures and 

simulated BTs are stored in a cloud radiation database. The Database Matching Index 

(DMI) is used to evaluate the representativeness of the cloud model simulations by 

checking how close the match is for the observations to the simulated BTs. The DMI also 

calculates the percentage of observed brightness temperature pixels that would have at 

least one simulated point that have its Euclidean distance to the observed measurement to 

be minimized to a given percentage error.  Model errors are quantified through the use of 

a minimum mean square criterion.  

 Smith et al. (1998) presents and discusses the results of the second WetNet 

Precipitation Intercomparison Project, which is a project that evaluates the performance 

of 20 satellite precipitation retrieval algorithms, and concluded that the bias uncertainty 

of many passive microwave algorithms is about ± 30%. This value of uncertainty is 

below than the radar and rain guage data’s uncertainty that is used in the project, 

therefore it is not possible to pick the best algorithm from the approach of using ground 

validation data (Smith et al., 1998).  

The technique being investigated in this study is most applicable to physical 

inversion-based algorithms that employ a cloud radiation database that is generated by 

cloud resolving model simulations. It is because the accuracy of the results from those 

algorithms depends mostly on the hydrometeor profiles retrieved from the a-priori 

database. Updated dynamical information that could potentially be used to differentiate 
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different typologies of precipitation events could be readily obtained from global 

forecasting model every 6 hours, these dynamical information could be used as extra 

independent information during the selection of most appropriate hydrometeor profiles 

through a Bayesian method during retrieval.  A major goal of this study is to investigate 

the usefulness of dynamical information in explaining additional variances in the retrieval 

rain rates, liquid and ice columnar amounts.  Next, there is an attempt to determine the 

best combination and numbers of dynamical variables to be used that could potentially be 

applied in global retrieval of columnar ice and liquid amounts and rain rates.   

 

2.4 Data Mining 

            Manual data mining has been around for many centuries but its just in the last 

couple of decades with the improvement of computer technology that scientists have been 

able to use really big and complex data sets for data mining. With data mining, large 

amounts of data are captured in databases, data that often contains large numbers of 

variables and relationships. Data mining is the process of analyzing data from various 

perspectives and to summarize the results to get useful information, including the 

patterns, associations, or relationships among all data points. This information can often 

be transformed to knowledge of historical patterns and future trends. The data mining 

process is mostly being done by data mining software nowadays.  

 Although this method is relatively new to meteorology and atmospheric science 

there have already been several studies that have been done with the help of data mining. 

Diner (2004) was able to analyze large datasets of atmospheric aerosol during the 

Exploratory Data Analysis and Management (EDAM) project. This study was part of the 
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Progressive Aerosol Retrieval and Assimilation Global Observing Network 

(PARAGON), which aimed for a systematic, integrated approach to aerosol observation 

and modeling. In another study, Li (2008) uses data mining as part of a method for real 

time storm detection and weather forecast activation. With the help of algorithms, it 

proposes a way to carry out in a continuous basis in real time over large volumes of 

observational data.  A few most commonly used data mining techniques are listed below.  

 An Artificial Neural Network (ANN) is based on the biological neural network 

that is a component in all Eumetazoa (all animals excluding a few very simple ones).  

ANN uses the brain’s function of learning as a model for its analytical technique. Just 

like a human brain, an ANN can use processed information to construct new predictions. 

A study including data mining and ANN is Hong (2004) who uses it to construct a neural 

network cloud classification system to estimate precipitation from remotely sensed 

measurements.  

 Genetic algorithms are based on the concepts of natural evolution. This method 

uses processes such as genetic combination, mutation, and natural selection, to retrieve 

the desired quantity based on an optimal set of criteria or combinations. Another method 

of data mining that has been around since the 1960s is a Decision Tree. Quinlan (1993) 

gains acknowledge for its contribution to the development of automated decision trees.  

The name derives from the fact that it sometimes looks like an upside down tree.  It is a 

good and pedagogical way to display an algorithm. The decision tree model is used to 

analyze data and have the tree built up of rules that divides the data. There are different 

algorithms that can be used, for instance the Classification And Regression Trees 

(CART) model.  
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 Nearest neighbor method is a technique that classifies each record in a dataset 

based on how similar they are in metric spaces to other points within the data warehouse. 

It is sometimes called the k-nearest neighbor technique. The “k “ represents the number 

of nearest neighbors. This method is more of a searching technique than to be used to 

learn about the dataset. Data visualization provides graphic tools to illustrate data 

relationships. It is good for visual interpretation of complex relationships in 

multidimensional data. 

Finally, rule induction is a technique to extract useful if-then rules from data 

based on statistical significance. It is the best choice in mining data from CDRD based on 

the relationships found from CDRD, if-then rules using the dynamical variables could be 

deduced to retrieve a subset of microphysical profiles.  In the next section, the CDRD 

modelling system will be described in detail. 
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3. Methodology 

3.1 Cloud Dynamics Radiation Database (CDRD) Modeling Systems 

3.1.1 The Concept of CDRD  

 

 CDRD is developed based on the Bayes’ theorem (Hoch, 2006). It is an extension 

of the CRD, which for each realization includes dynamical and thermodynamical 

information of the profile in addition to vertical distributions of ice and liquid 

hydrometeors and associated multispectral BTs, which are already part of a CRD.  

 

3.1.2 Bayes’ Theory 

 

Bayes’ theorem for rain rate retrieval can be expressed as the following:  

!!!!!!!

! 

P(R |Tb) =
P(R) " P(Tb |R)

P(Tb)
            (1) 

where R represents the vertical hydrometeor profiles and Tb are the multispectral BTs. 

The first term at the top on the right hand side, P(R), is the probability that a certain 

hydrometeor profile is observed and it is being computed by the cloud resolving model. 

The second term, P(Tb|R), is the probability that a set of BTs is observed under the 

condition of also having the certain hydrometeor profile R. This probability can be 

computed by radiative transfer model. Bayesian retrieval algorithms employ this idea to 

find the term on the left hand side, P(R|Tb), which is the probability of a particular 

hydrometeor profile given a certain set of BTs.  

During retrieval, dynamical and thermodynamical information are readily 

available from large scale forecasting models such as ECMWF and GFS together with 

the BTs measurements from a satellite overpass. Therefore, the additional dynamical and 

thermodynamical information can be utilized as further constraints during the data 
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mining process.  CDRD is built upon this idea for it has included 24 dynamical tags. The 

Bayes’ theorem equation for CDRD becomes  

! 

P(R |Tb,Tag) =
P(R) " P(Tb |R) " P(Tag |R,Tb)

P(Tb)" P(Tag |Tb)
          (2)     

in which the dynamical tag is to be used to help to classify the atmospheric state at the 

time during retrieval and hence a more accurate subset of profiles could be chosen to 

compute R. It could decrease the variance of the resulting retrieval profile.  

 A cloud-resolving model is used to generate the hydrometeor profiles and 

dynamical and thermodynamical information.  The associated BTs are calculated by a 

radiative transfer model, which needs vertical profile of hydrometeors as input from the 

cloud-resolving model. Descriptions of the models used are given in the following 

section.  

 

3.2 Description of Models 

3.2.1 Cloud Resolving Model: University of Wisconsin – Nonhydrostatic Modeling 

System (UW-NMS) 

 

 The cloud model used in this study is the University of Wisconsin – 

Nonhydrostatic Modeling System (UW-NMS) described in Tripoli (1992) that can 

simulate convection and its interaction with atmospheric phenomena with horizontal 

scales ranging from mesoscale to synoptic-scale. Through simulating the weather events 

listed in Appendix A, microphysical profiles of various precipitation events are generated 

as part of the completion of the CDRD. This model is chosen because of its ability to 

achieve accuracy in simulating scale-interaction processes majorly through enstrophy and 

kinetic energy conservation that is imposed in the model.   
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 This nonhydrostatic regional mesoscale model is formulated on Arakawa “C” grid 

with multiple two-way nesting that is being put on a local rotated spherical grid. The two-

way interactive nesting scheme allows increased resolution in focused areas. The initial 

data for the outer grid can be interpolated from another model such as the European 

Centre for Medium-Range Weather Forecasts (ECMWF) model and the National Centers 

for Environmental Prediction (NCEP) Global Forecasting System (GFS) or from a 

horizontally homogenous state (Tripoli, 1992). The model employs non-Boussinesq, 

quasi-compressible dynamical equations.  The variable ice-liquid water potential 

temperature is used as a predictive thermodynamics variable in the model (Tripoli and 

Cotton, 1981).  There is an advantage to using the ice-liquid water potential temperature 

because it is conserved in all phase changes. Potential temperature, water vapor, and 

cloud water are all diagnostic variables. One unique feature of this model is that it has a 

terrain-following vertical coordinate with variable stepped topography. It is competent in 

capturing steep as well as subtle topographical features and slopes therefore can also 

accurately simulate the dynamics of terrain-induced flows (Tripoli, 1992; Tripoli and 

Smith, 2010). 

 UW-NMS uses a bulk microphysics scheme by Flatau et al. (1989) and Cotton et 

al. (1986) in each of the grids in order to predict the 3-D mixing ratios of six different 

hydrometeors. The six categories of hydrometeors include: 1) cloud droplets, 2) rain 

droplets, 3) pristine ice crystals, 4) ice aggregates, 5) low density graupel and 6) high 

density graupel. All particles are assumed to be spherical. 
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3.2.2 The Radiative Transfer Model  

 

In order to compute the upwelling BTs as part of the CDRD, a radiative transfer 

model is utilized and vertical microphysical profiles, surface skin temperature, and the 

wind, temperature, moisture profiles of 120 simulations that are generated by the 

aforementioned cloud resolving model are used as inputs.  The radiative transfer model 

used for the study is a three-dimensional (3-D) adjusted plane parallel radiative transfer 

scheme.  

