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Abstract 

The uncertainties of model parameters are one of the important sources of model 

bias in a coupled ocean-atmosphere general circulation model (CGCM). The traditional 

method of tuning parameters through trial-and-error sensitivity experiments is subjective 

and very inefficient. An ensemble-based filter (EnKF) potentially provides a novel 

approach for systematic parameter estimation in a CGCM. In this pilot study, we focus on 

the study of feasibility and effectiveness of parameter estimation in a CGCM using an 

EnKF strategy.  

We developed a random subgrouping scheme to improve the filter performance of 

EnKF in a nonlinear regime. EnKF is a linear filter, while model response to a parameter 

uncertainty could be very nonlinear. Therefore, it is important to improve the ability of an 

EnKF in handling nonlinearities. The random subgrouping scheme alleviates the outlier 

effect occurring during EnKF assimilation in a nonlinear system. Test results, using the 

random subgrouping technique on two low-order models and one intermediate model, 

show that the new scheme significantly improves performance compared to regular 

EnKFs. 

In the twin experiment framework, we perform the first ensemble based parameter 

estimation in a CGCM. We first perform single parameter estimation and then multiple-

parameter estimation. Results show that the biased parameters all converge to the “truth” 

values after the assimilation of the oceanic observations of monthly sea surface 

temperature and salinity and atmospheric data of temperature and wind (only for 

multiple-parameter estimation). Finally, the improved parameters also improve the model 

climatology.  
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An adaptive spatial average (ASA) algorithm is proposed to increase the 

efficiency of parameter estimation. For a complex system such as a CGCM, the 

sensitivity and response of a model variable to a model parameter could vary spatially 

and temporally. Refined from a previous spatial average method, the ASA uses the 

ensemble spread as the criterion for selecting “good” values from the spatially varying 

posterior estimated parameter values; the “good” values are then averaged to give the 

final globally uniform posterior parameter. In comparison with existing methods, the 

ASA parameter estimation shows superior performance: faster convergence and 

enhanced signal-to-noise ratio. 
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Chapter	  1	  Background	  
 
1.1 Introduction 
 

In spite of tremendous efforts made by the climate modeling community over decades, 

current climate model still suffer from significant climate biases. One important source of bias is 

the uncertainty of model parameters. The tuning of model parameters, however, has remained a 

challenging task, especially in a complex climate model such as a coupled ocean-atmosphere 

general circulation model (CGCM), which consists of nonlinear dynamic processes on a wide 

range of time scales and requires substantial computational resources. For example, model biases 

occur when the atmosphere and ocean components are coupled, indicating poor representations 

of atmospheric and oceanic processes associated with coupling. One major bias is the so-called 

tropical bias, characterized by a too westward penetration of the cold tongue and a double ITCZ 

in the Pacific and Atlantic sectors (e.g. Mechoso et al., 1995; Davey et al., 2002; Collins et al., 

2006; Lin, 2007). Tuning model parameters in a single component model (atmospheric or 

oceanic) individually cannot alleviate this type of coupled bias. The atmosphere model and ocean 

model can usually be tuned individually in the stand-alone mode reasonably well. Once they are 

coupled, however, the coupled model drifts away significantly from the observation.  

Traditionally, modelers tune the model parameters in a complex CGCM subjectively 

through trial-and-error sensitivity experiments. This subjective tuning is inefficient because of 

the huge computational costs. Furthermore, given the large number of parameters in a CGCM the 

limitation of a human mind and the intensive labor involved, it is virtually impossible to identify 

the optimal setting of parameters using the subjective tuning alone. On the other hand, modern 

data assimilation approaches such as the four-dimension variational assimilation (4D-Var) and 

Ensemble-based filter (EnKF) provide the potential for an automatic optimization of the model 
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parameters along with the model states (Navon, 1997; Derber, 1989; Anderson, 2001). In 

practice, however, it has remained unclear if there is a data assimilation strategy practical for 

parameter optimization in a complex system like the CGCM.  

For a complex system as a CGCM, the parameter estimation with EnKF is much more 

practical than with 4D-VAR because the EnKF is easy to implement and maintain relative to the 

4D-VAR scheme. The EnKF is an off-line scheme and therefore can be adapted to any model 

configuration conveniently. The 4D-VAR method is an on-line scheme, which requires 

extraordinary effort to build and update an adjoint model (Navon, 1997; Zou et al., 1992; Zhu 

and Navon, 1998), which remains a great challenge for any complex CGCM. The 

implementation of 4D-VAR methods in a complex CGCM still remains a great challenge, even 

for traditional data assimilation. The first EnKF system has been implemented successfully in a 

CGCM for climate applications (Zhang et al., 2007, 2008) while, so far, no 4DVAR scheme has 

been shown to work in a CGCM, although it does work in the operational numerical weather 

prediction (NWP) models.   

Previous studies in ensemble-based parameter estimation have shown encouraging 

results. There are different approaches to do parameter estimation using EnKF. One approach 

focuses on the improvement of model parameters in order to improve steady-state climatology 

by assimilating the long-term climatological observations iteratively. This approach has been 

applied to the highly non-linear Lorenz (1963) system (Annan and Hargreaves, 2004), as well as 

a climate model of intermediate complexity (Annan et al., 2005a), an atmosphere NWP model 

(Annan et al., 2005b), and an earth system model of intermediate complexity (Ridgwall et al., 

2007). Another approach focuses on the improvement of model parameters as well as model 

forecast by implementing a simultaneous estimation of model state variables and parameter with 
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the assimilation of time evolutionary observations. This approach has been applied to mesoscale 

atmospheric models, including a planetary boundary layer model (Hacker and Snyder, 2005), a 

2-D sea breeze model (Aksoy et al., 2006a), a regional atmosphere NWP model (MM5, Aksoy et 

al., 2006b), an advanced regional weather prediction system (Tong and Xue, 2008 a & b), and a 

regional atmosphere NWP model using realistic observation (WRF, Hu et al., 2010). The 

approach of simultaneous estimation of model state and parameter has also implemented in the 

coupled climate models, including conceptual coupled climate models (Zhang, 2011 a & b; 

Zhang et al., 2012), and an intermediate coupled atmosphere-ocean-land model (Wu et al. 2012, 

a & b). 

In this study, we will explore the ensemble based parameter estimation in a CGCM using 

the simultaneous parameter and state estimation approach.  As a pilot study, we will focus on the 

study of feasibility and effectiveness of parameter optimization.  This study will give us 

experience in parameter estimation in a CGCM and will lay a foundation for future studies 

towards a systematic improvement of complex coupled earth system models.  It will have a 

significant impact on the development of complex coupled models in the future. 

 
1.2 Data assimilation 
 

Data assimilation is the technique that incorporates observational data into a compute 

model of a real system. It proceeds by analysis cycles that consist of steps: an analysis step and a 

forecast step. In each analysis step, the observations and the model forecast (also called the prior 

or background) of the system are combined together to produce the analysis (all called the 

posterior), which is considered as 'the best' estimate of the current state of the system. In each 

forecast step, the model is then advanced in time with the analysis as the initial condition and its 

result becomes the forecast in the next analysis cycle. An analysis itself can be as a 



 

 

4 

comprehensive and self-consistent diagnostic product. It can also use as the initial condition for a 

model forecast.  

Due to uncertainties in climate modeling, the temporal evolution of model climate states 

can be described as a continuous stochastic dynamical process through a set of stochastic 

differential equations (Jazwinski 1970) 

!𝒙𝒕
!"
= 𝑭 𝒙𝒕, 𝑡 + 𝑮(𝒙𝒕, 𝑡)𝑾𝒕         (1.1) 

Here, 𝐱𝐭  is the vector for the model state variable at time t , and 𝑭  is a vector function 

representing the deterministic part of the model, including its dynamical and physical processes. 

The last term at the right hand side of eqn. (1.1) represents the contributions of uncertainties 

resulted from erroneous initial conditions with 𝑾𝒕 as a white (in time) Gaussian process and G as 

a matrix that defines the relationship between W and x!.  An observation vector 𝐲𝐭 at time t can 

be written as 

𝒚𝒕 = 𝒉 𝒙𝒕, 𝑡 + 𝒗𝒕     (1.2) 

where 𝐡 is the mapping function from the model state space (𝐱𝐭) to the observed space (𝐲𝐭); 𝐯𝐭 is 

the observation error. Generally, the model states 𝒙𝒕 and observations𝒚𝒕 described by probability 

distribution density functions (PDF). Data assimilation solves the conditional PDF of model 

states at time t given all the prior observations. Here the conditional PDF indicates as 𝑝 𝑥! 𝑌! , 

where 𝒀𝒕 = [… ,𝑦!!!,𝑦!] is the set of all observations that are taken up to and including time t. 

Following the derivation in (Jazwinski 1970, Anderson and Anderson 1999, Anderson 2001), 

based on Bayes' rule, the  𝑝 𝒙𝒕 𝒀𝒕  can be derived as  

𝑝 𝒙𝒕 𝒀𝒕 = 𝑝 𝒙𝒕 𝒚𝒕,𝒀𝒕!𝟏 = ! 𝒚𝒕 𝒙𝒕,𝒀𝒕!𝟏 !(𝒙𝒕,𝒀𝒕!𝟏)
!(𝒚𝒕,𝒀𝒕!𝟏)

     (1.3) 

𝑝 𝒙𝒕 𝒀𝒕!𝟏 = ! 𝒙𝒕,𝒀𝒕!𝟏
!(𝒀𝒕!𝟏)

           (1.4) 
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Incorporating (1.4) into (1.3) gives 

𝑝 𝒙𝒕 𝒀𝒕 = ! 𝒚𝒕 𝒙𝒕,𝒀𝒕!𝟏 !(𝒙𝒕|𝒀𝒕!𝟏)
!(𝒚𝒕|𝒀𝒕!𝟏)

     (1.5) 

The 𝑝 𝒚𝒕 𝒙𝒕,𝒀𝒕!𝟏  is the PDF of observation y! and the 𝑝(𝒙𝒕|𝒀𝒕!𝟏)is the PDF of prior. The 

denominator 𝑝(𝒚𝒕|𝒀𝒕!𝟏) is a normalization that guarantees that the total probability of all 

possible states is 1.  

 For linear data assimilation problem, eqn. (1.5) can be simplified with the assumption of 

Gaussian PDFs for both prior and observations. A Gaussian PDF is completely determined by 

the mean and covariance, 

        𝑝(𝒙𝒕|𝒀𝒕!𝟏)~𝑁 𝒙𝒇,𝑷𝒇 ∝ 𝑒!
!
!   𝒙𝒕!𝒙

𝒇 !
𝑷𝒇

!𝟏
𝒙𝒕!𝒙𝒇                                                                           (1.6) 

                𝑝 𝒚𝒕 𝒙𝒕,𝒀𝒕!𝟏   ~𝑁 𝒚𝒕,𝑹 ∝   𝑒!
!
!   𝒚𝒕!𝒉 𝒙𝒕

!!!! 𝒚𝒕!𝒉 𝒙𝒕                                                               (1.7)  

Here 𝑥!  and 𝑦!  are the prior and observations and 𝑃!  and   𝑅  denote their error covariance 

matrixes, respectively; N denotes the normal distribution. Incorporating (1.6) and (1.7) into (1.5),  

the  𝑝 𝑥! 𝑌!  also follows Gaussian distribution with  

𝑝 𝒙𝒕 𝒀𝒕 ∝ 𝑒!
!
![   𝒚𝒕!𝒉 𝒙𝒕

𝑻𝑹!𝟏 𝒚𝒕!𝒉 𝒙𝒕 ! 𝒙𝒕!𝒙𝒇
𝑻
𝑷𝒇

!𝟏
𝒙𝒕!𝒙𝒇 ]   (1.8) 

From (1.8), we can get the basic cost function for linear data assimilation 

𝐽 𝒙𝒕 = !
!
[   𝒚𝒕 − 𝒉 𝒙𝒕

𝑻𝑹!𝟏 𝒚𝒕 −𝑯𝒙𝒕 + 𝒙𝒕 − 𝒙𝒇
𝑻𝑷𝒇!𝟏 𝒙𝒕 − 𝒙𝒇 ]   (1.9) 

where H is the linearized mapping function (forward operator) from state variables space to 

observation space (see eqn. (1.2)) . The 𝐽 𝑥!  is a quadratic form of 𝑥! and therefore the 𝑝 𝑥! 𝑌!  

follows a Gaussian distribution.  

𝑝 𝒙𝒕 𝒀𝒕 ~𝑁 𝒙𝒂,𝑷𝒂 ∝   𝑒!
!
!   𝒙𝒕!𝒙

𝒂 !𝑷𝒂!𝟏 𝒙𝒕!𝒙𝒂      (1.10) 

Therefore we can solve the conditional distribution of 𝑝 𝒙𝒕 𝒀𝒕  by find the mean 𝒙𝒂 are and 

covariance 𝑷𝒂 of analysis 𝒙𝒕.  
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The three-dimension variational assimilation scheme (3D-Var), Kalman filter (KF, 

Kalman, 1960; Kalman and Bucy, 1961) and EnKF can all start from the cost function of (1.9). 

The differences among these methods are the way they deal with the background covariance 

matrix 𝑷𝒇. The 3D-Var assumes the 𝑷𝒇  to be stationary, while KF and EnKF use a flow-

dependent 𝑷𝒇.  