To simulate the BTs, it uses: 

1) A radiometer model, which specifies all the characteristics of a radiometer selected. 

2) Various surface emissivity models that include emissivity properties at different 

frequencies of a few land types such as land, ocean, and snow. 

3) Various scattering models for the liquid and ice hydrometeors to calculate the optical 

parameters of the simulated column. 

4) Radiative transfer model is used to compute the monochronmatic upwelling radiances 

that a specified radiometer would observe from the top of the atmosphere at its viewing 

angle at full cloud resolving model resolution, considering the microphysical profiles and 

the selected microwave frequencies and polarizations. Then the upwelling BTs will be 

computed and adjusted to the resolution of the selected radiometer’s channels and also 

take into consideration of the radiometer characteristics. 

3.2.2.1 Radiometer Model 

The radiometer model specifies all characteristics of a radiometer including the 

chosen frequencies, polarization and width of the channels, the viewing angle of the 

radiometer, field of view and antenna pattern of various channels, and their radiometric 
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noise. This is the process in defining an instrumental transfer function for each channel so 

to calculate the upwelling BTs from the monochronmatic radiances. The channel 

characteristics for AMSR-E and TMI are chosen for this study. 

 

3.2.2.2 Surface Emissivity Models 

  The surface emissivity models are used to best represent the different surface 

types of all the selected cloud resolving model simulations. The surface emissivity has a 

significant impact on the upwelling BTs particularly in the lower window frequencies. 

Frequency and polarization, observation geometry, and other surface characteristics such 

as land types, surface roughness, soil types, soil moisture content, etc. The three surface 

emissivity models that are employed in the calculation are: 

• For land surfaces, a model that calculates the forest and agricultural land surface 

emissivity by Hewison (2001) is used; 

• For ocean surfaces, a fast and accurate ocean emissivity model of English and 

Hewison (1998), Hewison and English (2000) and Schluessel and Luthardt (1998) is 

used; 

• For snow cover surfaces, a snow emissivity model by Hewison and English (1999) is 

used. 

!

3.2.2.3 Scattering Models 

 The computation of the single scattering properties of various hydrometeors is 

accomplished by utilizing scattering models. To compute real natural ice hydrometeors 

have been a primary challenge since they occurs in a wide range of sizes, densities, and 
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shapes. As all the particles from UW-NMS are assumed to be spherical, several 

assumptions are made for the single scattering computations. Liquid particles including 

cloud and rain droplets are assumed to be spherical and homogeneous and thus their 

scattering properties can be calculated by Mie theory (Bohren and Huffman, 1983).  

Gaupel particles are assumed to be spherical with densities close to pure ice (0.9 g cm
-3

). 

They are assumed to be equivalent homogeneous spheres that have an effective dielectric 

function attained from a combination of the dielectric functions of ice and air, or water in 

the case of melting by the effective medium Maxwell-Garnett mixing theory that is 

applicable to a two-component mixture of air / water in ice (Bohren and Huffman, 1983). 

Therefore Mie theory can be applied in this case also. Mie theory cannot be applied for 

the pristine crystals, as they are highly non-spherical. Neither Mie theory can be applied 

to snow and aggregates because they are low density particles. 

 

3.2.2.4 Radiative Transfer Models 

 A radiative transfer (RT) model is used to simulate BTs that would be observed 

by a microwave radiometer. RT code is being applied to the microphysical outputs of the 

simulated precipitation events from the cloud resolving model to simulate the BTs. Since 

fully 3-D RT schemes are computationally expensive, a 3-D adjusted plane parallel RT 

scheme that is developed by Roberti et al. (1994) is used. Plane parallel cloud structures 

are generated from the cloud model paths in the direction along the sight of the 

radiometer, but not in the vertical from cloud model columns. Therefore, the RT as well 

is performed along a slanted profile and monochromatic upwelling radiances are being 

computed at the same resolution (2km) as the inner grid of UW-NMS set up. After that, 
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instrument transfer functions are used to compute the BTs for each channel. It is done by 

first integrating the monochromatic upwelling radiances over the channel width, 

considering also the channel’s spectral response. Second is to integrate the channel 

upwelling radiances over the field of view, which contain all the pixels of the cloud 

resolving model that were included in a field of view, with the consideration of 

radiometer antenna pattern and radiometric noise. Vertical profiles of liquid and ice water 

contents, together with surface skin temperature, and vertical temperature and humidity 

profiles are needed in the RT process. Other inputs include information from the 

radiometer model, the surface emissivity model, and the single scattering model.  

 

3.3 Generation of Cloud Dynamics and Radiation Database (CDRD) 

3.3.1 Selection of Simulations 

 North America CDRD consists of 120 simulations from a one-year period, 

November 2007 to October 2008, with 10 simulations selected for each month.  In order 

for the CDRD to be robust and useful in retrieving rain rates under various atmospheric 

phenomenon, it has to include all types of meteorological events that have various 

mesoscale and synoptic environments and dynamical forcing, which occur in diverse 

locations and happen at different times of the year. Precipitation systems, that are caused 

by large-scale dynamical forcings like mid latitude cyclones, are included in the database. 

Mesoscale convective systems such as squall lines, mesoscale convective complexes, 

convection along fronts, lake effect snow, and tropical cyclone are also included.  A few 

orographic events are also selected. The simulations are also picked to spread over both 

land and ocean from the tropical latitudes to higher latitudes to eliminate land / ocean 
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biases. Appendix A gives more information about each simulation. Each simulation can 

consist of precipitation that can be classified as various precipitation regimes. For 

example, near the center of a mid latitude cyclone and along the warm front, it is 

common to see convective cloud structures embedded within stratiform cloud structures. 

Another example would be simulations of a passage of a cold front, both convection in 

the warm sector of the cyclone and the slantwise convection along the cold front would 

be included in the simulation. Thus, all simulations would obtain stratiform and 

convective cloud structures at some time as the weather system being simulated is going 

through its lifecycle. Fig. 1 shows the location of the simulations across North America. 

All the boxes shown in Fig. 1 represent the center location of the inner grid of the model.  

 This is just a start to build a more “complete” database. It could never be perfect 

because that would mean to having all precipitation events over North America for a long 

period of time with different seasons and years included in the database. Many more 

simulations are necessary to capture the enormous spatial and temporal variability of all 

precipitation events. This dataset only provides an initial baseline representation of the 

natural variability.  
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Figure 1. The location of simulations selected over North America divided by 

seasons. Simulations in winter, spring, summer, and autumn are in red, pink, black, 

and green, respectively. 

 

3.3.2 Generation of Microphysical Profiles  

 After the events are being selected, the cloud-resolving model, UW-NMS is used 

to generate microphysical profiles and the associated atmospheric dynamical and 

thermodynamical variables.  The model is run with three nested grids and the horizontal 

resolutions of the outer grid, intermediate grid, and inner grid are 50km, 10km, and 2 km, 

respectively. Table 2 summarizes the grid properties used in all the simulations. 

NCEP GFS gridded analysis data is used to set up initial conditions for the model 

and to determine the outer boundary of the outer grid of the model every 6 hours of 

simulation time throughout the whole simulation. The simulation is set for 18 to 36 hours 

with a 12-hour spin-up time depending on the developing and dissipating speed of that 
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particular weather system to be simulated. The 12-hour spin up time is needed to allow 

local forcing to develop.  

Grid Number Horizontal 

Points 

Vertical Points Horizontal 

Resolution 

(km) 

Horizontal 

Size (km)  

1 92x92 35 50 4550x4550 

2 92x92 35 10 910x910 

3 252x252 35 2 502x502 

 

Table 2. UW-NMS grid properties for all the simulations. 

 

Hydrometeor Variables 

(Rain, Snow, Graupel, 

Aggregate, Pristine 

Crystals) 

 

Other Variables 

Mixing Ratio (g kg
-1

) Water Vapor Mixing Ratio 

(g kg
-1

) 

Total Water Path (kg m
-2

) 

Terminal Velocity (cm s
-1

) Cloud Water Mixing Ratio 

(g kg
-1

) 

Liquid Water Path (kg m
-2

) 

Diameter (micrometer) Zonal Wind (m s
-1

) Ice Water Path (kg m
-2

) 

Concentration (# cm
-1

) Meridional Wind (m s
-1

) Height (m) 

Density (g cm
-1

) Vertical Velocity (m s
-1

) Temperature (K) 

Surface Rate (mm hr
-1

) Surface Skin Temperature 

(K) 

 

 

Table 3. UW-NMS variables included in a microphysical profile.  

 

After that, microphysical profiles, dynamical and thermodynamical variables over 

all grid points in the domain are to be saved hourly whenever there is one single point in 

the domain that has a surface rain rate of 0.01 mm hr
-1

 or greater or a surface frozen 

(snow, graupel, aggregates, and pristine crystals) precipitation of 0.1 mm hr
-1

 or greater. 
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By saving it hourly in simulation time, microphysical profiles of precipitation systems at 

different development stages can all be included in the database. Table 3 presents what a 

microphysical profile contains. This data is saved at all 36 vertical levels for each grid 

point except for the water paths which have just one value per profile.  

 

3.3.3 Dynamical Variables  

A total of 24 dynamic and thermodynamic variables are chosen based on their 

ability and potential to provide more information in helping to differentiate atmospheric 

states that could initiate and support various types of precipitation events. These 

parameters attempt to provide information on the stability of the atmosphere, the amount 

of mesoscale and large scale dynamical forcing and low-level moisture available, and 

topography influences that has an effect on the potential to promote convection. Table 4 

provides a list of all the dynamical variables chosen. All the variables on Table 4 are 

generated by UW-NMS and are saved in 50 km grid spacing so to make them comparable 

to global operational forecasting model (such as ECMWF, NAM, and GFS) resolutions. 