 

1.2.1 Kalman Filter (KF) 

The KF (Kalman 1960; Kalman and Bucy 1961) achieves an optimal estimation of 𝑥! ,𝑃! 

in (1.10) for either the condition of minimum variance or the condition of maximum likelihood 

based on the assumption of Gaussian (or normal) distributions for both forecast  and observation.  

The KF updates the analysis (𝑥!) and covariance (𝑃!) as  

𝑥! = 𝑥! + 𝐾(𝑦! − 𝐻𝑥!)         (1.11) 

𝑃! = (1− 𝐾𝐻)𝑃!                   (1.12) 

where 𝐾 = 𝑃!𝐻!(𝐻𝑃!𝐻! + 𝑅)!! is the Kalman gain. H is the linearized mapping function 

from state variables space to observation space, 𝑦 = 𝐻𝑥 and HT is the transpose of H. The 

observational uncertainty R is determined by the error scale of observations. The forecast 

uncertainty 𝑃!  is advanced from the previous 𝑃!  by using the Fokker–Planck Kolmogorov 

equation (Jazwinski 1970),  

!!!
!"
= 𝐹𝑃! + 𝑃!𝐹! + 𝐺𝑄𝐺      (1.13)    

where 𝑃!  indicates the uncertainty of  𝑃!or 𝑃!  (separated by  time t).  The variable 𝑄  is 

covariance of 𝑊!.  When 𝑥! has the dimension of 𝑀, the 𝑃! has the dimension of 𝑀!. Therefore 

it is difficult to apply (1.13) in high dimensional systems like weather or climate models.   
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1.2.2 Ensemble Based Filters (EnKF)  

 The EnKF is a Monte Carlo implementation of KF (Evensen, 1994; Burger et al., 1998; 

Houtekamer and Mitchell, 1998; Houtekamer et al., 2005; Anderson, 2001, 2003，Bishop et al. 

2001, Whitaker and Hamill 2002, Tippett et al 2003, Sakov and Oke 2007). The original KF 

need to advance the covariance matrix 𝑃 in time. However, it is not feasible computationally to 

maintain and update the covariance matrix in high-dimensional systems. For practical solution, 

researchers have developed EnKFs. An EnKF represents the PDF of the model state using a 

collection of state vectors, called an ensemble, and replace the background and analysis 

covariance matrix 𝑷𝒇 and 𝑷𝒂 by the sample covariance 𝑷𝒆
𝒇  and  𝑷𝒆𝒂, respectively. The model state 

variables are updated by observations through EnKF as 

𝒙𝒂 = 𝒙𝒇 +𝑲𝒆(𝒚𝒐 −𝑯𝒙𝒇)     (1.14) 

  𝑷𝒆𝒂 = 𝟏−𝑲𝒆𝑯 𝑷𝒆
𝒇 𝟏−𝑲𝒆𝑯 𝑻 +𝑲𝒆𝑹𝑲𝒆

𝑻   = 𝟏−𝑲𝒆𝑯 𝑷𝒆
𝒇                    (1.15) 

Now the Kalman gain 𝑲𝒆 =   𝑷𝒆
𝒇𝑯𝑻(𝑯𝑷𝒆

𝒇𝑯𝑻 + 𝑹)!𝟏 is a suboptimal solution for K because it is 

estimated from a finite size ensemble.  

EnKF uses ensembles to sample model uncertainties of forecast or analysis. The 

ensemble spreads quantify the uncertainties. A distorted ensemble spread could decrease the 

quality of analysis significantly. Especially when a forecast ensemble spread is much smaller 

than the true uncertainty of the forecast, the EnKF analysis scheme tends to overweight the 

forecast and ignore the impact of observation, and therefore causes filter divergence. Based on 

the methods of updating analysis ensemble, EnKF can be divided into two categories: stochastic 

and deterministic. We will discussion difference between them in the chapter 2. 
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1.3 Ensemble based parameter estimation 
 

Parameter estimation deals with a very different problem from that of the state variable 

estimation, although it uses the same updating equation as state variables. Parameter estimation 

is a smoothing problem while state estimation with EnKF is a filtering problem. Given a 

realization of the observation vector of 𝒀! = [… ,𝒚𝒕!𝟏,𝒚𝒕], an estimation problem compute an 

estimation of 𝒙𝒌 based on 𝒀𝒕. If 𝑘 < 𝑡, the problem is called a smoothing problem; if 𝑘 = 𝑡, it is 

called filtering problem; if 𝑘 > 𝑡, it is a prediction problem. Generally we evaluate an estimated 

parameter related to its initial guess value. In that sense parameter estimation is a smoothing 

problem, while the state estimation with EnKF is a filter problem, which minimizes the 

uncertainty of model state at current time.   

In data assimilation, parameters can be estimated by augmenting state variables with 

model parameters (e.g. Banks, 1992a & b; Anderson, 2001). The parameters are treated as 

special variables that are stationary during model integration. When we also consider the 

uncertainty of parameters in climate modeling, eqn. (1.1) and (1.5) are updated respectively, as 

!𝒙𝒕
!"
= 𝒇 𝒙𝒕,𝜷𝒕, 𝑡 + 𝑮(𝒙𝒕,𝜷𝒕, 𝑡)𝑾𝒕      (1.16) 

!𝜷𝒕
!"
= 0                                (1.17) 

𝑝 𝒙𝒕,𝜷𝒕 𝒀𝒕 = ! 𝒚𝒕 𝒙𝒕,𝜷𝒕!𝟏,𝒀𝒕!𝟏 !(𝒙𝒕,𝜷𝒕!𝟏|𝒀𝒕!𝟏)
!(𝒚𝒕|𝒀𝒕!𝟏)

      (1.18) 

Here, 𝜷𝒕 is the vector for the parameters at time t. Here 𝜷𝒕!𝟏represents the estimated parameter 

vector given all previous observations (𝒀𝒕!𝟏) and 𝜷𝒕 represents the adjusted parameter vector 

when the new observation ( 𝐲𝐭)  is assimilated. Now 𝑝 𝒚𝒕 𝒙𝒕,𝜷𝒕!𝟏,𝒀𝒕!𝟏  is the PDF of 

observation y! and 𝑝(𝒙𝒕,𝜷𝒕!𝟏|𝒀𝒕!𝟏)is the PDF of prior.  Therefore, based on the assumption of 

Gaussian (or normal) distributions for both state variables (𝒙𝒕) and parameters (𝜷𝒕), EnKF can 
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apply the parameter estimation use the same equations as the traditional EnKF in  (eqn. (1.14) 

and (1.15)), except using the augmented vectors of 𝒙
𝒇

𝛃𝒇  and 𝒙
𝒂

𝛃𝒂  as the prior and posterior, 

respectively. Here the 𝛃𝐚 and 𝛃𝐟 are the ensemble of prior and updated parameters, respectively. 

In this manner, the model states and parameters can be estimated simultaneously. The state 

variables remain updated the same as in the traditional EnKF assimilation while the parameters 

are updated as 

𝜷𝒂 = 𝜷𝒇 + 𝑪(𝜷𝒇,𝑯𝒙𝒇)(𝑯𝑷𝒇  𝑯𝑻 + 𝑹)!𝟏(𝒚−𝑯𝒙𝒇) (1.19)    

The key to parameter correction is the covariance between the parameters and the 

simulated observation  𝑪(𝜷𝒇,𝑯𝒙𝒇), which reflects the sensitivity of model simulated observation 

to model parameters. When the parameter-state covariance is signal-dominated and the 

observation sufficiently constrains the model states, it is possible to correct these parameters with 

EnKF.  

The ensemble-based filter updates the parameter using the same manner as the traditional 

EnKF updating state.  Therefore, successful implementation of EnKF for pure data assimilation 

purpose is the precondition for ensemble based parameter estimation. A sufficiently constrained 

simulated observation enhances the signal/noise ratio of parameter-state covariance. The EnKF is 

a linear filter, although it could be used in the nonlinear regime. While a model response to a 

parameter uncertainty could be very nonlinear, we need to consider the effect of nonlinearity, 

especially for parameter estimation purpose. The stochastic and deterministic EnKFs perform 

very differently in a nonlinear system. In chapter 2, we will investigate the differences in simple 

nonlinear systems and propose a random subgrouping scheme for deterministic EnKFs to 

improve the assimilation performance under nonlinear conditions. 
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1.4 Techniques for Parameter ensemble  

In general, however, there is no guarantee that the optimal parameters can be identified 

from state variables using data assimilation (Navon, 1998) especially for a complex nonlinear 

system such as a CGCM. Parameter estimation could fail if model responses to parameter 

uncertainty is not sufficiently strong on the observation space to overcome the sampling errors or 

the model response to parameter uncertainty does not vary smoothly (Navon, 1997; Zupanski 

and Zupanski, 2006; Nielsen-Gammon, 2010).  Here we will address some techniques to increase 

the probability of success of parameter estimation. 

  1.4.1 Parameter ensemble spread inflation 

Parameter estimation is an inverse problem. The inverse problem is considered the 

"inverse" to the forward problem, that is, the errors of model forecast or simulation related the 

model parameters error. A biased parameter could generate model state bias on the mean state 

and/or its variation. The state bias, reflected in the model forecast, is the signal for the parameter 

estimation. EnKF maps the signal from observation space onto parameter space to correct the 

parameter error. To obtain the mapping function, EnKF uses a parameter ensemble to sample the 

parameter bias. The parameter ensemble is then applied in the model integration to obtain the 

response of model forecasts to parameter ensemble. The covariance between the forecast 

ensemble and parameter ensemble samples the mapping function.  

One concern for parameter estimation is the spread (standard derivation) of parameter 

ensemble at initialization and during the data assimilation process. Parameter ensemble plays 

critical role in generating parameter-state covariance for parameter estimation as well as 

enhances the forecast state ensemble and improves the state estimation because the forecast 

ensemble includes the uncertainty generated by parameter error. However, model parameter 
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initial errors are unknown in the real world. No straightforward guidance exists for the proper 

range of ensemble spreads of parameters to be estimated.  Furthermore, parameters are not 

dynamical variables. The model integration at forecast steps can only increase the ensemble 

spreads of model states but not parameters ensemble spread. The parameter ensembles remain 

constant during forecast steps. While the variance of both model variables and parameters is 

reduced at an analysis step. As a result, parameter spread remains unchanged between analysis 

steps only to be reduced again during the following analysis step. This leads to a progressively 

decreasing parameter ensemble spread. The progressively decreasing parameter eventually could 

cause too small of a parameter ensemble spread and filter divergence for parameter estimation, 

especially if the mean parameter value does not promptly converge toward the true value or if the 

true parameter value varies in time. 

In a twin model experiment, the initial ensemble spread for a parameter can be set as the 

initial error of the parameter (absolute difference between initial mean and true parameter value). 

Usually, parameter ensemble spread is inflated during assimilation to prevent filter divergence. 

For example, the conditional covariance inflation technique inflates (CCI) the parameter 

ensemble back to a predefined minimum value when necessary (Aksoy et al. 2006b); Hu et al 

(2010) inflates the parameter ensemble back to the initial ensemble spread.  The CCI is used in 

our parameter estimation experiments below.  

 

1.4.2 the correlation cutoff scheme for parameter estimation   

Ensemble based parameter estimation uses parameter-state covariance to represent the 

mapping function from observation space to parameter space. Successful parameter estimation 

requires the covariance to be signal-dominant.  When we use an observation 𝑦! and a forecast 𝑥! 
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to update a parameter β, the β is augmented with the state variable x. Thus, the updating 

equations are the same as the traditional EnKF equations. The uncertainty scale of simulated 

observation 𝑥! can be written as  

σ!! = 𝐿!σ!! + 𝜉!! + σ!"!            (1.20) 

where  σ!,σ! are the error scales (standard derivations) of 𝑥!and  β respectively. 

 The first two terms at the right hand side of equation are the uncertainty produced by the 

parameter uncertainty. The uncertainty has been separated into linear partition (𝐿!σ!!) and 

nonlinear partition (𝜉!!). 𝐿 is the flow dependent linear response coefficient of 𝑥 to parameter 𝛽. 

The third term (σ!"! ) is the partition of uncertainty related to other sources, like the initial 

condition uncertainty, boundary condition uncertainty, and model bias, which are not related to 

the parameter uncertainty. Only 𝐿!σ!!  is the signal for parameter estimation in a linear filter 

system.   

One major noise source for parameter estimation with EnKF is the sampling error 

generated from limited ensemble size. The noise scale of forecast is proportional to the scale of 

simulated observation uncertainty and decreases when the degrees of freedom (𝑑𝑓) increase. 

Here it is written as  

σ!! = 𝜅(𝑑𝑓)σ!!                      (1.21) 

where 𝜅 = 𝜅(𝑑𝑓) is a  positive coefficient related to the 𝑑𝑓.  

Generally, we can enhance the signal/noise ratio, and therefore improve the parameter 

estimation from three aspects: (i) increase the ensemble size to decrease the sampling error, 

which is constrained by the computational resource; (ii) decrease the uncertainties of forecast by 

produce a high quality analysis, which is constrained by the observation quality and coverage; 

(iii) increasing the weight of the parameter (𝐿!σ!!) among the total forecast uncertainty σ!!  in 
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equation (1.20). Usually the signal for parameter estimation and model forecast uncertainty vary 

temporally.  We can further enhance the signal-to-noise ratio by only applying parameter 

updating under the condition with the signal weighted among model forecast uncertainty. That 

can be easily achieved with a correlation cutoff scheme.  The correlation cutoff scheme only 

allows the observation update parameter when the value of parameter-state correlation is bigger a 

predefined cutoff value. The value of parameter-state correlation indicates the weight of 

parameter signal among total forecast uncertainty.   

1.4.3 “ Spin-up” parameter estimation   

To enhance the signal/noise ratio of parameter-state correlation, Zhang et al. (2012) 

proposed a “spin-up” process for parameter estimation. Before the parameter estimation is 

activated, a “spin-up” process for the state estimation to reach a “quasi-equilibrium” state such 

that the uncertainty of model states is sufficiently constrained by observations.  The “spin-up” 

process decreases the forecast uncertainties related to the initial condition ( the σ!"!   in eqn. 

(1.20)). This process also provides the sufficient time for the model to respond the parameter 

ensembles.  

 

1.5 Parameter estimation example in a simple model  

In this section, we will offer an example of parameter estimation in a conceptual coupled 

“climate’’ model – Lorenz63-slab model: a slowly-varying variable T coupled with the 3-

variable Lorenz model (Lorenz 1963) forms a conceptual ``atmosphere” coupling with 1-variable 

slowly varying slab-ocean 

!"
!"
= −𝜎 𝑥 − 𝑦                               (1.22) 

!"
!"
= −𝑥𝑧 + 1+ 𝑐!𝑇 𝛽𝑥 − 𝑦        (1.23) 
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!"
!"
= 𝑥𝑦 − 𝑐𝑧                                     (1.24) 

ℎ !"
!"
= 𝑐!𝑦 − 𝜆𝑇 + 𝑆(𝑡)                         (1.25) 

𝑐! =
0                              𝑦 ≤ 𝑐!    

0  .05                            𝑦 > 𝑐!      
                    (1.26) 

where x, y and z are the high-frequency “atmosphere” variables with the original σ, β and c 

parameters. The “atmosphere” sustains the chaotic nature with the standard values of σ, β and c 

(10, 28, 8/3, respectively).   The “atmosphere” goes through a lobe of the Lorenz attractor in 

approximately 1 non-dimensional time unit, around 10 days in the real world). The T represents 

a slowly varying “ocean” temperature; the big ocean thermal capacity is indicated by ℎ = 10. 

The simplest slab ocean consists of a linear damping term 𝜆𝑇 and an imposed external forcing 

𝑆 = 10+ cos  (!!"
!"
).  The 𝑐! and 𝑐! are the coupling coefficients between the “atmosphere” and 

“ocean”. The model is integrated using a 4-th order Runge-Kutta method with a time resolution 

of dt =0.01. A similar “toy” model is applied by Zhang et al (2012).  The major difference is that 

we add a threshold-type parameter 𝑐! to modulate 𝑐! (eqn. (1.25)).  

 Here we choose σ, β, c, 𝑐! as the parameters for estimation. The initial values of these 

estimated parameters are 20% larger than their true values. The ensemble size is 30 and the 

observations are daily (x, y, z, T) with error scales of (2, 2, 2, 0.2). A multiple parameter 

estimation with EnKF combined with the techniques in section 1.5 leads to a successful 

estimation of the parameters (Fig.1.1).  All four parameters converge to the “truth” values after 

two years of assimilations. The parameters of 𝑐!  converges slower than the other three 

parameters because it is the parameter related to the slow ocean component, while the other three 

parameters of  σ, β, c are related to the fast atmospheric component.  
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1.6 Thesis outline 

This work is devoted to develop an effective coupled data assimilation strategy for 

parameter optimization in a CGCM using EnKF strategy (Evenson, 1994, 2003). Due to the lack 

of previous work and experience on parameter estimation in CGCMs, We will investigate the 

feasibility of parameter estimation in a CGCM under a twin model framework, where the biased 

parameters are the only model error sources.  

The thesis is organized as follows. We will propose a random subgrouping scheme of 

EnKF for deterministic EnKFs in chapter 2. The random subgrouping technique can significant 

improve the performance of a deterministic EnKF under nonlinear conditions. We will 

demonstrate the first successful parameter estimation a CGCM using a refined technique - the 

adaptive spatial average (ASA) algorithm in chapter 3. A detail discussion of the ASA algorithm 

is given in chapter 4.   A summery and description of future works are given in chapter 5. 
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Figure 1.1 The multiple parameter estimation of σ, β, c, 𝑐! in Lorenz63-slab model. The 

ensemble size is 30. The observations are (x, y, z, T) with the error scale of (2, 2, 2, 0.2), 

respectively. The blue lines are for the temporal evolution of the ensemble mean of parameters 

and the red dashed lines are the 1-standard deviation of the ensemble spread. The black solid 

lines are the “truth” and the black dashed lines are the minimum parameter ensemble spreads 

(uncertainty goals) of CCI in the experiment. The first 200 analysis cycles are the “spin-up” 

period before the parameter estimation is activated. 

 
 
 
 

0 200 400 600 800 1000
9

10

11

12

13

14

 analysis cycles

para m

0 200 400 600 800 1000
25

30

35

40

 analysis cycles

para `

0 200 400 600 800 1000
2.5

3

3.5

4

 analysis cycles

para c

0 200 400 600 800 1000
0.9

1

1.1

1.2

1.3

1.4

 analysis cycles

para c2



 

 

17 

Chapter	  2:	  A	  Random	  Subgrouping	  Scheme	  for	  
Ensemble	  Based	  Filters	  

 
The ensemble based parameter estimation is based on the data assimilation skill of EnKF. 

Therefore a high quality of an EnKF implementation is the precondition for ensemble based 

parameter estimation.  An EnKF is optimal only for linear systems because it is a linear filter. 

Filter divergence could take place when it is used in the nonlinear regime (Evensen 1997; 

Lawson and Hansen 2004).  While the model response to a parameter uncertainty could be very 

nonlinear.  Therefore, it is important to consider the ability of an EnKF in handling 

nonlinearities. The higher performance of an EnKF in a nonlinear system provides the higher 

quality for parameter estimation.  
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Abstract 

Ensemble based filters can be divided into two categories: stochastic and deterministic. 

Both types of filters suffer from the problem of generating extreme	  outliers in the ensembles 

produced in a nonlinear system. This is especially true for the deterministic filter with a large 

ensemble size. The outliers can persist for a long time, generate substantial separation from the 

other ensemble members, and contribute to large errors in the ensemble mean analysis. 

To address the problem of extreme outliers, a new technique is developed that randomly 

divides the full ensemble into sub-ensembles of equal size for each observation at each analysis 

step. All sub-ensembles are updated independently using deterministic filter algebra. The random 

subgrouping technique removes the effects of extreme outliers in two ways: the smaller 

ensemble size for each sub-ensemble limits the deviation of an outlier from the ensemble mean 

and the random subgrouping prevents the long-term persistence of an outlier.  

Test results, using the random subgrouping technique on two low-order models (Lorenz-

63 and Lorenz-96) and a global QG atmospheric model coupled to a slab ocean, show that the 

new scheme significantly improves performance compared to regular stochastic and 

deterministic filters. 
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2.1. Introduction 

  First introduced by Evensen (1994), the ensemble based filter is emerging as a powerful 

tool for data assimilation (Evensen 2007). The key element of the filter is to derive the forecast 

uncertainties from an ensemble of model integrations. Ensemble based filters can be divided into 

two types: stochastic and deterministic. The two types of methods differ mainly in how they 

update the ensemble to match the analysis uncertainty.  The updated analysis variance is 

produced by the error variances from both the forecast and observation.  A deterministic filter, 

also called an Ensemble Square Root Filter (EnSRF) (Anderson 2001, 2003，Bishop et al. 2001, 

Whitaker and Hamill 2002, Tippett et al 2003, Sakov and Oke 2007), transforms the ensemble 

anomaly to match the variance given by the Kalman Filter (KF) theory (Kalman 1960). In 

contrast, a stochastic filter (EnKF, in this chapter) attempts to match the updated variance from 

the KF theory by adding perturbations to the observations (Burger et al. 1998, Houtekamer and 

Mitchell 1998).  

The ensemble based filter uses the ensemble spread to represent the forecast and analysis 

uncertainties with the assumption of Gaussian white. This method introduces two error sources 

into the analysis: the sampling errors from the limited ensemble size (Whitaker and Hamill 2002, 

Sacher and Bartello 2008) and the non-Gaussian probability density function (PDF) of the error 

from the nonlinear system. The sampling error in EnKF appears in both the background 

uncertainty and observational uncertainty. An EnSRF avoids the sampling error introduced by 

perturbed observations and tends to generate better analyses than an EnKF when applied to a 

linear model, especially for a small ensemble size (~10-20) (Whitaker and Hamill 2002, Evensen 

2003, Anderson 2010). 

An EnKF performs better than an EnSRF when applied to a nonlinear system with non-
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Gaussian PDFs for a large ensemble size because the accuracy of EnSRF is severely 

compromised by the effect of extreme outliers (Lawson and Hansen 2004, Anderson 2010). An 

outlier is a member that deviates markedly from the general population of ensemble members. A 

strongly nonlinear system produces outliers in an ensemble. An EnSRF generates persistent 

outliers because it has no effective way to restore the outliers to the majority, thus leading to 

extreme outliers and a large analysis error.  The outliers in EnKF are relatively less extreme 

because they can be mixed with the general ensemble members through randomly perturbed 

observations. Furthermore, a larger ensemble size is more likely to produce a stronger outlier 

effect, so an EnSRF applied to a nonlinear system will perform worse as the ensemble size 

increases (Lawsen and Hansen 2004, Mitchell and Houtekamer 2009, Anderson 2010). 

 Several methods have recently been proposed to improve the performance of the EnSRF 

in eliminating the effect of extreme outliers in nonlinear systems. Sakov and Oke (2008) use a 

random transformation to decrease the impact of extreme outliers in the ensemble transform 

filter, while Anderson (2010) uses a rank histogram filter to eliminate extreme outliers. In this 

study a new filter scheme, called the random subgrouping EnSRF, is proposed to eliminate the 

distortion effect of extreme outliers and therefore to improve the filter performance in a 

nonlinear system. The random subgrouping EnSRF  divides the entire ensemble randomly into 

subgroups of equal size and updates each subgroup independently using EnSRF.  In comparison 

to current EnSRF and EnKF, the new scheme significantly improves the filter analysis in tests of 

several nonlinear systems. In section 2, the algorithm of the ensemble based filter and random 

subgrouping scheme ar e briefly described. In section 3,  we will demonstrate the performance of 

the random subgrouping scheme, first using two simple “toy” models and then using an 

intermediate model. A summary will be given in section 4. 
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2.2 The Algorithm of Ensemble Based Filters  

 The ensemble based filter is a Monte Carlo implementation of the KF. It represents the 

distribution of the system state using an ensemble) and replaces the covariance matrix by the 

sample covariance computed from the ensemble. A successful ensemble-based filter need to 

achieve an analysis ensemble representing the real uncertainty of analysis. Based on the methods 

of updating analysis ensemble, ensemble based filters can be divided into two types: stochastic 

and deterministic.  

 

2.2.1   Stochastic filter (EnKF) 

A stochastic filter (EnKF) treats each observation as a random variable that is perturbed 

to sample the observational uncertainty when it updates the ensemble. So the eqn. (1.14) is 

written as 

𝒙𝒊𝒂 = 𝒙𝒊
𝒇 +𝑲𝒆(𝒚𝒊! −𝑯𝒙𝒊

𝒇)             (2.1) 

where the ensemble index i   =   1, 2,… ,N and N is the ensemble size.  The resulting analysis 

ensemble 𝒙𝒊𝒂  has a mean and variance that matches the theoretical values in equations of (1.14) 

and (1.15) in chapter 1 (Burgers et al 1998, Houtekamer and Mitchell 1998). To ensure no extra 

noise is added by the perturbations, the ensemble mean perturbation is set equal to zero (Pham 

2001; Mitchell et al. 2002, Evensen 2007, Mitchell and Houtekamer 2009).  A flow chart of an 

analysis cycle for EnKF is shown in Fig.2.1 

 

2.2.2 Deterministic filter (EnSRF) 

A deterministic filter (EnSRF) transforms the forecast ensemble to match the analysis and 
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its uncertainty (see eqn. (1.11) and (1.12) in chapter 1).  

This chapter will show the results from one particular EnSRF, the Ensemble adjustment 

filter (EAKF, Anderson 2001, 2003). EAKF updates the ensemble in two steps (Anderson 2003). 

First it derives the analysis ensemble mean and variance and then computes the ensemble 

increment to match the analysis error in the observation space. In the second step, the ensemble 

increment is distributed over relevant state variables using a least square fitting.  

 

2.2.3 The Random Subgroup Ensemble Based Filters    

An ensemble based filter can produces extreme outliers in nonlinear systems. This 

phenomenon is particularly notable in using EnSRFs with the simple nonlinear models (Lawson 

and Hanson 2004, Anderson 2010). In this study, a new filter scheme, called random 

subgrouping EnSRF is developed to eliminate the effect of outliers that often occur in a regular 

EnSRF.  