Over the last 30 years with higher model resolution available and better physical 

parameterization and data assimilation techniques, the initial condition error of the 

prediction has reduced by a significant amount and thus the predictability of global 

forecasting models has greatly improved. The predictability of large-scale phenomena is 

good in a 6-hour time frame. However, forecast models might not be able to resolve 

small-scale processes, such as turbulence, convection, and cloud processes. They heavily 

rely on model parameterizations to represent those processes. 
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The forecasts for large-scale synoptic forcing might be better than those for 

smaller scales in a situation where the large-scale synoptic forcing were dominant over 

the small-scale forcing effects. It is because the large-scale synoptic forecast attempt to 

predict at about the same resolution as in real, but the small-scale convection processes 

has to depend on the use of convective parameterization, which is a method to try to 

estimate much smaller scale convection in the much larger model grid size. In addition, 

the initial condition set up for the models can miss important fine scale details for 

convection. If small-scale effects are more important in a situation, the predictability of 

the large-scale synoptic forcing then might be similar to that of the smaller scale forcing 

because of the assumed convective parameterization that would in turn affect the forecast 

for large-scale humidity, temperature, and wind fields. Since the models’ surface physics 

packages formulations to diagnose surface variables might not be applicable in all 

situations, it could cause errors in some situations and thus affect the predicted 

temperature, humidity, and wind fields.    
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Brunt Väisälä 

Frequency (/>") 

 

Convective 

Inhibition 

(J kg
-1

) 

?@AB!CD!E4>"F Divergence  

700 hPa (/>"G"+>&) 

Equivalent 

Potential 

Temperature at the 

surface (K) 

Freezing Level (m) Latent Heating 

Rate  

(H!25I>"!G"+>&) 

Lifted Index (K) 

Lifting 

Condensation 

Level (m) 

Mid-level Lapse 

Rate (H!E;>") 

Omega 500hPa 

(-A5!/>"G"+>#) 

Omega 700 hPa  

(-A5!/>"G"+>#) 

PBL Height (m) Potential Vorticity 

Advection at 250 

hPa (/>#!G!"+>%) 

Potential Vorticity 

Advection at 700 

hPa (/>#!G!"+>%) 

Richardson 

Number (unitness) 

Surface Divergence 

(/>"!G!"+>&) 

Surface Froude 

Number (unitness) 

Surface 

Temperature (deg 

C) 

Vertical Heat Flux 

(J!;>#) 

Thickness 500-

1000hPa (m) 

Thickness 700-

1000 hPa (m) 

Vertical Moisture 

Flux 50mb above 

ground (J!;>#) 

Vertical Wind 

Shear 0-6km (;!/>"!

E;>") 

 

Table 4. Dynamical variables selected for CDRD at 50km grid spacing. 

!

!

With constant improvements in physical parameterizations used in the models, 

large-scale averaged dynamical variables forecasts would be accurate to be used to 

further categorize various precipitation systems atmospheric conditions in providing 

additional information than what a set of multispectral BTs could provide.  K.98L!57.!
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#P Convective Inhibition (CIN)!

CIN measures the amount of energy needed to lift an air parcel vertically from its 

original position to its level of free convection to initiate convection. The larger it 

is, the stronger the capping inversion is, which suppresses the development of 

thunderstorms. The cap is important in severe weather events because it can 

separate the warm, moist air below from the cool, drier air above. So potential 

instability can built up to a larger amount with continue surface moistening and 

heating by the sun to support severe weather development later in the afternoon of 

the day. CIN is sensitive to the thermal and moisture structure of the atmosphere 

predicted in the model. 

$P Convective Available Potential Energy (CAPE)!
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the width of the mountain. Flows that are forced to go around the mountain have 

smaller values of Fr. Flows with larger values of Fr are associated with flow 

going on top and over the mountain. It is a good parameter to capture the 

topography effects on flow.   !
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3.3.4 Brightness Temperatures (BTs) 

Microwave frequencies of 10.65-, 19.35-, 22.23-, 23.8-, 36.5-, 85.5-, 89.0-, and 

150-GHz are included in the database. All of the channels are dual polarization except 

22.23-GHz and 23.8-GHz. Microphysical profiles are needed as an input for RTM to 

simulate BTs in these channels. These channels are selected because they already exist in 

current satellite platforms.  

 Dynamic and thermodynamic variables can provide extra information about the 

synoptic situation of an event. Through a Bayesian approach, it is hypothesized that 

information could help to pick a more relevant subset of profiles during the process of 

retrieval. In order to know which variables are more correlated with microphysical 

variables and as a result to be more powerful in being able to minimize the variance in 

the retrieved microphysical profiles, statistic analyses of CDRD are performed and the 

results will be presented in the following section.   

 

4. Analysis 

4.1 Database Statistics 

In this analysis, only realizations over water are selected because water surface 

has low and almost constant emissivity, allowing the increase of BTs related to the 

changes of the amount of liquid and ice hydrometeors in the column above the water 

surface to have a good contrast over the cold ocean background. Over land, emissivity is 
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highly variable depending on land surface types and the amount of land moisture present. 

Detecting changes in BTs by cloud water and raindrop emissions in the lower frequencies 

is more difficult as the signals are blend in with the highly emissive background. 

There are a total of 2141304 (about 2.1 million) realizations over water in the 

database. Table 5 presents the number distribution of realization by seasons. There are 

already well-studied relationships between BTs in various frequencies and in various 

amounts of liquid columnar content, ice columnar content and rain rate (e.g. Petty, 1994a; 

Panegrossi et al., 1998), so liquid and ice columnar contents are important variables in 

the retrieval of rain rate. With a goal to determine which dynamical and thermodynamical 

variables have more potential to explain variances of columnar Ice Water Path (IWP), 

Liquid Water Path (LWP) and Rain Rate (RR) (hereafter named as Targeted 

Microphysical Variables  (TMVs)) beyond what a set of BTs could explain, correlation 

coefficients between the dynamical tags and the TMVs are calculated and listed in Tables 

6a, 7a, 8a, and 9a. Then the best 6 tags with the highest correlations can be identified for 

each of the TMVs per season as listed under Tables 6b, 7b, 8b, and 9b.  

 

Season Number of Realizations 

Winter 837466 

Spring 630640 

Summer 299235 

Autumn 373963 

 

Table 5. Number of realizations distributed by season.  

 

 Correlation coefficient r represents the normalized measure of the strength of 

linear relationship between two variables (x and y). The value of r can vary from 1 to -1, 
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with 1 meaning that x and y have a strong positive linear correlation, and -1 meaning that 

x and y have a strong negative correlation.  

 

  Winter  LWP IWP RR 

1 Brunt–Väisälä frequency (N) -0.38 -0.54 -0.36 

2 Convective Inhibition (CIN) 0.17 0.30 0.14 

3 Convective Available Potential Energy 0.25 0.30 0.21 

4 Divergence 700 hPa 0.25 0.03 0.21 

5 Equivalent Potential Temperature "e 0.31 0.40 0.25 

6 Freezing Level (FL) 0.28 0.36 0.22 

7 Latent Heat 0.24 0.32 0.19 

8 Lifted Index (Li) -0.04 -0.18 -0.04 

9 Lifting Condensation Level (LCL) 0.09 0.29 0.10 

10 Mid Level Lapse Rate 0.03 0.02 0.03 

11 Omega # 500 hPa -0.41 -0.67 -0.39 

12 Omega # 700 hPa -0.42 -0.40 -0.40 

13 PBL Height 0.47 0.55 0.44 

14 PVA 250 hPa 0.06 0.01 0.05 

15 PVA 700 hPa 0.08 0.14 0.09 

16 Richardson Number (Ri) -0.23 -0.41 -0.23 

17 Surface Divergence 0.25 0.03 0.21 

18 Surface Froude Number (Fr) 0.07 0.16 0.08 

19 Surface Temperature 0.17 0.32 0.14 

20 Surface Vertical Heat Flux $%'w' 0.15 0.00 0.11 

21 Thickness 1000-500 hPa 0.18 0.28 0.15 

22 Thickness 1000-700 hPa 0.17 0.28 0.14 

23 Vertical Moisture Flux (VMF) surface to 700hPa 0.37 0.18 0.33 

24 Wind Shear 0-6km -0.16 -0.18 -0.14 

 

Table 6a. This table shows the correlation coefficients of all the dynamic variables 

and LWP, IWP, and RR for the winter season.  

 

For the winter season: 

 Table 6a shows the correlation coefficients between all the selected dynamical 

variables and LWP, IWP, and RR in the winter season. Tags that have stronger 

correlation values of 0.50 to 0.65 include: vertical motion (omega #) at 500 hPa and 700 

hPa and planetary boundary layer (PBL) height. Omega at 500 hPa correlates much better 
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with IWP than with LWP because the larger omega is at 500 hPa the stronger the updraft 

present to supply more moisture up higher and longer in the cloud allowing for more ice 

crystals to form in the cloud. PBL height also correlates better with IWP than LWP. 

Weaker correlations values of around 0.3 to 0.4 can be found between the TMVs and the 

following dynamical variables: Brunt–Väisälä frequency (N), Richardson number (Ri), 

vertical moisture flux from the surface to 700 hPa (VMFsfc-700hPa), surface equivalent 

potential temperature (%e), and freezing level (FL). Out of these 5 variables, N, Ri, %e, and 

FL have a better correlation with IWP than with LWP or RR. On the other hand, VMFsfc-

700hPa is opposite and has a better correlation with LWP or RR than with IWP. The 

calculation of Ri depends on N
2
 so they should have the similar relationship to the TMVs. 

FL seems to have a better relationship with IWP than LWP or RR because FL represents 

the level that ice formation to be possible, but it gives not much information on how 

much LWP there is below that level. A relatively thicker and warmer layer must be 

present in the lower troposphere to have a higher FL. The dynamical variables are in 

general correlate just slightly better to LWP than RR, this might due to the fact that LWP 

calculations include the number of cloud droplets and rain droplets and the dynamical 

variables have a more direct relationship to cloud formation than precipitation formation, 

while RR only considers the surface rain. All the rest of the dynamical tags are weakly 

correlate with the TMVs. 

 Table 6b contains the best 6 tags that are linearly correlated with TMVs. They are 

then used to proceed to the next step in the analysis as predictor variables in a multiple 

linear regression model. They are chosen based not only for their large correlation 

coefficients, but also the independency of the variables among other chosen variables to 
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minimize redundant information to be contained in the selected combination of tags. To 

predict LWP, PBL height, omega at 700hPa, N, VMF, %e, and FL are picked. Although 

omega 500 hPa has almost the same correlation coefficient value as omega 700 hPa, but 

it is not picked because it is highly possible for it to have redundant information as omega 

700 hPa. To predict IWP, omega at 500 hPa, PBL, N, Ri, %e, and FL are picked. Omega at 

500 hPa correlates significantly better with IWP than omega at 700 hPa, therefore it is 

chosen instead of omega at 700 hPa. Finally, to predict RR, PBL, omega at 700 hPa, N, 

VMF, %e, and Ri are picked.  

 

Winter 1 2 3 4 5 6 

LWP PBL Height # 700 hPa N VMF surface to 700hPa "e FL 

IWP # 500 hPa PBL Height N Ri "e FL 

RR PBL Height # 700 hPa N VMF surface to 700hPa "e Ri 

 

Table 6b. The best 6 dynamical tags that linearly correlated to LWP, IWP, and RR 

for the winter season are listed. 

 

For the spring season: 

 Table 7a shows the correlation coefficients between all the selected dynamical 

variables and LWP, IWP, and RR in the spring season. Tags that have stronger 

correlation values of about 0.50 to 0.63 include: omega # at 500 hPa and 700 hPa, N, and 

PBL height. Omega at 500 hPa correlates better with IWP than with LWP and RR, but 

omega at 700 hPa has the same correlation coefficient for all three TMVs. N and PBL 

height also have similar relationships with all three TMVs, with the correlation 

coefficients associate with IWP just slightly higher than that with LWP and RR. Weaker 

correlations values of around 0.3 to 0.4 can be found between the TMVs and the 
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following dynamical variables: vertical moisture flux from the surface to 700 hPa 

(VMFsfc-700hPa), surface equivalent potential temperature (%e), freezing level (FL), and 

latent heat. Out of these 4 variables, latent heat, %e, and FL have a better correlation with 

IWP than with LWP or RR. They all have a correlation coefficient value of around 0.35 

with LWP, and 0.33 with RR, and 0.41 with IWP. Conversely, VMFsfc-700hPa has a better 

correlation with LWP and RR than with IWP. All other dynamical variables are only 

weakly correlated with the TMVs. 

 

 

 

 

Table 7a. This table shows the correlation coefficients of all the dynamic variables 

and LWP, IWP, and RR for the spring season.  

  Spring LWP IWP RR 

1 Brunt–Väisälä frequency (N) -0.47 -0.51 -0.48 

2 Convective Inhibition (CIN) 0.27 0.34 0.28 

3 Convective Available Potential Energy 0.25 0.27 0.23 

4 Divergence 700 hPa 0.24 0.15 0.23 

5 Equivalent Potential Temperature "e 0.36 0.43 0.35 

6 Freezing Level (FL) 0.34 0.42 0.33 

7 Latent Heat 0.34 0.40 0.33 

8 Lifted Index (Li) -0.26 -0.36 -0.28 

9 Lifting Condensation Level (LCL) 0.02 0.09 0.02 

10 Mid Level Lapse Rate 0.17 0.24 0.20 

11 Omega # 500 hPa -0.51 -0.63 -0.51 

12 Omega # 700 hPa -0.49 -0.49 -0.49 

13 PBL Height 0.50 0.56 0.50 

14 PVA 250 hPa 0.18 0.17 0.17 

15 PVA 700 hPa -0.11 -0.08 -0.10 

16 Richardson Number (Ri) -0.30 -0.32 -0.29 

17 Surface Divergence 0.24 0.15 0.23 

18 Surface Froude Number (Fr) 0.08 0.02 0.06 

19 Surface Temperature 0.26 0.33 0.26 

20 Surface Vertical Heat Flux $%'w' 0.31 0.27 0.30 

21 Thickness 1000-500 hPa 0.22 0.24 0.20 

22 Thickness 1000-700 hPa 0.20 0.22 0.18 

23 Vertical Moisture Flux surface to 700hPa 0.43 0.36 0.43 

24 Wind Shear 0-6km 0.08 0.14 0.09 
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 The best 6 tags that are linearly correlated with TMVs are shown in Table 7b. 

Same as in the winter season, these tags are selected based on not only their best linear 

relationship with the TMVs but also the independency of the variables among other 

chosen variables to minimize redundant information to be contained in the selected 

combination of tags. To predict LWP, omega at 500 hPa, PBL height, N, VMF, %e, and 

FL are picked. Although omega 700 hPa has almost the same correlation coefficient 

value as omega 500 hPa, but it is not picked because it is highly possible for it to have 

redundant information as omega 500 hPa. To predict IWP, omega at 500 hPa, PBL, N, 

%e,, FL, and latent heat are chosen. Omega at 500 hPa correlates again significantly better 

with IWP than omega at 700 hPa, therefore it is chosen instead of omega at 700 hPa. 

Finally, to predict RR, PBL height, omega at 500 hPa, N, VMF, %e, and FL are picked.  

 

 

Spring 1 2 3 4 5 6 

LWP 

# 500 

hPa 

PBL 

Height N 

VMF surface to 

700hPa "e FL 

IWP 

# 500 

hPa 

PBL 

Height N "e FL 

Latent 

Heat 

RR 

# 500 

hPa 

PBL 

Height N 

VMF surface to 

700hPa "e FL 

 

Table 7b. The best 6 dynamical tags that linearly correlated to LWP, IWP, and RR 

for the spring season are listed. 

 

For the summer season: 

  Table 8a shows the correlation coefficients between all the selected dynamical 

variables and LWP, IWP, and RR in the summer season. Tags in general have weaker 

correlations with TMVs in summer than in winter or spring. Higher correlation 

coefficient values of around 0.35-0.4 involve the following variables: omega # at 500-
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hPa and 700 hPa, PBL height, N, and VMF. Among these variables, N and omega at 500-

hPa has about the same correlation coefficients in all TMVs. Weaker correlations values 

of around 0.25 can be found between the TMVs and the following dynamical variables: 

Divergence at 700 hPa and Ri. All the rest of the dynamical tags are more poorly 

correlated with the TMVs. 

 

  Summer LWP IWP RR 

1 Brunt–Väisälä frequency (N) -0.36 -0.37 -0.37 

2 Convective Inhibition (CIN) -0.04 0.00 -0.02 

3 Convective Available Potential Energy 0.07 0.12 0.05 

4 Divergence 700 hPa 0.28 0.10 0.29 

5 Equivalent Potential Temperature "e 0.11 0.18 0.10 

6 Freezing Level (FL) 0.10 0.16 0.10 

7 Latent Heat 0.00 -0.03 0.01 

8 Lifted Index (Li) -0.04 -0.02 -0.04 

9 Lifting Condensation Level (LCL) -0.06 -0.04 -0.06 

10 Mid Level Lapse Rate -0.04 -0.05 -0.04 

11 Omega # 500 hPa -0.37 -0.35 -0.34 

12 Omega # 700 hPa -0.36 -0.14 -0.35 

13 PBL Height 0.36 0.39 0.34 

14 PVA 250 hPa 0.00 0.01 0.00 

15 PVA 700 hPa -0.01 0.07 -0.01 

16 Richardson Number (Ri) -0.22 -0.23 -0.24 

17 Surface Divergence 0.28 0.10 0.29 

18 Surface Froude Number (Fr) 0.09 0.12 0.08 

19 Surface Temperature 0.05 0.05 0.05 

20 Surface Vertical Heat Flux $%'w' 0.16 0.13 0.18 

21 Thickness 1000-500 hPa 0.09 0.08 0.08 

22 Thickness 1000-700 hPa 0.09 0.05 0.07 

23 Vertical Moisture Flux surface to 700hPa 0.33 0.15 0.34 

24 Wind Shear 0-6km -0.03 0.06 -0.06 

 

Table 8a. This table shows the correlation coefficients of all the dynamic variables 

and LWP, IWP, and RR for the summer season.  

 

 

 Table 8b contains the best 6 tags that are linearly correlated with TMVs. To 

predict LWP, omega at 700 hPa, N, PBL height, VMF, surface divergence and Ri are 
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selected. Although omega 700 hPa has almost the same correlation coefficient value as 

omega 500 hPa, but it is not picked because it is highly possible for it to have redundant 

information as omega 500 hPa. To predict IWP, PBL height, N, omega at 500 hPa, Ri, %e, 

and FL are picked. Omega at 500 hPa correlates significantly better with IWP than 

omega at 700 hPa, therefore it is chosen instead of omega at 700 hPa. Finally, to predict 

RR, N, omega at 700 hPa, PBL height, VMF, surface divergence, and Ri are chosen.  