  This new scheme is the same as a regular EnSRF except that for each observation at each 

analysis step, the entire ensemble is divided randomly into sub-ensembles of an equal size. All 

the sub-ensembles are updated independently using the same observation, but with their own 

forecast covariance. Each sub-ensemble will have a different combination of ensemble members 

for different observations at different analysis times. The final analyses and forecasts are 

constructed using the entire ensemble. The difference between a sEnSRF and an EnSRF or an 

EnKF in an analysis step can be seen in Fig.2.1. A random subgrouping EnSRF cycle is 

performed in 4 steps: 

(1) the model ensemble is integrated forward to the next observation time; 

(2) the N-member ensemble is  randomly divided into n sub-ensembles of equal N/n size; 
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(3) each sub-ensemble is updated independently using EnSRF with the same observation; 

 (4) steps 2 to 3 are repeated until the all the observations are used. 

The new scheme removes the effect of extreme outliers in two ways. The smaller ensemble size 

for each sub-ensemble limits the magnitude of deviation of an outlier from the ensemble mean; 

and the random subgrouping prevents an outlier from being persistent.  

The random subgrouping EnSRF shares the same algebra as EnSRF, so the sampling 

error generated by the perturbed observations in EnKF is avoided.  It is still a square root method 

but no longer deterministic since random subgrouping introduces the stochastic variability into 

the filter system. The objective of our sub-grouping procedure differs from that of Houtekamer 

and Mitchell (1998), where they use a sub-grouping process to reduce the negative bias in the 

analysis error variance. The negative bias comes from the use of the same ensemble to estimate 

both by 𝑃!
! and 𝐾! in equations of (1.14) and (1.15) in chapter one.  

Following (Lawson and Hansen 2004 and Anderson 2010), the ensemble kurtosis  

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
!

!!! [!!!!(!!)]!!
!!!

!!
         (2.2) 

is used to quantify the presence of outliers, where 𝜎!  is the sampling variance and 𝐸(𝑥!) is 

ensemble mean. The ensemble kurtosis increases with increasing ensemble size for both EAKF 

and EnKF, (for example for Lorenz-63 system, Fig.11 of Anderson 2010). An EnSRF conserves 

higher-order moments through the analysis step (Anderson 2001). As a result, the presence of 

extreme outliers and a corresponding large ensemble kurtosis must occur during the forecast 

steps.  

An extreme outlier will deviate less from the ensemble mean for smaller size ensembles. 

Let us consider a one-dimension case in observational space, where we define a forecast 
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uncertainty of 𝜎!! and the perturbation of each regular ensemble member from the ensemble 

mean to be 𝒚𝒊, (𝑖 = 1, 2, 3,… ,𝑁) , and  N to be the ensemble size. For convenience, the Nth 

member is set as an outlier and its perturbation from the ensemble mean is denoted as 𝑦!. We 

then have 

𝑦! + 𝑦! = 0!!!
!!!                         (2.3) 

𝑦!! + 𝑦!!!!!
!!! = (𝑁 − 1)𝜎!!         (2.4) 

For  𝑦! = 𝑦! + 𝜀! ,𝑎𝑛𝑑   𝜀!!!!
!!! = 0, where 𝑖 = 1, 2, 3… ,𝑁 − 1, and ym

, the ensemble mean 

excluding the outlier, we have  

y! = − !
!!!

y!                                               (2.5) 

y!! +
!

!!!
y!! + ε!!!!!

!!! = (N− 1)σ!!           (2.6) 

y!! ≤
(!!!)!

!
σ!!                                                (2.7) 

y! ≤ !!!
!
σ! ≈ 𝑁σ!                                                  (2.8) 

For a given forecast uncertainty σ!!, which is constrained by the observational uncertainty, the 

maximum deviation y!  for an extreme outlier is therefore roughly proportional to the square 

root of the ensemble size N. When N=100, the maximum deviation can reach to 9.9σ!. For N =5, 

the deviation is smaller than 2σ!, which is comparable to the deviation of a regular ensemble 

member. When the outlier reaches its maximum deviation, the ensemble kurtosis also reaches the 

maximum its of (!!!)
!!!

!!
. Therefore the outliers are potentially much severe for a large ensemble 

than for a small ensemble. The similar derivation works for analysis ensemble with an 

uncertainty of 𝜎!!.  

When we use the subgrouping scheme to update the ensemble, the subgroups without the 

outlier have small σ!  and consequently the Kalman gain and the correction towards the 
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observation will be small; the subgroup with the outlier will have large σ! and consequently the 

correction towards the observation can be large. The subgrouping thus acts to selectively pull the 

outlying member(s) towards the other members. With the subgrouping scheme, the total outlier 

deviation y!  is the composite of the deviation from its own sub-ensemble mean and the 

deviation of its sub-ensemble mean from the full ensemble mean. The first part is bounded by the 

small sub-ensemble size (eqn. 2.8).  However the second part can contribute significant deviation 

for a subgrouping scheme without randomization. Without randomization the sub-ensembles are 

independent from each other. The sub-ensemble mean may significantly diverge when the sub-

ensemble size is small (5~10). With randomization each sub-ensemble has a different 

combination for different observations and different times. In that way each ensemble member 

will benefit from all the other ensemble members. Thus, the deviations of sub-ensemble mean 

from the full ensemble mean are small and the total outlier deviation y!  is small.  

The randomization during subgrouping process further decreases the effect of extreme 

outliers by preventing their persistence. When an extreme outlier happened in a subgroup, the 

deviation of the outlier is much bigger than the deviation of other members.  This relation can 

propagate to the next analysis cycle through the forecast step. Therefore the outlier tends to be 

persistent at the following analysis cycles. A persistent outlier will contribute to the development 

of a severe deviation. The relation will be break by the randomization during subgrouping 

process.  A dominant extreme outlier in one subgroup combination, however, may not be 

dominant in another subgroup combination. The random subgroup scheme gives different 

combinations for subgroups, and therefore prevents the persistence of outliers. 

The random subgrouping scheme introduces sampling errors into the filter simulation. 

Each sub-ensemble has a much smaller sample size than the full ensemble. The estimated 
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background uncertainty for an individual sub-ensemble only uses part of the information of the 

full ensemble, and therefore has greater sampling error than that is estimated from the full 

ensemble.  

The sub-ensembles are independent of each other for subgrouping without 

randomization. The random subgrouping scheme connects whole ensemble together, and each 

ensemble member still benefits from all of the peers. We suspect that the sampling error for the 

random subgrouping scheme is less than for subgrouping without randomization.  

In summary, a random subgrouping scheme reduces the effect of extreme outliers but 

introduces more sampling error. It improves the filter performance in a non-linear system when 

the outlier effect is strong. However, the analysis error could increase when the system is linear 

or the outlier effect is negligible. In the next section, we will show that the random subgrouping 

EnSRF performs better than EnKF and EnSRF in tests with several nonlinear systems. 

 

2.3 Results   

Here the random subgrouping scheme with a specific EnSRF – EAKF is applied to three 

nonlinear systems: two simple models (Lorenz-63, Lorenz-96) and one inter-median model (QG-

slab). These models are described in the appendices. A random subgrouping EAKF with a sub-

ensemble size of n will be denoted as sEAKFn. Our sEAKFn results will be compared with the 

results from EnKF and EAKF applied to the same systems using identical observations and 

initial conditions.   

 

2.3.1 sEAKFn  in the Lorenz-63 model   

  Firstly we apply sEAKFn to the Lorenz-63 model that has three variables (x, y, z). For all 
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experiments except in section (D) we apply an idealized observation system which covers all 

three variables with an observation frequency of 0.1 time unit (10 time steps). The details of 

model and experimental design are shown in appendix 2A. 

 

(A) Large ensemble experiments 

We first examine large ensemble cases, specifically, an ensemble size of 80 subdivided 

into 16 subgroups each with a sub-ensemble size of 5 (sEAKF5). Due to the strong nonlinear 

nature of the Lorenz-63 model, outliers are produced in the 80-member ensemble for the EnKF 

and EAKF simulations. However, no outlier is produced in in the sEAKF5 simulation (Fig. 2.2). 

  In the EAKF case (Fig.2.2b), an extreme outlier persists for more than 20 time units 

(200 analysis cycles) with a deviation far from the other ensemble members. This deviation 

occurs because in EAKF there is no mechanism to prevent it from drifting from the other 

ensemble members. An EAKF tends to retain high-order moments through the assimilation 

process (Anderson 2001), thus leading to the outliers that can persist during the EAKF 

assimilation cycles. The persistence of outliers produces big deviation from most other members, 

which are constrained to be in close proximity to one another to balance the outlier deviation 

(Fig. 2.2b).   

In EnKF, there are also extreme outliers deviating significantly from the majority of 

ensemble members (Fig. 2.2a), but their magnitude and persistence are much smaller than that 

for EAKF (Fig.2.2b). This is because random perturbations in the observations play the role of 

adding noise to outliers in EnKF, which works to restore an extreme outlier toward the main 

population after a few cycles of analysis. In comparison, our random subgrouping scheme 

(sEAKF5) essentially eliminates all the extreme outliers (Fig. 2.2c). 
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The time-mean ensemble kurtosis of the Lorenz y-variable is ~19 for the EAKF with an 

80-member ensemble. This is much larger than the kurtosis value of 3 for a Gaussian 

distribution. The time-mean ensemble kurtosis of y-variable is ~4 for EnKF with the 80-member 

ensemble, which is much less than for EAKF and a little greater than Gaussian.  The kurtosis of 

y-variable in SEAKF5 is ~2.5, which is even smaller than the kurtosis for the Gaussian 

distribution. This quantitatively verifies that few spurious outliers are generated by this new 

assimilation scheme. Therefore, sEAKF5 has a reduced outlier effect relative to EnKF and, 

especially, EAKF.  

The ensemble spread represents the uncertainty (error) of the ensemble mean in an 

ensemble-based filter. We expect that ensemble spread and analysis root mean square error 

(RMSE) are consistent during filter simulation.  The sEAKF5 and EnKF simulations show 

statistical consistency between the values of RMSE and ensemble spread (Fig.2.3a). The 

ensemble spreads are slightly bigger than the RMSE for sEAKF5 simulations and slightly smaller 

for EnKF simulations (Fig.2.3a – blue and green squares).   EAKF produces a large difference 

between RMSE and ensemble spread because persistent outliers distort the PDFs of forecast and 

analysis. Some EAKF experiments produce very big analysis errors (with the RMSE >0.9) but 

very small ensemble spreads (~ 0.7). On average this leads to greater RMSE (0.84) than 

ensemble spread (0.66) (Fig. 2.3a – red square). 

 The sEAKF5 generates the smallest analysis error among the three filter schemes. The 

analysis RMSE for sEAKF5 is 0.57 that is significantly smaller (with 99% confidence) than that 

for EAKF (0.84) or for EnKF (0.61) (Fig. 2.3b).  Starting from identical first guesses (initial 

conditions) and using identical observations, 95% (85%) of sEAKF5 experiments produce 

smaller RMSE than corresponding EAKF (EnKF) experiments (Fig. 2.3b).  
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(B) Small ensemble experiments 

      The sEAKFn scheme also improves filter performance on the Lorenz-63 system for smaller 

ensemble sizes (<80). EAKF simulations with a 20-member ensemble, which have an average 

ensemble kurtosis of about 3.6, produce some extreme outliers but less than for the large 

ensemble size (80) (Fig. 2.4). The performance of the 20-member EAKF (Fig. 2.4) is better than 

the performance of the 80-member EAKF (Fig. 2.3) because of the less extreme outlier effect, 

which is consistent with previous studies (Lawsen and Hansen 2004, Mitchell and Houtekamer 

2009, Anderson 2010). sEAKF5 simulations (4 subgroups) with a 20-member ensemble produce 

smaller RMSE than the corresponding EAKF simulations (0.58 vs. 0.63)  (with 99% confidence) 

(Fig. 2.4).  Because of the small ensemble size, the sampling error caused by the perturbed 

observations in EnKF simulations exceeds the outlier effect in the EAKF simulations. The EnKF 

simulations perform poorest among the three schemes (Fig. 2.4).  

The small ensemble size also leads to an ensemble spread for EnKF that is smaller than 

RMSE (Fig. 2.4a). The sEAKF5 and EAKF show more consistency between ensemble spread 

and RMSE than occurs in EnKF.  As in the large ensemble case, the ensemble spreads are 

slightly bigger than the RMSE for sEAKF5 simulations and slightly smaller for EAKF 

simulations.   For identical first guesses (initial conditions) and observations, more than 80% of 

sEAKF5 experiments produce smaller RMSE than the corresponding EAKF and EnKF 

experiments (Fig. 2.4b). 

In summary, for both large and small ensemble experiments, sEAKF5 significantly 

improves the data assimilation quality in the Lorenz-63 system compared with EnKF and EAKF. 

Additionally, the slightly bigger ensemble spreads compared to RMSEs in both large and small 



 

 

30 

ensemble experiments indicate that our sEAKF5 assimilations do not suffer the negative bias of 

analysis ensemble spread which usually happens in the regular ensemble based filters (first 

pointed out by Houtekamer and Mitchell 1998). The exact reason for this needs to be explored in 

further research.  