 

 

Summer 1 2 3 4 5 6 

LWP # 500 hPa N 

PBL 

Height 

VMF surface to 

700hPa DIVsurface Ri 

IWP 

PBL 

Height N # 500 hPa Ri "e FL 

RR N # 700 hPa 

PBL 

Height 

VMF surface to 

700hPa DIVsurface Ri 

 

Table 8b. The best 6 dynamical tags that linearly correlated to LWP, IWP, and RR 

for the summer season are listed. 

 

 

For the autumn season: 

 Table 9a shows the correlation coefficients between all the selected dynamical 

variables and LWP, IWP, and RR in the autumn season. The higher correlation 

coefficient values are around 0.35-0.52 and are associated with the following variables: 

N, Ri, omega at 500 hPa and 700 hPa, VMF, and PBL height. N, Ri, and PBL height all 

have about the same correlations with all the TMVs. Same as results from other seasons, 

omega 500 hPa shows a better correlation with IWP than LWP and RR, while omega 700 

-hPa shows the opposite. VMF has much strong correlation with LWP and RR than IWP 

because it measures directly the amount of moisture flux in the lower levels. Other 

dynamical tags are weakly correlated with the TMVs. 
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  Autumn LWP IWP RR 

1 Brunt–Väisälä frequency (N) -0.42 -0.41 -0.42 

2 Convective Inhibition (CIN) 0.08 0.00 0.11 

3 Convective Available Potential Energy 0.29 0.19 0.28 

4 Divergence 700 hPa 0.23 0.01 0.27 

5 Equivalent Potential Temperature "e 0.27 0.18 0.26 

6 Freezing Level (FL) 0.24 0.15 0.23 

7 Latent Heat 0.17 0.07 0.16 

8 Lifted Index (Li) -0.10 -0.14 -0.10 

9 Lifting Condensation Level (LCL) 0.02 0.11 0.01 

10 Mid Level Lapse Rate 0.09 0.18 0.08 

11 Omega # 500 hPa -0.39 -0.52 -0.37 

12 Omega # 700 hPa -0.38 -0.23 -0.38 

13 PBL Height 0.42 0.40 0.41 

14 PVA 250 hPa 0.11 0.00 0.10 

15 PVA 700 hPa -0.01 -0.02 -0.01 

16 Richardson Number (Ri) -0.33 -0.37 -0.33 

17 Surface Divergence 0.23 0.01 0.27 

18 Surface Froude Number (Fr) 0.09 0.12 0.09 

19 Surface Temperature 0.09 0.12 0.09 

20 Surface Vertical Heat Flux $%'w' 0.18 0.04 0.20 

21 Thickness 1000-500 hPa 0.17 0.12 0.15 

22 Thickness 1000-700 hPa 0.17 0.13 0.16 

23 Vertical Moisture Flux surface to 700hPa 0.34 0.09 0.36 

24 Wind Shear 0-6km -0.14 -0.06 -0.13 

 

Table 9a. This table shows the correlation coefficients of all the dynamic variables 

and LWP, IWP, and RR for the autumn season.  

 

 

 Table 9b contains the best 6 tags that are linearly correlated with TMVs. To 

predict LWP, omega at 500 hPa, N, PBL height, VMF, Ri, and CAPE are selected. 

Omega at 700 hPa is not selected to prevent repeated information. Omega at 500 hPa, N, 

PBL height, Ri, CAPE, and %e, are chosen to predict IWP. Finally, to predict RR, N, PBL 

height, omega at 700 hPa, VMF, Ri, and CAPE are chosen.  
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Autumn 1 2 3 4 5 6 

LWP 

PBL 

Height N # 500 hPa 

VMF surface to 

700hPa Ri CAPE 

IWP # 500 hPa N 

PBL 

Height Ri CAPE "e 

RR N 

PBL 

Height # 700 hPa 

VMF surface to 

700hPa Ri CAPE 

  

Table 9b. The best 6 dynamical tags that linearly correlated to LWP, IWP, and RR 

for the autumn season are listed. 

 

 

 The following dynamical variables have better linear correlations with TMVs in 

all 4 seasons: Omega at 500 hPa, Omega at 700 hPa, PBL height, Ri, VMF, and N. 

Omega 500 hPa has a stronger linear correlation with IWP than LWP and RR, and VMF 

is the opposite and have a stronger linear correlation with LWP and RR than IWP in all 

seasons. Summer is the only season that omega at 500 hPa does not have a significant 

better correlation with IWP than LWP and RR. This suggests that omega 500 hPa is a 

more important dynamical factor in affecting IWP in other three seasons. FL has a 

stronger linear relationship with the TMVs in winter and spring than in summer and 

autumn. Other dynamical tags are weakly linearly correlate with the TMVs.  

 These results verify that dynamical tags are precipitation-regimes or situation 

dependent. In other words, since clouds and different kinds of precipitation formation 

does not always rely on just one single environmental factor, as it generally has to have 

sources of moisture at the lower levels, atmospheric instability, and some lifting 

mechanisms to initiate and enhance cloud development and precipitation formation, a 

single dynamical tag cannot be always helpful in promoting cloud formation and 

precipitation in all situations thus it would be more suitable to use a combination of 

dynamical tags to specifically explain a particular situation.   



!! &+!

 The best 6 tags that correlated with the TMVs linearly are being selected and used 

as predictor variables in a multiple linear regression model. Since winter season contains 

the highest number of realizations, thus it has higher probability to be closer to represent 

a more full database than other seasons and thus it is being chosen for a full analysis to be 

performed on and only the results from winter will be provided in this study. Data 

analysis results in predicting LWP will be presented first, followed by analysis results in 

predicting IWP; lastly the results in predicting RR will be given.  

 Since LWP, IWP, and RR have strong positive skew towards light precipitation 

cases, log10 transformation is applied on the TMVs to make the distributions more 

symmetric. 

The six tags chosen to predict LWP are: 

1. PBL height  

2. #700 hPa - Omega at 700 hPa 

3. N - Brunt–Väisälä frequency  

4. VMFsfc-700hPa – Vertical Moisture Flux from surface to 700 hPa 

5. "e – Equivalent Potential Temperature 

6. FL – Freezing Level 

 As part of the verification process in the selection of the best tags to continue the 

investigation, scatter plots of the tags and TMV in the database are produced to allow 

good visualization of the relationship between the variables. Scatter plots in Figures 2a to 

2f indicate how much log10 LWP is affected by a dynamical variable. The color bar 

expressed in common logarithmic scale represents a normalized frequency of 

occurrences, which is calculated by the absolute frequency divided by the maximum 
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value of the absolute frequency. A bin’s value denotes how close one is to the bin that 

contains the highest number of points that happened to be in it. The color bar goes from 

dark red color, which represents a crowded bin, to yellow, white, and green colors, which 

stand for an almost empty bin.  

 In Fig. 2a, the bins with more data points are indicated by the red color show a 

more linear relationship while the bins with fewer observations show two splits in the tail 

structure with increasing log10 LWP and PBL height. The relationship is positively 

correlated. Fig. 2b illustrates that #700 hPa and log10 LWP appears to have a curved 

relationship. Thus linear regression model will not create a good fit to predict the 

relationship. Another example of curvilinear regression, polynomial regression, which 

tries to find a curve to better fit the data points, is probably better than a linear regression. 

A polynomial equation has x raised to integer powers. In the case of a parabola, it can be 

expressed in quadratic equation that has the form of  

                                                             y = c + b1x + b2x
2
                                                 (5) 

 where y is the dependent variable (log10 LWP), x is the independent predictor variable 

(#700 hPa) in this case, c is the y-intercept, b1 and b2 are the coefficient constants. N in Fig. 

2c shows a more complex relationship. It appears that there are majorly 2 linear 

relationships being stacked upon one another. VMFsfc-700hPa, surface !e, and FL are shown 

to have a more linear relationship with log10 LWP in Figures 2d, 2e, and 2f, respectively.  

Hence #700 hPa is the only variable viable for a quadratic regression. 
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2a     2b    2c 

        
2d     2e    2f 

       
 

Figures 2a to 2f show scatter plots of the best six dynamical tags (a. PBL height, b. 

vertical motion in p-coordinates at 700 hPa (!700 hPa), c. Brunt–Väisälä frequency 

(N), d. Vertical Moisture Flux from surface to 700 hPa (VMFsfc-700hPa), e. surface 

equivalent potential temperature (!e), and f. Freezing Level (FL)) chosen as they 

have the highest correlation with logarithmic LWP for the winter dataset. 

 

 

 There are 2 goals in this analysis. First is to determine which independent 

explanatory variables (the dynamical tags) are important predictors of the dependent 

variable (log10 LWP), and the amount of variances of the predicted log10 LWP can be 

explained by the tags in addition to the use of the BTs. Second is to determine whether a 

combination of tags exists that could be more universally applicable to most precipitating 

situations and to find out the usefulness of individual tags.  

 At the beginning, horizontally polarized BTs are used as individual predictor 

variables in the multiple linear regression models. Key assumptions for a multiple linear 

regression model include: 1) All the x variables and y has a linear relationship, 2) 
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Residuals are independent. 3) Residuals are normally distributed with zero mean and a 

constant variance. 

 A quantile-quantile (q-q) plot, also named a normal probability plot, which plots 

the quantiles of one dataset against the quantiles of another dataset. It is a good way to 

check if the residuals of a model can be fitted to a normal distribution. The residuals are 

plotted against the fitted log10 LWP in Fig. 3a to check if the variability of the residuals is 

constant throughout the range of fitted values of y. The residuals are seen to be mostly 

constant. The q-q plot shown in Fig. 3b shows the residuals from a linear regression 

model of the 10-, 19-, and 36-GHz BTs as predictor parameters with log10 LWP to be the 

response variable plotted against the normal distribution. It shows that from -2 to 2 

quantiles of the normal distribution, the residuals are also fitted quite well with the 

normal distribution and this means most of the data is fitted in a normal distribution. But 

the overall S shaped line indicates that the residuals distribution is more skewed and has 

longer tails than the normal distribution. Therefore it can be concluded that using a linear 

regression model may not be optimal with the predictor variables in use.  
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3a       3b   

       
 

Figure 3a. Residuals versus fitted values plot. The residuals are computed from 

fitting log10 LWP to a multiple linear regression model that uses the brightness 

temperatures at 10, 19, and 36-GHz as predictor variables. Residuals plotted against 

the fitted values show the variance is almost constant. The red line represents the 

trend of the residuals. However, the q-q plot in Figure 3b strongly suggests that the 

relationships between the model parameters are not linear. 

  

 

 Consequently there is a need to transform the dataset in order to fit a multiple 

linear regression model. The nonlinearity of BTs and LWP can be lowered by the usage 

of a normalized polarization difference (P; Petty, 1994a), which is defined as 

! ! ! !!!! !
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/EI!M8<23038<P When viewed at an oblique angle over the ocean, the observed difference 
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,-7814-! <87;593Z3<4! 0-.! 8N/.76.2! :89573Z5038<! 23==.7.<M.! L30-! 0-.! M9812! =7..!

:89573Z5038<!23==.7.<M.!3<!AR!0-.!K,/c!/.</303630I!08!L50.7!65:87!3<!5!M891;<!M5<!N.!
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 R
2
, the percentage of variance explained, is a good indicator to assess the 

goodness-of-fit of a model. By comparing various models as recorded in Table 10, it is 

found out that by using P10, P19, and P36 as predictive parameters results in the largest 

R
2
.  Therefore P10, P19, and P36 are selected to be the base predictive parameters and 

log10 LWP is the response variable in the multiple linear regression model.  

 

 P10 P19 P36 R
2
 

Log10LWP !   0.004 

Log10LWP  !  0.023 

Log10LWP   ! 0.026 

Log10LWP ! !  0.050 

Log10LWP ! ! ! 0.051 

Log10LWP  ! ! 0.026 

 

Table 10. Multiple linear regression model comparisons with varying predictor 

variables and the percentage of variance explained R
2
. 
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Figure 4a. Residuals versus fitted values plot. The residuals are computed from 

fitting log10 LWP to a multiple linear regression model that uses the normalized 

polarization indices of 10, 19, and 36-GHz channels as predictor variables. The red 

line represents the trend of the residuals.  Residuals plotted against the fitted values 

show the variance of the residuals is almost constant. However, the q-q plot in 

Figure 4b strongly suggests that the relationships between the model parameters are 

more linear after the use of normalized polarization indices.  

 

 

 The residuals are plotted against the fitted values in Fig. 4a and it shows that the 

variability of the residuals is almost constant for most part of the data. The q-q plot 

(shown in Fig. 4b) is again used to assess the normality of the residuals as it compares the 

residuals to an ideal normal distribution. In compare to Fig. 3b, Fig. 4b shows the 

residuals fitted significantly better onto the reference line. Since the points are a lot closer 

to the reference line than in Fig. 3b, the results suggest that it is more optimal to fit P 

linearly to log10 LWP than to fit the raw BTs.  
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0-.!;1903:9.! 93<.57!7.47.//38<!;82.9/!/8!08!M8;:10.!0-.!7.47.//38<!M8.==3M3.<0/P! T<!
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1/.2! 08! M8;:10.! 0-.! .7787! 3<! :7.23M038<R! L-3M-! 3/! 0-.! 23/M7.:5<MI! N.0L..<! 0-.!
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:78M.//!;5E./!/17.!0-.!5MM175MI!8=!0-.!;82.9!=87!0-.!0753<3<4!2505/.0!3/!5/!-34-!5/!

:8//3N9.P! ].<M.! NI! .;:98I3<4! 5! /.:5750.! 2505/.0! 0-50! 3/! 1</..<! 08! 0-.! ;82.9! 08!

M59M1950.!0-.!5MM175MI!8=!0-.!;82.9!M5<!436.!5!;87.!7.593/03M!./03;50.P!!

Next, Bayesian Information Criteria (BIC; Schwarz, 1978) attempts to determine 

a model that best explains the data with a minimum combination of tag variables. It is a 

criterion that can be used as a tool for regression variable selection to form a best-fitted 

model, a model that has the most optimal combination of predictor parameters that result 

in maximal precision. However, overfitting may result because it is possible to increase 

the likelihood by adding parameters when the selection of model parameters is done 

through maximum likelihood estimation. Maximum likelihood refers to the probability of 

the observed results to be as large as possible after a model that has gone through 

parameters estimation in order to pick a few better parameters to produce the model. This 

probability always has values in between 0 and 1, and it is common to evaluate 

likelihoods on a logarithmic scale multiplied by -2. KT?!<80!8<9I!5L572/!0-.!4882<.//!

8=! =30R! N10! 59/8! 3<M912./! 5! :.<590I! 0-50! 3/! 5<! 3<M7.5/3<4! =1<M038<! 8=! 0-.! <1;N.7! 8=!

./03;50.2! :575;.0.7/! 08! 23/M81754.! 86.7=3003<4P! Log likelihood for BIC can be 

expressed as:  
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"2 # (n + n log2$ + n log(RRS n) + (log(n))(p +1)! ! ! !!!!!!!C(F 

 where n is the number of observations, p is the number of parameters used in the model, 

and RSS is the residual sum of squares. RSS/n is the maximum likelihood estimates and 

the last term is a penalty term. ,-.!:7.=.77.2!;82.9! 3/! 0-.!8<.!L30-! 0-.! 98L./0!KT?!

6591.P!BIC is calculated using the training data set through statistics package R with a 

forward selection procedure that starts with the model with only P10, P19, and P36 as its 

based model and add dynamical tags one at a time until no further addition significantly 

improves the fit. In each step, it considers all models obtained by adding one more 

dynamical tag that has not been included to the current model, and then computes its 

extra sum-of-squares, and add the variable with the largest extra sum-of-squares. Then 

the process starts over again until all the dynamical tags have been considered. From the 

BIC output results, all 7 dynamical parameters chosen to be included in the fitted model 

are in the following order: 1. Freezing level, 2. Vertical motion at 700 hPa, 3. Vertical 

motion at 700 hPa squared, 4. Brunt–Väisälä frequency, 5. Surface equivalent potential 

temperature, 6. Planetary boundary layer height, and 7. Vertical moisture flux from 

surface to 700 hPa.   

 Model comparisons between the based model and models with one additional 

dynamical tag added one at a time following the order suggested by BIC are performed 

using the testing dataset. All the models are given in Table 11a and their statistics are 

calculated and listed in Table 11b. R
2
 represents the percentage of variance of the 

predicted log10 LWP explained and it indicates that if only P10, P19, and P36 are to be 

used as explanatory variables, the fitted model will be able to explain 5% of the variance. 

By just adding one dynamical tag, the freezing level, R
2
 increases to 26%. By adding just 
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one more dynamical tag, omega at 700 hPa, R
2
 increases to 37%. From this point on, 

adding more dynamical variables will still increase R
2
, but the increase is much less 

significant than when adding the first two.  

 

Fit P10+P19+P36 FL #700hPa #700hPa
2
 N "e PBL VMF 

1 !               

2 ! !             

3 ! ! !           

4 ! ! ! !         

5 ! ! ! ! !       

6 ! ! ! ! ! !     

7 ! ! ! ! ! ! !   

8 ! ! ! ! ! ! ! ! 

 

Table 11a. The predicted variables chosen for the fitted models 1 to 8. 

 

 

Fit R
2
 Increased R

2
 

(%) 

1 0.0513 5.13 

2 0.2643 21.3 

3 0.3732 10.89 

4 0.3783 0.51 

5 0.3837 0.54 

6 0.3897 0.6 

7 0.3912 0.15 

8 0.3914 0.02 

 

Table 11b. The statistics for fitted models 1 to 8. 

 

 

  This section starts the statistical analysis part for predicting IWP. By comparing 

various models as recorded in Table 12, it is found out that by using P36 and P85 to be 

predictive parameters result in the largest R
2
.  Therefore P36 and P85 are selected to be 
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the base predictive parameters and log10 IWP is the response variable in the multiple 

linear regression model. 

 P36 P85 R
2
 

Log10IWP !  0.0072 

Log10IWP  ! 0.0061 

Log10IWP ! ! 0.0073 

 

Table 12. Multiple linear regression model comparisons with varying predictor 

variables and the percentage of variance explained R
2
. 

 

 

The six tags chosen to predict IWP are: 

1. #500 hPa - Omega at 500 hPa  

2. PBL Height 

3. N - Brunt–Väisälä frequency 

4. Ri - Richardson Number  

5. "e  - Equivalent potential temperature 

6. FL - Freezing level 

  Figures 5a to f display the scatter plots of the log10IWP plotted against the 

dynamical tags. Omega at 500 hPa and log10IWP seem to have a curved relationship as 

plotted in Fig. 5a. By looking at the orange to red portion (more densely populated bins), 

it indicates that PBL height has a more linear relationship to log10 IWP in Fig. 5b. The 

same applies to N, Ri, "e, and FL in Figures 5c, d, e, f, respectively. 
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5a     5b    5c 

 
5d 5e    5f  

       
 

Figures 5a to 5f show scatter plots of the best six dynamical tags (a. vertical motion 

in p-coordinates at 500 hPa (!500 hPa), b. Planetary Boundary Layer (PBL) height, c. 