 

(C) Optimal size of the sub-ensemble 

The random subgrouping scheme uses a small sub-ensemble size to eliminate the effect 

of extreme outliers but this procedure also introduces more sampling error into the filter system. 

More precisely, smaller sub-ensemble sizes lead to a less extreme outlier effect but bigger 

sampling errors.  

An important consideration is determining a sub-ensemble size that optimally balances 

the effect of extreme outliers and sampling error.  It would be useful to balance the effects of 

extreme outliers with the sampling error to obtain an optimal sub-ensemble size. On the one 

hand, the sub-ensemble size cannot be too big because it will have extreme outliers.  For 

example, the ensemble kurtosis of the y-variable is ~4.6 for sEAKF40 (2 subgroups) in the 80-

member ensemble experiments and ~9.2 for sEAKF80 in 160-member ensemble experiments 

(Fig. 2.5a). On the other hand, if the sample size for the sub-ensembles is too small, the sampling 

error becomes too large. For a subgroup of only 2 members (sEAKF2), the ensemble kurtosis is 

in a reasonably small (~2.8) (Fig. 2.5a) but the analysis RMSE is large (~0.7) (Fig. 2.5b)   

 The sub-ensemble size limits the magnitude of outlier deviation from the ensemble mean.  

A larger ensemble size increases the deviation for outliers and therefore requires more subgroups 

to eliminate them. As a result, for various ensemble sizes (20, 40, 80 and 160) the ensemble 

kurtosis of y-variable converges to a minimum value of 2.5 for a sub-ensemble size of 5 (Fig. 
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2.5a). Hence the minimum kurtosis seems to be achieved at a size of sub-ensemble independent 

of full ensemble size.  

A smaller ensemble kurtosis implies a smaller effect of the outliers and therefore an 

improved filter performance (see RMSE – Fig. 2.5b). For example, for the 80-member ensemble 

size, sEAKF5 gives the smallest ensemble kurtosis as well as analysis RMSE, which is reduced 

by ~30% from that of the standard EAKF.  

The optimal sub-ensemble size may change when the experimental design changes, such 

as the nature of observation frequency and uncertainty. However, optimal sub-ensemble size 

cannot be smaller than 5 because extreme outliers do not occur for this smaller ensemble size 

(Eqn. 2.8). It is also worth noting, however, that even using only 2 subgroups, sEAKFn can 

significantly decrease ensemble kurtosis and analysis RMSE compared to EAKF in Lorenz-63 

system. For example, the ensemble kurtosis and analysis RMSE (3.0 and 0.59) for sEAKF20 with 

full ensemble size 40 are much smaller than those in corresponding EAKF simulations (6.5 and 

0.66) (Fig. 2.5). 

The effect of the randomization process during subgrouping can be seen explicitly by 

comparing the results from subgrouping experiments with and without randomization. Consistent 

with our discussion in section 2 (C), the subgrouping simulations without randomization give a 

bigger ensemble kurtosis and analysis RMSE than the corresponding simulations with 

randomization (sEAKFn) (Fig. 2.5). 

  

(D) Experiments with different observation frequency  

We further tested the sEAKFn on the Lorenz-63 system by using different observation 

frequencies (Fig. 2.6). The optimal sub-sample size varies with the change of observation 
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frequency. For example, it is 20 for an observation frequency of 0.01 and 10 for an observation 

frequency range from 0.02 to 0.05 (figure not shown).  

sEAKFn with an optimal sub-ensemble size performs better than the corresponding 

EAKF because it suppresses the extreme outlier effect. However, the improvement of sEAKFn 

over EAKF is relatively small when the observation time interval is small (0.01~0.05) and the 

extreme outlier effect in EAKF is weak (see the kurtosis in Fig. 2.6a). The biggest improvement 

in filter performance of sEAKFn over EAKF occurs when the observation time interval is 0.2 (20 

time steps) and the EAKF ensemble kurtosis of y-variable is greatest (25.7). The analysis RMSE 

of sEAKF5 is only 60% of the RMSE from the corresponding EAKF simulations.   

The sEAKFn also performs better than EnKF in all the observation frequency experiments 

(Fig. 2.6b). The ensemble kurtosis of y-variable for all EnKF simulations with an 80-member 

ensemble in Fig.2.6a is relatively small (around 3.2~4), which indicates a very weak outlier 

effect in the EnKF simulations. The corresponding ensemble kurtosis for all sEAKFn simulations 

is ~2.5, which is consistent with results shown in Fig. 2.5a.   

It is interesting to note that the ensemble kurtosis of y-variable for the assimilations with 

an optimal sub-ensemble size do not converge to the kurtosis of a Gaussian distribution (3), but 

rather to a smaller value (~2.5). While the reason for this is unclear, it may be related to the PDF 

of Lorenz-63 system.  Since the system kurtosis for the y-variable of the Lorenz-63 system 

(derived from 104 time units of control integration) has a value of ~2.5. 

 

(E) Ensemble forecast 

A good analysis produces a good initial condition for the forecast. We also examine the 

ensemble forecasts by using the analyses of 80-member ensemble simulations as initial 
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conditions. The ensemble forecasts are called EnKF forecast, EAKF forecast and sEAKF5 

forecast separately based on the initial condition sources. The details of forecast experimental 

design are shown in appendix A. The results show that the sEAKF5 provides the best initial 

conditions for the ensemble forecast among the three filter schemes (Fig. 2.7).  

 The RMSE of sEAKF5 forecast is significantly smaller than that of EAKF forecast (Fig. 

2.7a). For example, the average forecast RMSEs at time 0.5 are 2.5 for sEAKF5 forecast and 3.5 

for EAKF forecast. The RMSE of EnKF forecast is slightly bigger than that of sEAKF5 forecast. 

The forecast ensemble spread indicates the forecast uncertainty of the ensemble forecast. The 

sEAKF5 and EnKF forecasts show statistical consistency between the values of RMSE and 

ensemble spread from forecast time 0-0.5 and then the ensemble spreads become slightly bigger 

than the RMSEs (Fig. 2.7a).  The ensemble spread of EAKF forecast shows consistent, 

significant negative bias compared to its RMSE. 

The skill-spread correlation, calculated as the correlation between the forecast RMSE and 

the ensemble spread for the total 20000 forecasts, is another important measure of the quality of 

a forecast scheme (Fraedrich and Ziehmann-Schlumbohm, 1994; Anderson, 1997; Hamill et al., 

2000). A high correlation implies a higher likelihood of prediction of the forecast accuracy from 

the forecast spread. Fig.2.7b shows that sEAKF5 forecast has significantly higher skill-spread 

correlation over the EnKF forecast and especially over EAKF forecast.  

One may be concerned that the relatively low value of analysis kurtosis of sEAKF5 may 

be too small for sEAKF5 forecast to provide a good probabilistic prediction of extreme events, 

which is important for an ensemble forecast. That is not a problem in our forecast experiments 

because the subgrouping scheme only limits the ensemble kurtosis of analysis and the kurtosis 

increases during the forecast. Fig. 2.7c shows that the ensemble kurtosis increases from ~2.5 to 
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~4.5 in sEAKF5 forecast and from ~4 to ~9.5 in EnKF forecast after 1.0 forecast time has 

elapsed. The increasing trend of kurtosis does not exist in EAKF forecast because its kurtosis 

value is already extraordinary high at the beginning. We use three times the ensemble spread as a 

threshold, which accounts for 99.7% of the sample population, assuming the ensemble 

distribution is normal. A forecast will be regarded as forecast failure (missing the extreme event) 

when its RMSE is greater than the threshold. The probabilities of forecast failure are around 0.2-

0.5% in sEAKF5 forecast and around 0.5-0.8% in EnKF forecast. These probabilities are much 

smaller than that in EAKF forecast (1.7-4.6%) (Fig. 2.7d).  

Therefore, the sEAKF5 forecast provides the best forecast among the three schemes 

without sacrificing the predictions of extreme events. 

 

 (F) Subgrouping in EnKF   

Because there are weak effects from outliers in EnKF simulations with big ensembles, 

EnKF can also benefit from random subgrouping.  The kurtosis of EnKF is ~4 for 80-member 

ensemble experiments and ~5.5 for 160-member ensemble experiments (Fig. 2.5a), which 

indicate outliers occurring during assimilation. One can use the random subgrouping to eliminate 

the weak outlier effect and improve the filter performance. The steps of applying random 

subgrouping to EnKF are the same as for EnSRF except that the EnKF algebra is used in step 3 

when the observations are assimilated sequentially.  

We use the Lorenz-63 model to test the random subgrouping scheme in EnKF 

assimilations (Fig. 2.8). The random subgrouping EnKF with a sub-ensemble size of n is 

indicated as sEnKFn. For all three experiment settings (ensemble size of 40, 80, 160), the 

sEnKFns with an optimal sub-ensemble size perform significantly better than the corresponding 
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regular EnKFs (see the smaller RMSE in Fig.2.58b).  Similar to the sEAKFn, the optimal sub-

ensemble size of sEnKFn is also independent of full ensemble size. The optimal sub-ensemble 

size is 10 in our experiments (Fig.2.8b).   When the sample size for the sub-ensembles is too 

small and the sampling error becomes larger than the outlier effect, the sEnKFn(s) generate larger 

RMSE than the corresponding EnKFs. The average ensemble kurtoses in the sEnKFn simulations 

converge to the value of  ~3 (Fig.2.8a), which is smaller than the average ensemble kurtosis in 

regular EnKFs.  

The Kalman gain for a sub-ensemble in our EnKF assimilation with random subgrouping 

is computed from all of the members in the sub-ensemble. This is different from the subgrouping 

approach of Houtekamer and Mitchell (1998) where each sub-ensemble uses the Kalman gain 

computed from all of the other members out of the sub-ensemble.  

We can also apply randomization to the Houtekamer and Mitchell’s subgrouping scheme. 

The testing results on the Lorenz-63 model, however, do not show significant difference between 

experiments with and without randomization. In summary, Houtekamer and Mitchell’s 

subgrouping scheme produces better consistency between RMSE and ensemble spread but 

bigger analysis RMSE compared with our random subgrouping EnKF (not show). 

 

2.3.2 sEAKFn in Lorenz-96 model – model independence 

(A) Different influence radius  

When a system includes more spatial dimensions and more variables (compared to say 

the Lorenz-63 model), the covariance between different variables or different locations becomes 

important and may lead to amplification of the sampling error introduced by subgrouping. To 

address this potential amplifying effect, sEAKFn is applied to another simple nonlinear system - 
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the Lorenz-96 model with 40 dimensions (see Appendix 2B for detail).  Since this idealized 

model is more complex than the Lorenz-63 system, the Gaspari and Cohn (1999) covariance 

localization is used during assimilation.  The covariance localization influence radiuses denote as 

D.  The details of experimental design are shown in appendix 2B. 

The RMSEs for sEAKFn, EAKF and EnKF with different values of D are shown in table 

2.1. Based on RMSE, there is a preferred D for a given sub-ensemble size (n) for sEAKFn. For 

example, the preferred D is 7 for sEAKF5 and 9 for sEAKF10.  The relationship of smaller 

preferred D with smaller sub-ensemble size (n) for sEAKFn might identify the amplifying effect 

in our experiments. However, this amplifying effect turns out to be negligible for sEAKFn in 

Lorenz-96 system. This is because sEAKFn, with an optimal sub-ensemble size (20) and a range 

of influence radii (D) produces a smaller RMSE than occurs with EAKF and EnKF. Both EAKF 

and sEAKF20 reach their minimum RMSE when D =11.  

 

(B) Different levels of chaos 

 The effectiveness of sEAKFn for systems of different levels of nonlinearity is also 

examined by using different forcing (F) in the Lorenz-96 model (table 2.2). Here the influence 

radius D is set at 7. When the system is periodic (F=2), the outlier effect is minor for an 80-

member ensemble simulation. The RMSEs for EAKF, sEAKF40 and sEAKF20 are comparable, 

implying insensitivity to the subgrouping scheme. As the system becomes chaotic (F = 5, 8, 10), 

the sEAKFn simulations with an 80-member ensemble perform significantly better (with 99% 

confidence) than the corresponding EAKF and EnKF simulations. The RMSE from sEAKFn 

with optimal sub-ensemble size (10 for F=5 and 20 for F=8, 10) is reduced by 8~9% 

(7~12%)from that of the EAKF (EnKF). 
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2.3.3 sEnSRF in QG-slab model 

The improvement in performance of sEAKFn is also obtained in tests with a more 

realistic model – a global quasi-geostrophic atmosphere model coupled with a slab ocean  (QG-

slab model) (details in Appendix C). The globally-averaged RMSE of the streamfuction (𝜓) for 

sEAKF40 (two subgroups for an 80-member ensemble) in our experiments is 7.65×10!𝑚!𝑠!!, 

which is significantly smaller (with 99% confidence) than that for EAKF (7.95×10!𝑚!𝑠!!) and 

for EnKF (8.15×10!𝑚!𝑠!!).   

We speculate that the improved performance of sEAKF40 in the QG-slab model is due to 

the removal of the extreme outliers by the random subgrouping scheme. The extreme outlier 

effect usually occurs in EnSRF with a large ensemble (Amezcua et al 2012), while the ensemble 

size of 80 in our experiments is much smaller than the model grid size (64 longitude × 54 

latitude grid points). The smaller RMSE for EAKF, compared to that for EnKF, indicates that the 

outlier effect in the QG-slab model is not as severe as it is in simple models like Lorenz-63 and 

Lorenz-96. Furthermore, there are no permanent outliers because the extreme outlier in EnSRF is 

a transient phenomenon (Amezcua et al 2012). However, the reasons above do not prevent 

extreme outliers from occurring in some local regions at certain times. For example, large 

kurtosis develops in the southern Indian Ocean and the Caribbean and persists during analysis 

cycles of 569-572 in one EAKF experiment (Fig.2.9a). The large kurtosis in the Caribbean is 

more stationary, while the large kurtoses in the southern Indian Ocean propagate westward. The 

persistent large kurtosis phenomenon is not found in the same assimilation period in the 

corresponding sEAKF40 experiment, which uses the same initial conditions and observations as 

the EAKF experiment (Fig.2.9b).  Averaged from all of the EAKF experiments, 0.30% of the 

ensemble kurtoses are larger than 5, which is significantly larger than the percentages in 
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sEAKF40 assimilations (0.15%). Therefore, the outlier effect, though weak, does exist in our 80-

member EAKF assimilation. Although it is not a big drawback for EAKF performance, we can 

still alleviate the outlier effect using the random subgrouping scheme to further improve the filter 

performance.    

That the random subgrouping scheme improves the filter performance by alleviating the 

outlier effect can also be seen in the RMSE consistency between EnKF and sEAKF40.  If an 

extreme outlier effect in EAKF is significant in a certain region, we expect that both EnKF and 

sEAKFn will also perform better than EAKF in that region because the outlier effect is trivial in 

the EnKF and sEAKFn assimilations. In each set of experiments, which used identical initial 

guesses and observations, the analysis RMSE difference between EAKF with and without 

random subgrouping  (EAKF - sEAKF40) (Fig.2.10a) shows a good spatial consistency with the 

RMSE difference between EAKF and EnKF (EAKF - EnKF) (Fig.2.10b). This consistency is 

very robust, although the spatial patterns of the analysis RMSE difference vary among different 

sets of experiments. The average spatial correlation coefficient from 32 sets of experiments is 

around 0.4, which is above the 99% confidence level. In each set of experiments, the RMSE of 

sEAKF40 is not uniformly smaller than that of EAKF (Fig.2.10a) because the extreme outlier in 

EAKF is only a transient phenomenon (Amezcua et al 2012). Averaging all 32 sets of 

experiments, the sEAKF40 does perform significantly better than the corresponding EAKF in 

most regions (see the RMSE difference in Fig.2.10c) 

Therefore, we speculate that EAKF in QG-slab model with an ensemble size of 80 does 

suffer from a weak effect of extreme outliers and the better performance of sEAKF40 results from 

reducing that outlier effect. 

In summary, the improvement in assimilation results of sEAKFn over EAKF and EnKF 
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for different models (Lorenz-63, Lorenz-96 and QG-slab) suggests that our filter scheme is a 

robust method that should be tested on complex weather and climate models. 

 

2.4. Summary  

The extreme outlier problem arising from non-Gaussian PDFs is a challenge for an 

ensemble based filter, this is especially true for EnSRF using a large ensemble size (Lawsen and 

Hansen 2004, Anderson 2010, Lei	  et	  al.	    2010). To address the problem of extreme outliers, a 

new technique is developed that randomly divides the full ensemble into sub-ensembles of equal 

size for each observation at each analysis step. All sub-ensembles are updated independently 

using deterministic filter algebra. The random subgrouping technique eliminates outliers in two 

ways. First, the smaller size for each sub-ensemble limits the deviation of an outlier from the 

ensemble mean. Second, the randomization process prevents the long-term persistence of an 

outlier. 

The random subgrouping EnSRF shares the same algebra as EnSRF, so the sampling 

error generated by the perturbed observations in EnKF is avoided.  It is still a square root method 

but no longer deterministic because it uses a randomization process in creating subgroup 

ensembles. In general, our random subgroup scheme shares the same principle as the random 

transformation method in Sakov and Oke (2008): alleviate the outlier effect by adding some 

randomization into EnSRF system. Our random subgrouping EnSRF introduces additional 

sampling errors by subgrouping, while the random transformation method loses the traceability 

of individual ensemble trajectories (Amezcua et al 2012).  

As a test, the random subgrouping scheme with a specific EnSRF – EAKF (sEAKFn) is 

applied to three nonlinear systems: two simple models (Lorenz-63, Lorenz-96) and one inter-
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median model (QG-slab). The new scheme significantly improves the filter analysis relative to 

both the stochastic filter (EnKF) and the deterministic filter (EnSRF). It is worth pointing out 

that the outlier effect, though weak, exists in our QG-slab model EAKF assimilation, even if the 

ensemble size is much smaller than the model state dimension. We speculate that the weak 

outlier effect could exist in some geophysical EnSRF assimilations. The random subgrouping 

scheme can alleviate the weak outlier effect to further improve the performance of EnSRF. 

In terms of future potential, the random subgrouping scheme can be easily incorporated 

into any of the current deterministic filter systems. Our tests with the simple models and 

intermediate models suggest that this new filter scheme will be particularly effective in 

suppressing extreme outliers in highly chaotic systems. We propose further testing of the random 

subgrouping scheme in ensemble based filter with more comprehensive models. . 

 

2.5 Appendix 2A:  Lorenz-63 model  

The Lorenz-63 model (Lorenz 1963) describes one of the most famous nonlinear 

dynamical system, is described in the equations, 

𝑥 = 𝜎 𝑦 − 𝑥                                𝐴2.1  

𝑦 = 𝛽𝑥 − 𝑦 − 𝑥𝑧                         𝐴2.2  

𝑧 = 𝑥𝑦 − 𝑐𝑧                                           𝐴2.3  

The parameter 𝛽 is the ratio of the Rayleigh number divided by the critical Rayleigh number. 

The parameter 𝜎 is the Prandtl number. The third parameter c is related to the horizontal wave 

number of the system. By choosing typical values of the parameters (𝛽 = 28, 𝜎 = 10, c=8/3), 

the evolution of the state vector (x, y, z) follows the well-known Lorenz attractor.  

The model is integrated using a 4-th order Runge-Kutta method with a time resolution of 
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dt =0.01 (~1 hours if we treat one time unit as 4 days). We first generate the “truth” in a long 

control simulation of 104 time units. 

For each set of experiments, we first generate the “observations” by adding onto the 

“truth” random errors with a standard deviation (2, 2, 2). The initial first guess is then randomly 

picked from the “observations”. The initial ensemble is built based on the initial first guess and 

its uncertainty (error scale). Using the initial ensemble and “observation”, the model is simulated 

for 500 analysis cycles by using different data assimilation schemes (SEAKFn, EAKF, EnKF) 

with a given observation time interval. The observation time interval is 0.1 for all experiments 

except Fig.2.6.   Following a spinup of 200 analysis cycles, the results from all analysis steps are 

used to calculate the RMSE, kurtosis, ensemble spread for the experiment. 

500 sets of experiments are performed. For a fare comparison we did not use any 

inflation scheme in all the experiments.   

The analyses of 80-member ensembles, with observation time interval of 0.1, are used as 

initial conditions to test the ensemble forecast. We randomly pick 40 initial conditions from each 

set of experiments for different data assimilation schemes (SEAKF5, EAKF, EnKF). Based on 

the initial condition sources, the ensemble forecasts are called EnKF forecast, EAKF forecast 

and sEAKF5 forecast separately.  Each forecast has 20,000 experiments with forecast time of 1.0 

(100 time steps).   

 

2.6 Appendix 2B : Lorenz-96 model 

The Lorenz-96 model is a latitude circle model first proposed by Lorenz (1996) to study 

fundamental issues regarding the forecasting of spatially extended chaotic systems such as the 

atmosphere. It has N state variables governed by equation 
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𝑋! = 𝑋!!! − 𝑋!!! 𝑋!!! − 𝑋! + 𝐹              (𝐴2.4) 

where i = 1,…,N are the cyclic indices.  We use N = 40 for our simulations. The model is 

integrated using a 4-th order Runge-Kutta method with a time resolution of dt=0.005. To 

investigate the filter performance under different conditions, we assign values (2, 5, 8, 10) for the 

forcing term F that defines the system shifting from periodic (2) to chaotic (5, 8, 10) (Lorenz 

2005).  

             The experiment design is similar to Appendix 2A but all the simulations use an ensemble 

size 80. The observations cover all the grids with a frequency of 0.1 (20 time steps) and the 

observation error standard deviation of 2. The Gaspari and Cohn (1999) covariance localization 

with different influence radius D is used in all the simulations (Houtekamer	   and	   Mitchell,	  

2001; Hamill et al. 2001; Whitaker and Hamill, 2002).  Each assimilation includes 500 analysis 

cycles and the RMSE are calculated from all analysis steps after spinup (200 analysis cycle) and 

averaged for all the grids. 500 sets of experiments are performed and no inflation was used in the 

experiments.  

 

2.7 Appendix 2C: QG-slab model 

  A barotopic atmosphere model (Zhang et al. 2004) based on the equation of conservation 

of potential vorticity is coupled with a slab ocean 

!
!"
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!"
= 𝜆𝑇 + 𝛼 𝑐𝜓 − 𝑇 + 𝑄!(𝑦)                                      (A2.6) 

where 𝜓 = !
!!
ℎ is the geostrophic streamfuction for atmosphere and T is the SST for ocean. The 

ℎ! = !!
!!
ℎ!"#" is the effect of topography for atmosphere. The mixture layer depth 𝐻! and the 
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solar forcing 𝑄! are symmetric to the equator. 𝐻!  linearly increases with latitude from 50m to 

800m and 𝑄! linearly decreases with latitude from 360 W/m2 to 310 W/ m2. The λ is the ocean 

damping scale.  𝑘 and α are the coupling coefficient for the atmosphere and ocean. The c is a 

fake relationship between atmospheric barotropic streamfuction and SST. To match the ocean 

damping scale of ~3 months and an atmospheric damping scale of ~3 days, λ, 𝑘,α, c  are set 

equal to (1.0, 5.56×10-5, 2.778×10-5, 10-7). 

For assimilation, the state variable are used the 54 (latitude) * 64 (longitude) Gaussian 

grid points. The atmosphere uses the leap-frog step with a spectral method in which a 

rhomboidal 21 truncation is applied for the transformation between spectral coefficients and grid 

values. And a Robert-Asselin time filter is applied to remove the computational modes (Robert 

1969; Asselin 1972).  Ocean is integrated using a 4-th order Runge-Kutta method. The model 

couples every time step with a time resolution of 30 minutes.  

The experiment design is similar to Appendix 2A but all the simulations use an ensemble 

size 80. Because all the ocean variance comes from atmosphere in the model, only atmosphere 

data assimilation is applied in our results. Actually the SST error (~10-3) is negligible after the 

spinup of atmosphere data assimilation (300 analysis cycles). The observations cover all the 

atmosphere grids with a frequency 12 hours (24 time steps) and the observation error standard 

deviation is 10!𝑚!𝑠!! for streamfuction (𝜓). The Gaspari and Cohn (1999) covariance 

localization of influence radius D=1000 km is used in all the simulation.  Each assimilation 

includes 600 analysis cycles and the RMSE are calculated from all analysis steps after spinup 

(300 analysis cycles) and averaged for all the grids. 32 sets of experiments are performed and no 

inflation was used in the experiments.  
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Tables 

Table 2.1 The mean analysis RMSE for sEAKFn, EAKF and EnKF derived using the Lorenz-96 

system from 500 experiments with 80-member ensembles and different influence radius D (first 

column).  The forcing term F=8 for all the experiments 

 sEAKF5 sEAKF10 sEAKF20 sEAKF40 EAKF EnKF 

D=5 0.710 0.673 0.672 0.683 0.724 0.711 

D=7 0.689 0.641 0.638 0.648 0.699 0.706 

D=9 0.699 0.633 0.625 0.638 0.695 0.762 

D=11 0.728 0.635 0.621 0.631 0.695 0.897 

D=13 0.779 0.649 0.622 0.629 0.699 1.085 

D=15 0.845 0.667 0.626 0.628 0.705 1.386 

 

Table 2.2 The mean analysis RMSE for sEAKFn, EAKF and EnKF derived using the Lorenz-96 

system from 500 experiments with 80-member ensembles and different forcing F (.first column).  

The influence radius is D=7 for all the experiments. 

 sEAKF5 sEAKF10 sEAKF20 sEAKF40 EAKF EnKF 

F=2 0.042 0.037 0.036 0.036 0.036 0.038 

F=5 0.333 0.318 0.320 0.328 0.360 0.340 

F=8 0.689 0.641 0.638 0.648 0.699 0.706 

F=10 0.801 0.739 0.733 0.744 0.799 0.833 
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Figures 

 

 

Figure 2.1 The flow charters of an analysis step for EnKF, EnSRF and sEnSRF.  The blue color 

objects are for EnKF; the green objects are for EnSRF; and the yellow and red objects are for 

sEnSRF. 
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Figure 2.2 Initial error evolution of 80 ensemble members (black lines) and the ensemble means 

(red lines) for variable y in Lorenz-63 system with the observation time interval of 0.1 (10 

analysis cycles per time unit). (a) is for EnKF simulation; (b) is for EAKF simulation and (c) is 

for SEAKF5 simulation.  (The figure follows figure 3 in Anderson 2010).  
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Figure 2.3 The scatter diagram for 500 sets of sEAKF5 experiments with an 80-member 

ensemble and the corresponding EnKF  (EAKF) simulations. 