Brunt–Väisälä frequency (N), d. Richardson number (Ri), e. surface equivalent 

potential temperature (!e), and f. Freezing Level (FL)) chosen as they have the 

highest correlation with logarithmic IWP for the winter dataset.  

 

  By calculating the BIC using the training data set, it is concluded that all 

dynamical variables are selected to fit into a multiple linear regression model. All the 

models are shown in Table 13a and their statistics are calculated and listed in Table 13b. 

R
2
 represents the percentage of variance of the predicted log10 IWP explained and it 

shows that if only P36 and P85 are to be used as explanatory variables, the fitted model 

will be able to explain 0.76% of the variance. By just adding one dynamical tag, omega at 

500 hPa, R
2
 increases to 25%. By adding one more dynamical tag, omega at 500 hPa 

squared, R
2
 increases to 32%. From this point on, adding more dynamical variables will 

still increase R
2
, but the increase is much less significant than when adding the first two. 

The result here is the same as how predicting LWP is shown in previous session. 
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Fit P36+P85 #500hPa #500hPa
2
 N PBL FL Ri "e 

1 !               

2 ! !             

3 ! ! !           

4 ! ! ! !         

5 ! ! ! ! !       

6 ! ! ! ! ! !     

7 ! ! ! ! ! ! !   

8 ! ! ! ! ! ! ! ! 

 

Table 13a. The predicted variables chosen for the fitted models 1 to 8. 

 

 

Fit R
2
 Increased 

R
2
 (%) 

1 0.007636 0.764 

2 0.2562624 24.863 

3 0.3254547 6.919 

4 0.3296333 0.418 

5 0.3316978 0.206 

6 0.3332696 0.157 

7 0.3338743 0.06 

8 0.3338985 0.002 

 

Table 13b. The statistics for fitted models 1 to 8. 

 

 This section starts the statistical analysis part for predicting RR. By comparing 

various models as recorded in Table 14, it is found out that by using P10, P19, and P36 to 

be predictive parameters result in largest R
2
.  Therefore P10, P19, and P36 are chosen to 

be the base predictive parameters and log10RR is the response variable in the multiple 

linear regression model. 
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  P10 P19 P36 P85 R
2
 

Log10RR !       0.00172 

Log10RR   !     0.01661 

Log10RR     !   0.01729 

Log10RR       ! 0.00663 

Log10RR ! !     0.04742 

Log10RR !   !   0.02763 

Log10RR !     ! 0.00671 

Log10RR   ! !   0.01745 

Log10RR   !   ! 0.01709 

Log10RR     ! ! 0.02181 

Log10RR ! ! !   0.05282 

Log10RR   ! ! ! 0.02261 

Log10RR !   ! ! 0.03816 

Log10RR ! !   ! 0.05255 

Log10RR ! ! ! ! 0.05333 

 

Table 14. Multiple linear regression model comparisons with varying predictor 

variables and the percentage of variance explained R
2
. 

 

The six tags chosen to predict RR are: 

1. PBL Height 

2. #700 hPa - Omega at 700 hPa 

3. N - Brunt–Väisälä frequency 

4. VMFsfc-700hPa - Vertical Moisture Flux from surface to 700 hPa 

5. "e - Equivalent potential temperature 

6. Ri - Richardson Number  

 Figures 6a to f show the scatter plots of the log10RR plotted against the dynamical 

tags. PBL height, omega at 700 hPa, N, vertical moisture flux, equivalent potential 

temperature, and Richardson number all has linear relationship with precipitation rate. 
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6a     6b    6c 

     
6d     6e    6f 

  
 

Figures 6a to 6f show scatter plots of the best six dynamical tags (a. Planetary 

Boundary Layer (PBL) height, b. vertical motion in p-coordinates at 700 hPa, c. 

Brunt–Väisälä frequency (N), d. vertical moisture flux from surface to 700 hPa 

(VMFsfc-700hPa), e. surface equivalent potential temperature (!e), and f. Richardson 

number (Ri)) chosen as they have the highest correlation with rain rate for the 

winter dataset.  

 

 

Fit P10+P19+P36 #700hPa "e Ri PBL VMF P85 

1 !             

2 ! !           

3 ! ! !         

4 ! ! ! !       

5 ! ! ! ! !     

6 ! ! ! ! ! !   

7 ! ! ! ! ! ! ! 

 

Table 15a. The predicted variables chosen for the fitted models 1 to 8. 
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Fit R
2
 Increased 

R
2
 (%) 

1 0.0525432 5.254317 

2 0.2179523 16.540913 

3 0.2540491 3.60968 

4 0.2675856 1.35365 

5 0.271627 0.40414 

6 0.274456 0.2829 

7 0.2763142 0.18582 

 

Table 15b. The statistics for fitted models 1 to 8. 

 

 

  By calculating the BIC, it is concluded that all dynamical variables are selected to 

fit into a multiple linear regression model. All the models are shown in Table 15a and 

their statistics are calculated and listed in Table 15b. R
2
 represents the percentage of 

variance of the predicted log10 RR explained and it shows that if only P10, P19, and P36 

are to be used as explanatory variables, the fitted model will be able to explain 5.25% of 

the variance. Then R
2
 increases to 22% by just adding one dynamical variable, omega 

700hPa. To add one more, equivalent potential temperature, R
2
 increases to 25%. From 

this point on, adding more dynamical variables will still increase R
2
, but the raise is much 

less significant than when adding the first two, which is the same results obtained from 

analyzing the statistics to predict LWP and IWP.  
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5. Conclusions and future work 

5.1 Conclusions 

 Precipitation retrieval algorithms have been evolving and improve precipitation 

estimates since the 1980s. The Bayesian based algorithms depend heavily on the a-priori 

Cloud Radiation Database (CRD) to match observed BTs to the simulated BTs with 

associated microphysical profiles. However, microphysical profiles from different types 

of precipitation systems, such as isolated convection, extra-tropical cyclones, and tropical 

convections, could potentially be mixed together into the retrieval outcome because a set 

of multispectral BTs can match with many microphysical profiles. This can contribute to 

in accurate estimations of microphysical quantities and thus leads to imprecise estimation 

of precipitation amounts.  

,-.!?9812!WI<5;3M/!5<2!X5235038<!W505N5/.! C?WXWF!M8<M.:0!;5E./!1/.!8=!

0-.!32.5!0-50!/-870>0.7;!:78d.M038<!8=!0-.!50;8/:-.73M!.<6378<;.<0/!0-50!2./M73N./!

0-.!/I<8:03M!/3015038<!N.3<4!7.073.6.2!M5<!N.!1/.2!08!M50.4873Z.!5<2!08!-.9:!08!/.9.M0!

;3M78:-I/3M59!:78=39./!0-50!57.!;87.!5::93M5N9.!NI!3<07821M3<4!5!2.:.<2.<M.!8<!0-.!

L.50-.7!/3015038<P!,-3/!5223038<59! 3<=87;5038<! 3/! 7.5239I!565395N9.! 0-7814-!657381/!

8:.75038<59!/-870>0.7;!Ce'!-817F!498N59!=87.M5/03<4!;82.9!=87.M5/0/P! ! T<!0-.!?WXWR!

50;8/:-.73M! 2I<5;3M59! 5<2! 0-.78;82I<5;3M59! 3<=87;5038<R! 56.754.2! 08! 5! 498N59!

;82.9! 4732! /M59.R! 0-50! 3/! 2..;.2! 08! 93E.9I! -56.! 5! -34-! 2.47..! 8=! /-870>0.7;!

:7.23M05N3930I!3<!0-./.!498N59!=87.M5/0/R! 3/!2.736.2!=78;!M8<6.M038<!7./8963<4!;82.9!

experiments. This data is linked with the cloud resolving model simulated microphysical 

profiles, and derived multispectral BTs that are consistent with the cloud resolving model 

simulation. 
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In this study, a North America CDRD consisted of 120 simulations of various 

precipitation events over North America over a time period of a year was being 

constructed. Through statistical analysis, this study demonstrated that by adding just two 

dynamical variables could increase explanation of the variation of the predicted columnar 

liquid water path, ice water path, and surface rain rate by a significant amount. Among all 

the dynamical variables chosen, freezing level and omega at 700 hPa and 500 hPa appear 

to be the variables that contribute most additional information relative to BTs toward 

explaining variance of surface precipitation rate and liquid water path. Therefore, the 

results suggest that the dynamical variables can bring additional information that is 

helpful to improve precipitation estimates.  

Quantitative results for the winter season include: 

1. By adding just freezing level as one of the explanatory variables can increase R
2
 the 

explained variance of predicted LWP by ~21%. By adding omega at 700-hPa can 

increase R
2
 by another ~11%. 

2. By adding just omega at 500 hPa and its squared as explanatory variables can 

increase R
2
 the explained variance of predicted IWP by ~32%.  

3.  By adding just omega at 700 hPa as explanatory variables can increase R
2
 the 

explained variance of predicted RR by ~17%.  

 Although the calculations of BIC suggest including all dynamical variables to form 

the best fitted multiple linear regression models for the prediction of TMVs, these results 

might happen just because the amount of training dataset (around 0.4 million realizations) 

is so big that every time one extra dynamical variable is included in the model, it would 

still be able to improve the fit and reduce the residual sum of squares without increasing 
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as much on the penalty term in the calculation of BIC.  However, through this analysis of 

comparing multiple linear regression models that use different combination of dynamical 

variables, the results demonstrate that by using only 1-2 dynamic variables in additional 

to the based model predictive parameters, the normalized polarization indices of various 

channels, can already significantly improve LWP, IWP, and surface rain rates estimates. 