 (a) The scatter diagram of analysis RMSE and ensemble spread of Lorenz-63 model for 

different filter schemes. The red dots are for EAKF simulation, green circles are for EnKF and 

blue stars are for sEAKF5. The squares represent the average of a total of 500 experiments. A 

point on the black line denotes the situation when the RMSE is equal to the ensemble spread. 

(b) The scatter diagram of analysis RMSE for EnKF vs sEAKF5 (red dot) and EAKF vs sEAKF5 

(green star). The x-axis is the analysis RMSE for EAKF and EnKF simulation and the y-axis is 

the RMSE for sEAKF5.  The squares represent the average of total 500 sets of experiments. A 

point on the black line denotes when the two schemes give the same RMSE.     

 

0.4 0.5 0.6 0.7 0.8 0.9 1
0.55

0.6

0.65

0.7

0.75

RMSE

Sp
re

ad
(a) RMSE vs Spread

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0.4

0.5

0.6

0.7

0.8

EAKF & EnKF

sE
AK

F 5

(b)RMSE 



 

 

48 

 

 

Figure 2.4 The same as fig.2.3 except for sEAKF5 experiments with a 20-member ensemble and 

the corresponding EnKF (EAKF) simulations. 
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Figure 2.5 The ensemble kurtosis (a) and 

analysis RMSE (b) for different ensemble size 

averaged from 500 sets of experiments.    

 The x-axis represents the sample sizes for 

subgroups of sEAKFn (EnKF, EAKF). The 

solid lines are for sEAKFn assimilation except 

the black line on panel (a), which indicates the 

kurtosis of 3 for a Gaussian white noise 

distribution. The dash lines are for the 

simulations with subgrouping scheme but no 

randomization. 

The blue dot lines are for 20-member 

ensembles; green plus lines are for 40-member 

ensembles; red circle lines are for 80-member 

ensembles; and cyan star lines are for 160-member ensembles. The squares represent the results 

from EnKF simulations and the diamonds represent the average results from EAKF simulations  

The kurtosis (RMSE) from EAKF for an ensemble size of 80 and 160 are 19.0 (0.84) and 67.0 

(1.33) that are too large to be shown on the plots. 
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Figure 2.6 (a) The ensemble kurtosis of y 

for different assimilation schemes. The 

blue dot line is for EAKF; the green star 

line is for EnKF and the red circle line is 

for sEAKFn with best sub-ensemble size.   

(b) The RMSE ratio between sEAKFn 

with optimal sub-ensemble size and 

corresponding EAKF (blue dot line) or 

EnKF (green star line). 

The results are averaged from 500 sets of 

experiments with full ensemble size of 

80 and different observation time 

interval. The x-axis represents the 

observation time intervals for the 

experiments. 
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Figure 2.7 the ensemble forecasts by using initial conditions of analyses from different data 

assimilation schemes. The blue lines are for sEAKF5 forecasts, the green lines are for EnKF 

forecasts and the red lines are for EAKF forecasts.   

(a) the average forecast RMSE (solid lines) and ensemble spread (dash lines); (b) the skill-spread 

correlation, calculated as the correlation between the forecast RMSE and the ensemble spread for 

the total 20000 forecasts; (c) The average forecast ensemble kurtosis; (d) the probabilities of 

forecast failure in percentage, judged by RMSE greater than three times the ensemble spread. 
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Figure 2.8 The ensemble kurtosis (a) and 

analysis RMSE (b) of sEnKFn and EnKF 

for different ensemble size averaged from 

500 sets of experiments.    

 The x-axis represents the sample sizes for 

subgroups of sEnKFn and EnKF. The green 

plus lines are for 40-member ensembles; 

red circle lines are for 80-member 

ensembles; and cyan star lines are for 160-

member ensembles. The squares represent 

the results from EnKF simulations. The 

black dash line on panel (a) indicates the 

kurtosis of 3 for a Gaussian white noise 

distribution.  
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Figure 2.9 The ensemble kurtosis of ψ from one set of experiments (EAKF and EAKF40), which 

share the identical initial condition and observation.  

(a) the ensemble kurtosis of ψ with EAKF for the analysis cycles of 569-572;  

(b) the ensemble kurtosis of ψ with EAKF40 for the analysis cycles of 569-572; 

The contour interval is 1.0 with the minimum value of 5.0. The blue contours are for analysis 

cycle of 569; the green contours are for the analysis cycle of 570; the red contours are for 

analysis cycle of 571; the green contours are for the analysis cycle of 572; the green contours are 

for the analysis cycle of 572. 
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Figure 2.10 the analysis RMSE difference of ψ between different assimilation schemes.  

 (a) The analysis RMSE difference between EAKF and sEAKF40 from one set of experiments, 

which share the identical initial condition and observation. 

 (b) The analysis RMSE between EAKF and EnKF from same set of experiment of (a). 

 (c) The analysis RMSE difference between EAKF and sEAKF40 averaged over 32 sets of 

experiments. The green solid contours indicate 95% confidence level. 
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Chapter	  3	  Ensemble-‐based	  Parameter	  Estimation	  in	  a	  

Coupled	  General	  Circulation	  Model	  

In this chapter, we present the first study of successful ensemble-based parameter 

estimation in a CGCM using an idealized observation network, demonstrating the feasibility of 

parameter estimation in a CGCM.  
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Abstract 

 Parameter estimation provides potentially a powerful approach to reduce model bias for 

complex climate models. Here, in the twin experiment framework, we perform the first 

parameter estimation in a fully-coupled ocean-atmosphere general circulation model using an 

ensemble coupled data assimilation system facilitated with parameter estimation. We first 

perform single parameter estimation and then multiple-parameter estimation. In the case of the 

single parameter estimation, the error of the parameter (solar penetration depth, SPD) is reduced 

by over 90% after ~40 years of assimilation of the conventional observations of monthly sea 

surface temperature (SST) and salinity (SSS).  The results of multiple-parameter estimation are 

less reliable than the single-parameter estimation when only the monthly SST and SSS are 

assimilated. Assimilating additional observations of atmospheric data of temperature and wind 

improves the reliability of multiple-parameter estimation. The errors of the parameters are 

reduced by 90% in ~8 years of assimilation. Finally, the improved parameters also improve the 

model climatology. With the optimized parameters, the bias of the climatology of SST is reduced 

by ~90%. Overall, our study suggests the feasibility of the ensemble based parameter estimation 

in a fully coupled general circulation model.  
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3.1 Introduction 

The advent of the ensemble based data assimilation scheme (EnKF) for parameter 

estimation (Anderson, 2001) provides a practical means for an automatic optimization of the 

model parameters and a reduction of model bias in a complex model. Previous studies of 

parameter estimation using EnKF have led to encouraging results (Annan and Hargreaves, 2004; 

Hacker and Snyder, 2005; Annan et al., 2005 a & b; Ridgwall et al., 2007; Hacker and Snyder, 

2005; Aksoy et al., 2006 a & b; Tong and Xue 2008 a & b; Nielsen-Gammon, 2010; Hu et al., 

2010; Zhang el al, 2012; Zhang, 2011 a & b; Wu et al., 2012 a & b;). Here, we will investigate 

parameter estimation in a CGCM using an ensemble coupled data assimilation (ECDA) scheme 

of DAEPC (Zhang et al., 2012) in a twin experiment framework where the parameter errors are 

the only source of model bias. We will show successful estimations in both cases of single 

parameter and multiple parameters after the parameters are carefully selected. The chapter is 

organized as follows.  Section 3.2 briefly describes the assimilation scheme and the CGCM we 

used in this chapter. Sections 3.3 and 3.4 show the results of parameter estimation for single and 

multiple parameters, respectively.  A summary is given in section 3.5. 

 

3.2 Model and Methodology 

3.2.1 The Fast Ocean Atmosphere Model (FOAM) 

The model used in this study is the Fast Ocean-Atmosphere Model (FOAM), which is a 

CGCM with a fully parallel implementation (Jacob, 1997). The atmospheric component is a R15 

spectral model with an equivalent resolution of 7.5o longitude, 4o latitude and 18 layers. The 

ocean component is a z-coordinate model similar to the GFDL MOM1.0 with a resolution of 2.8o 

longitude, 1.4o latitude and 24 layers. A simple thermodynamic sea ice model is incorporated. 
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Without flux adjustment, the fully coupled model has been run for over 6000 model years with 

no apparent drift in tropical climate (Liu et al., 2007a). In spite of its low resolution, FOAM has 

a reasonable tropical climatology (Liu et al., 2003), ENSO variability (Liu et al., 2000), and 

Pacific decadal variability (Wu et al., 2003; Liu et al., 2007b), largely comparable with current 

CGCMs.  

 

3.2.2 Coupled data assimilation with enhancive parameter correction 

(DAEPC) 
In data assimilation, parameters can be estimated by augmenting state variables with 

model parameters (e.g. Banks, 1992a & b; Anderson, 2001). Here we will use the DAEPC 

(Zhang et al., 2012). The DAEPC chooses one particular EnKF scheme, the Ensemble 

adjustment filter (EAKF, Anderson, 2001, 2003), to estimate state variable and parameter 

simultaneously in the coupled system. One key factor for successful parameter estimation is to 

extract signal-dominant state-parameter covariance. The covariance is calculated by using the 

parameter uncertainty and the forecast uncertainty in the observation space. The signal is the 

model response to the parameter uncertainty. The noise is introduced by the limited ensemble 

size and is proportional to the total forecast uncertainty.  Before the parameter estimation is 

activated, the DAEPC performs a “spin-up” process for the state estimation to reach a “quasi-

equilibrium” state such that the uncertainty of the model state is sufficiently constrained by 

observations (see Zhang et al. (2012) for details). 

 

3.2.3 The Adaptive Spatial Average scheme (ASA)  
The parameters in this study are assumed to be globally uniform. If a globally uniform 

parameter is treated as a single-value parameter, there will be a large number of observations 
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available for updating. This will lead to the accumulation of all of the sampling errors, therefore 

contaminating the estimation (Aksoy et al., 2006a). To address this issue, Aksoy et al (2006a) 

used an updating method that transforms a globally uniform parameter into a two–dimensional 

field and updates the field spatially using localization. They also used a spatial average method 

(SA) to retain global uniformity of the estimated parameter after spatial updating. For a complex 

system such as a CGCM, the sensitivity and response of a model variable to a model parameter 

may vary spatially and temporally. Recently, the SA was further refined to an adaptive spatial 

average scheme (ASA) by Liu et al. (2014), which increases the convergence rate of parameter 

estimation in a CGCM.   

Briefly, the ASA uses the ensemble spread as the criterion for selecting “good” values 

from the spatially varying posterior parameter field, and those “good” values are then averaged 

to give the final analysis of the globally uniform posterior parameter. A posterior value is called 

“good” if its ensemble spread significantly decreases substantially from that in the prior. The 

ASA calculates the uncertainty ratios between the posterior and prior. If the ratio is below a 

threshold, the ASA defines the posterior value as a “good” posterior value.  The speed of the 

decrease of the parameter uncertainty depends greatly on the magnitude of the signal. Initially, 

the ASA can use a small value as the threshold because the initial parameter uncertainty is large 

and the response magnitude (signal) is large. The threshold will be increased during the 

simulation with the decrease of parameter uncertainty. The initial threshold in our experiments is 

0.68.  If the total number of “good” posterior values is less than 400, the threshold increases by 

0.1 until it reaches 0.98. The ASA is applied every few EnKF analysis cycles to obtain a 

sufficient number of “good” parameter posterior values. The ASA is applied every 6 analysis 
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cycles in our parameter estimation experiments below.  More detailed description of ASA will be 

reported in chapter 4. 

 

3.2.4 Observations and ensemble configuration 
 An ensemble size of 30 is used in our experiments. A 30-year simulation from the 

control truth run is used for the initialization of the ensemble with the model state valid at 

January 1st of each year. The observations in ocean are monthly sea surface temperature (SST) 

and salinity (SSS), which cover the global ocean basin. The observations are generated by adding 

Gaussian white noise on the corresponding “truth” states at each grid point with the 

observational error scales (standard deviation) of 1 oK and 1 psu (practical salinity units) for SST 

and SSS, respectively. The ocean surface observations are used to update the upper 8 layers of 

ocean temperature (T) and salinity (S) (0~235m). Here the cross-covariances between SST and 

SSS are used to update each other. The Gaspari and Cohn (1999) covariance localization is 

applied with the influence radius of 3 grid points horizontally for the state variables. The 

observations in the atmosphere include winds and temperatures (U, V, T) for all the atmospheric 

grids (3D) with the error scales of 1.0 m/s, 1.0 m/s and 1.0 oK, respectively and a time interval of 

12 hours. This gridded reanalysis format setting of atmospheric observations was applied in the 

Geophysical Fluid Dynamics Laboratory’s ECDA system  (Zhang et al, 2007).  An observation 

is used only to update the state variables (U, V, T) at its own location.  