The TMVs estimates would continue to be improved by including more and more 

dynamic variables in the multiple linear regression models, but the improvements are not 

as significant beyond adding just 2 dynamic variables. Therefore, two might be the 

optimal number of dynamic variables to be included in the models to be useful in 

categorizing hydrometeor profiles during the retrieval process of Bayesian physical 

inversion-based algorithms.   

 There are uncertainties in the assumption of linear relationships in between some 

dynamic variables and the TMVs in this analysis. In some of the scatter plots (e.g. 

Figures 2a, 2d, 5a, 5c, and 6a), although the more densely populated bins shown in dark 

red color illustrate a more linear relationship between the dynamic variable plotted with 

the TMV, not all the bins on the scatter plot are consistent with the linear relationship. 

Some less populated bins in yellow, orange, and bright red colors suggest a nonlinear 

relationship between the dynamic variables and the TMV plotted. Furthermore, other 

scatter plots as shown in Figures 2c, 5d, and 5f appear to have multiple linear relationship 

structures embedded in one scatter plot. Therefore, these scatter plots suggest that linear 

regression might not be the most appropriate technique for the analysis. To solve this 

problem, other transformations on the dynamic variables or the TMV might be needed to 

achieve a more linear relationship between the two for linear regression to be more valid. 
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The results from this study might change with different transformations to be applied on 

the variables.  

!

5.2 Future Work  

 Since the database does not include all the possible precipitation systems in all 

seasons, improvements in making the database to be more completed can be done by 

adding in more simulations to widen the breadth of storm types in all seasons. There is a 

need to extend the data analysis to all other seasons and compare their results with those 

from the winter season. Moreover, there is a need to study the impact of model error on 

these results. It is because in simulating the BTs, cloud model microphysics including the 

hydrometeor sizes, shapes, composition, and distribution has to be assumed in the model. 

Secondly, surface skin temperature and the temperature and moisture profiles with 

correct representation of the environment are needed as input to the radiative transfer 

model. Then, there are also other calculations of the emissivity properties of the surface, 

and hydrometeor optical properties, and in the radiative transfer. Errors in any of these 

calculations can cause a bias in the simulated BTs. To reduce model errors, it is essential 

to develop more competent simulations of microphysical profiles and BTs. In addition, 

future work is needed to develop ways to implement the use of the dynamical variables 

into the retrieval process in the future algorithms. Since this method of the inclusion of 

dynamic variables into the CDRD also depends on the accuracy of the global forecasting 

model (GFS or ECMWF)’s forecasts, it is important to develop a checking system in the 

retrieval process to make sure that the forecasts from the forecasting models are accurate 

to be used.!
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Appendix A!

Simulation 

Number Month Day Year Latitude Longitude Event 

1 11 4 2007 21.70 -157.50 frontal 

2 11 9 2007 19.64 -66.36 convective 

3 11 9 2007 46.74 -86.97 lake effect snow 

4 11 12 2007 46.98 -116.37 orographic 

5 11 13 2007 20.63 -85.78 convective 

6 11 14 2007 51.45 -130.61 frontal 

7 11 20 2007 43.58 -61.17 frontal 

8 11 25 2007 39.23 -76.55 frontal 

9 11 27 2007 47.40 -116.72 frontal 

10 11 30 2007 39.44 -107.31 frontal 

11 12 1 2007 41.57 -97.82 frontal 

12 12 3 2007 48.40 -123.14 frontal 

13 12 7 2007 44.34 -59.15 frontal 

14 12 11 2007 34.74 -112.59 frontal 

15 12 14 2007 27.99 -104.24 frontal 

16 12 17 2007 58.31 -124.01 frontal 

17 12 20 2007 38.00 -154.25 frontal 

18 12 20 2007 28.77 -86.84 frontal 

19 12 24 2007 13.92 -115.66 convective 

20 12 26 2007 57.80 -160.14 convective 

21 1 4 2008 36.81 -119.66 frontal 

22 1 8 2008 13.07 -158.20 convective 

23 1 9 2008 46.80 -127.79 frontal 

24 1 10 2008 55.28 -52.38 frontal 

25 1 16 2008 45.71 -25.14 frontal 

26 1 18 2008 30.03 -87.19 frontal 

27 1 21 2008 43.41 -77.21 lake effect snow 

28 1 25 2008 38.82 -127.97 convective 

29 1 28 2008 32.99 -57.66 frontal 

30 1 29 2008 50.40 -48.52 frontal 

31 2 3 2008 41.90 -112.15 frontal 

32 2 6 2008 12.55 -154.34 convective 

33 2 12 2008 43.71 -160.66 frontal 

34 2 13 2008 30.60 -72.77 frontal 

35 2 15 2008 33.58 -28.65 frontal 

36 2 16 2008 4.57 -82.44 convective 

37 2 21 2008 5.09 -47.29 convective 

38 2 25 2008 6.32 -78.75 convective 

39 2 26 2008 42.42 -157.32 frontal 

40 2 29 2008 53.12 -172.62 frontal 

41 3 3 2008 40.85 -50.45 frontal 

42 3 7 2008 29.61 -86.40 frontal 

43 3 9 2008 58.45 -150.29 frontal 
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44 3 10 2008 48.11 -124.28 frontal 

45 3 15 2008 35.88 -73.04 frontal 

46 3 18 2008 31.13 -99.45 frontal 

47 3 19 2008 9.97 -103.18 convective 

48 3 23 2008 43.45 -105.82 orographic 

49 3 25 2008 24.77 -75.85 frontal 

50 3 28 2008 53.65 -109.69 frontal 

51 4 1 2008 35.10 -92.46 convective 

52 4 5 2008 26.23 -82.97 convective 

53 4 6 2008 46.92 -92.11 frontal 

54 4 9 2008 13.84 -89.39 convective 

55 4 11 2008 41.71 -78.57 frontal 

56 4 14 2008 47.52 -118.30 frontal 

57 4 17 2008 41.77 -97.21 frontal 

58 4 20 2008 31.50 -78.05 frontal 

59 4 23 2008 57.66 -92.73 frontal 

60 4 26 2008 27.68 -96.86 convective 

61 5 1 2008 9.45 -121.29 convective 

62 5 5 2008 35.60 -97.03 convective 

63 5 6 2008 57.70 -161.02 frontal 

64 5 7 2008 19.64 -119.53 convective 

65 5 11 2008 35.46 -88.59 frontal 

66 5 13 2008 31.80 -60.65 frontal 

67 5 21 2008 43.33 -108.19 frontal 

68 5 22 2008 59.36 -119.18 frontal 

69 5 26 2008 34.74 -87.85 convective 

70 5 30 2008 18.81 -84.02 convective 

71 6 1 2008 43.60 -102.87 convective 

72 6 8 2008 18.40 -66.10 convective 

73 6 10 2008 48.34 -123.00 frontal 

74 6 12 2008 34.95 -89.85 convective 

75 6 14 2008 20.47 -64.51 convective 

76 6 19 2008 4.66 -32.17 convective 

77 6 21 2008 22.59 -106.52 convective 

78 6 25 2008 28.30 -82.88 sea breeze 

79 6 27 2008 38.14 -63.81 frontal 

80 6 29 2008 50.51 -71.19 frontal 

81 7 3 2008 39.73 -86.27 frontal 

82 7 6 2008 43.07 -93.87 convective 

83 7 12 2008 46.44 -91.58 frontal 

84 7 16 2008 43.99 -87.58 frontal 

85 7 16 2008 45.09 -90.18 convective 

86 7 17 2008 42.55 -95.10 frontal 

87 7 20 2008 32.66 -109.82 convective 

88 7 23 2008 43.74 -76.82 convective 

89 7 23 2008 24.93 -97.12 convective 

90 7 24 2008 44.67 -70.47 convective 
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91 8 2 2008 43.77 -73.04 convective 

92 8 5 2008 29.54 -94.04 convective 

93 8 6 2008 39.37 -90.18 convective 

94 8 11 2008 40.65 -71.54 frontal 

95 8 14 2008 25.80 -104.59 orographic 

96 8 18 2008 30.90 -94.75 convective 

97 8 19 2008 27.96 -80.16 convective 

98 8 21 2008 32.21 -79.81 convective 

99 8 27 2008 18.56 -67.06 convective 

100 8 31 2008 27.53 -87.19 convective 

101 9 1 2008 30.45 -91.23 convective 

102 9 6 2008 41.38 -72.95 convective 

103 9 9 2008 40.58 -74.18 convective 

104 9 12 2008 42.29 -87.71 frontal 

105 9 13 2008 36.88 -93.16 convective 

106 9 14 2008 27.06 -97.91 frontal 

107 9 17 2008 59.62 -114.79 frontal 

108 9 21 2008 18.23 -68.03 frontal 

109 9 25 2008 36.03 -69.79 frontal 

110 9 30 2008 37.86 -76.11 frontal 

111 10 2 2008 47.40 -68.91 frontal 

112 10 4 2008 48.34 -125.51 frontal 

113 10 7 2008 34.16 -94.39 convective 

114 10 10 2008 45.95 -109.86 frontal 

115 10 12 2008 52.48 -81.39 frontal 

116 10 15 2008 40.15 -94.97 frontal 

117 10 19 2008 45.71 -86.13 frontal 

118 10 21 2008 46.92 -125.07 frontal 

119 10 26 2008 43.13 -70.40 frontal 

120 10 27 2008 21.86 -83.94 convective 

 

Appendix A. The date, latitude and longitude point at the center of the grid, and the 

type of precipitation event for all simulations are shown.  
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