We first perform single parameter estimation and then multiple-parameter estimation. In 

single parameter estimation experiment, we only assimilate the oceanic observations and the 

biased parameter converges to the “truth” values after the assimilation. We have tested two 

different experimental setting for multiple parameter estimation.  One experiment (EXP-M1) 
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only uses the oceanic observations as the single parameter estimation experiment. The other 

experiment (EXP-M2) assimilates both oceanic observations and atmospheric observations.  

In parameter estimation, an observation can constrain a parameter directly and indirectly. 

An observation constrains a parameter directly by updating the parameter using the state-

parameter covariance between the forecast of the observational variable and the parameter. An 

observation can constrain a parameter indirectly by constraining the state variables and thus 

improving the analysis and forecast of state variables and the state-parameter covariance. The 

state-parameter covariance is the key for parameter estimation and is expected to be signal-

dominant. The signal, generated by the parameter uncertainty, is only part of the model total 

forecast uncertainty. The noise, introduced by the limited ensemble size, is proportional to the 

model total forecast uncertainty. The weights of the signals on the total forecast uncertainty, to 

some extent, indicate the signal/noise ratio of state-parameter covariance(s). The weights, which 

are different for different state variables, can be quantified from model forward sensitive 

experiments (Aksoy et al., 2006a; Tong and Xue, 2008a; Nielsen-Gammon et al, 2010). One can 

choose the state variable with the biggest weight to directly update a parameter to enhance the 

signal/noise ratio of state-parameter covariance.  

Here, the SST is the chosen variable to directly update parameters for both the single parameter 

estimation and multiple parameter estimation. Other observations constrain the parameters 

indirectly through constrained the model state, which improves the forecast of SST and the state-

parameter covariance. The parameter updating is activated 2 years after a “spin-up” period in 

which only the state variables are updated by the observations. As for the updating of state 

variables, the direct updating of parameter also uses covariance localization (Gaspari and Cohn, 

1999) with the influence radius of 3 grid points horizontally.  A conditional covariance inflation 
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technique (CCI) as in Aksoy et al. (2006b) is also employed here on parameter ensembles after 

each ASA step to avoid filter divergence for parameter estimation. The CCI inflates the 

parameter ensemble spread back to a predefined minimum value when necessary.  The 

predefined minimum value is also the final uncertainty target for the estimated parameter.  

 

3.3 Single parameter estimation 
We first use the solar penetration depth (SPD) as the parameter for estimation. Solar 

attenuation in the ocean is a function of the amount of biomass in the upper layers of the ocean 

(Smith and Baker 1978, Ohlmann et al. 2000). Following Murtugudde et al. (2002), the 

downward solar radiation 𝐼 𝑧 , at a depth of z in FOAM is calculated as   

 𝐼 𝑧 = 𝐼 0 𝑟𝑒(!  
!
!)            (3.1) 

where 𝐼 0  is the total incident solar radiation at the sea surface and 𝑟 = 0.47 (Frouin et al. 

1989) represents the fraction of total solar radiation in the photosynthetically available radiation 

band (wavelengths from 380 to 700nm). The remaining fraction of solar radiance is fully 

absorbed in the top model layer of 20 meters. The ℎ is the SPD, which will be estimated in our 

experiments. In the real world, the SPD can be treated as a state variable, too, because it can be 

calibrated using the remote sensing observation of ocean color.  Here, however, it is treated as a 

globally uniform model parameter in FOAM that will be estimated using DAEPC. 

Previous studies suggest the SPD is a parameter that has a significant impact on the 

surface climate (Schneider and Zhu, 1998; Nakamoto et al., 2001; Murtugudde et al., 2002; 

Ballabrera-Poy et al., 2007; Anderson et al., 2007).  This impact can also be seen in FOAM in 

the difference of the climatology of SST between two simulations with different SPDs (the one 

with a 20-m SPD minus the one with a 17-m SPD) (Fig.3.1).  A larger SPD induces significant 
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surface warming over the tropical Pacific, consistent with previous studies (Murtugudde et al., 

2002; Ballabrera-Poy et al., 2007; Anderson et al., 2007; Hokanson, 2006). Physically, a deeper 

SPD allows more solar radiation to penetrate below the surface layer, leaving less shortwave 

radiation to heat the surface layer. This direct effect tends to generate surface cooling, opposing 

the surface warming in the tropical Pacific. Instead, the surface warming in the tropical Pacific is 

caused by an indirect effect of solar penetration, which involves momentum redistribution in the 

oceanic mixed layer (Murtugudde et al., 2002). Fig.1 shows that deeper SPD also leads to 

significant surface cooling in subtropical oceans and significant warming in the Southern Ocean 

at high latitudes. The indirect and direct effects discussed above combine to contribute to the 

locations of warming and cooling. Overall, this sensitivity experiment suggests that the model 

climate will vary with the SPD parameter.  

 The DAEPC combined with ASA leads to a successful estimation of the SPD with the 

first guess of SPD of 20 m with an uncertainty of 3m (standard deviation) and the ‘truth’ SPD of 

17 m (Fig.3.2). The SPD is not a dynamical variable. Therefore, its variance (ensemble spread) 

does not increase during the model integration; yet, its variance is reduced at each analysis step. 

As a result the ensemble spread of SPD initially decreases much faster than its root-mean-square 

error (RMSE) (Fig.3.2).  The CCI prevents parameter variance from decreasing indefinitely by 

adopting a minimum parameter ensemble spread of 0.3m (1/10 of the initial standard deviation) 

in the first 30 years of simulation.  The minimum parameter ensemble spread is decreased to 

0.2m for the simulation afterwards (year 31~47), when we believe the estimated SPD has 

converged close to the ‘truth’ value. The error of the parameter SPD decreased from 3m to 0.2m 

after 47 years of assimilation.  
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 The consistency between the ensemble spread and its represented forecast error is a very 

important factor for EnKF to succeed.  The spatial pattern of the monthly average SST error 

(RMSE) shows maximums at both the high latitudes and equatorial region, and a minimum in the 

off-equatorial regions (Fig.3.3a). This pattern resembles that of the SST variance (figure not 

shown) because the regions of higher variance usually have larger forecast errors. The larger 

SST RMSE and variance located in the Pacific equatorial region are related to the model ENSO 

variability. The spatial pattern and amplitude of the ensemble spread of SST resemble closely 

those of the forecast RMSE of SST (Fig.3.3b), suggesting a good quality of the ensemble-based 

filter.  

 The improvement of the parameter also improves the model climate and, in turn, the 

forecast errors of state variables. The experiment after parameter estimation produces a better 

forecast of monthly SST (the 1st month) in comparison with a pure data assimilation experiment, 

which uses the same experiment design but with the biased SPD parameter (20 m) and no 

parameter correction. The spatial patterns of the RMSE of the 1st month SST forecast resembles 

closely that in the experiments of pure data, but the amplitude is reduced by 12% in the former 

relative to the latter (0.40 oK vs. 0.45 oK) for the SST RMSE averaged between 60S and 60N. In 

the pure data assimilation experiment the average RMSE of 500-mb geopotential height (GPH) 

is  ~21m, which is ~2/3 of that in a model ensemble simulation that does not assimilate any 

observations. The addition of parameter estimation in the ocean does not further improve the 

quality of atmosphere analysis and forecast. 

 The robustness of our parameter estimation is confirmed with another experiment that 

uses the SA method of Aksoy et al (2006a).  The SA experiment also estimates the parameter 

successfully, but with a slower convergence rate (see chapter 4 for details). 
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3.4 Multiple parameter estimation 
In this section, we extend the parameter estimation from a single parameter (SPD) to 

three biased parameters: one is in the ocean component and the other two are related to air-sea 

coupling (table 3.1). The imperfect ocean parameter is still the SPD that has been discussed in 

the previous section. The imperfect parameters for air-sea coupling are two artificial parameters, 

𝑚! and 𝑚!, which are the multipliers to the momentum and latent heat fluxes, respectively, 

between the ocean and atmosphere (calculated in the coupler component of the model). Thus, 

𝑚! = 1.0 and 𝑚! = 1.0 recover the default setting of air-sea coupling. The specific value and 

the minimum ensemble spread for each imperfect parameter are shown in table 3.1. 

 The model climatology of SST shows significant sensitivity to the two coupling 

parameters, 𝑚  !  and 𝑚!  (Fig.3.4). The parameter 𝑚!  directly influences the momentum flux 

between the ocean and the atmosphere. When  𝑚! is increased from 1 to 1.2, the SST shows a 

significant warming in the subtropical oceans and cooling at higher latitudes (Fig.3.4a). The 

warming in the subtropics seems to be induced, partly, by the slower surface wind (in response to 

a larger drag coefficient) and in turn reduced evaporative cooling, while the cooling in the mid-

latitude and subpolar region may be contributed by a stronger mixing of the colder water from 

the bottom of the mixed layer and a stronger Ekman upwelling. The parameter 𝑚! influences the 

latent heat flux between the atmosphere and ocean, and therefore impacts SST directly. An 

increase in 𝑚!  (from 1 to 1.2) enhances latent heat flux cooling and therefore leads to a 

significant surface cooling over the global ocean, except for high latitudes where the latent heat 

flux is small (Fig.3.4b). 
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The results of multiple-parameter estimation are not as good as the single-parameter 

estimation when the same experimental setting is used, because the nonlinearity between 

parameters and state variables weakens the correlation between forecast error and individual 

parameter uncertainty. For the EXP-M1, some parameters do not converge when we only 

assimilate the oceanic observations (monthly SST and SSS) (Fig.3.5).  Only the SPD 

successfully converges to the “truth” in 50 years of assimilation (Fig.3.5a). The evolution of 

estimation SPD has slower convergence speed and less parameter stability, compared with the 

estimation SPD in single parameter estimation (Fig.3.2).  The error of the 𝑚! is only reduced by 

~50% in 50 years of assimilation (Fig.3.5c) and the error of the 𝑚! shows slight increase after 

the assimilation (Fig.3.5b). However, the 𝑚!  and 𝑚!  converge successfully in the single 

parameter estimation with the same observational setting (see figure 4.5 in chapter 4).  The lower 

estimation performance of multiple parameter estimation, compared with single parameter 

estimation, is consistent with previous works (Aksoy et al., 2006b; Tong and Xue, 2008b; Hu et 

al., 2010).  

The smaller reliability of multiple-parameter estimation can, in theory, be improved by 

decreasing the forecast errors of model variables that are used to constrain parameters directly. 

The assimilation of additional atmospheric observations into the model in EXP-M2 generates 

more accurate analysis and forecast of SST. The smaller forecast uncertainty of SST, with the 

reduced sampling error, enhances the signal/noise ratio of state-parameter covariance, which, 

then, accelerates the convergence of the parameter estimation (Fig.3.6). The parameters in EXP-

M2 almost all converge to the “truth” values after a 16-year assimilation and the convergence 

speed is much faster than the speed of those in EXP-M1 (Fig.3.5). The estimated 𝑚! and 𝑚! 

monotonically converge to the “truth” in 8 model years (Fig.3.6b & c).  The estimated SPD 
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initially exhibits a small overshoot, i.e. the parameter error decreases from positive 3.0 m to 

negative ~0.5 m, and then converges back to the “truth”. The estimated SPD relaxes back to the 

truth in 8 model years（Fig.3.6a). Our other experiments show that this type of overshooting 

sometimes occurs, yet appears to have little impact on the final convergence. Similar to the 

single parameter estimation that has been discussed in section 3, parameter ensemble spreads 

initially all suffer a negative bias, compared with their RMSEs, which confirms the necessity of 

applying CCI on the parameter ensemble spreads. 

The parameter estimation also helps to improve the analysis of the state variables. Here 

we use the short forecast to indicate the decrease of analysis error of state variables (because the 

analysis are not saved in our experiment). Fig.3.6d shows the evolution of the forecast RMSEs of 

monthly SST and 500-mb geopotential height (GPH) during the assimilation. During the “spin-

up” period of DAECP (first two years), the forecast errors for SST decrease very rapidly and 

reach the quasi equilibrium in a few months, with the average RMSE reduced from ~1oK to ~0.2 

oK. The RMSE further decreases to ~0.1 oK when the parameter updating is activated and the 

uncertainties of parameters are reduced. During the period of parameter estimation (after year 2), 

the ensemble spread of forecast SST becomes smaller than the SST RMSE (Fig.3.6d), but the 

smaller ensemble spread of state variables does not seem to affect the parameter estimation. All 

the three biased parameters converge to the “truth” values quickly.  It should be pointed out that, 

for simplicity, we have not used covariance inflation on state variables to enhance their ensemble 

spreads. It is conceivable that, with an inflation scheme, the estimation of the parameter and state 

variables will be further improved. 

 Similar to SST, the forecast error of GPH decreases dramatically with the assimilation of 

atmospheric observations of U, V and T (Fig.3.6d). The forecast error reaches the quasi 
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equilibrium during the “spin-up” period of DAECP with an average RMSE of ~ 2.0 m. The 

RMSE further decreases to ~1.0 m when the parameter updating is activated and the 

uncertainties of parameters are reduced. The ensemble spread of GPH is sensitive to the 

parameter ensemble spread. The ensemble spread is greater than its RMSE during the “spin-up” 

period of DAECP and becomes smaller than its RMSE when the parameter updating is activated 

and the parameter ensembles suffer the negative bias. The ensemble spread of GPH and its 

RMSE become consistent when the analysis reach equilibrium and the negative bias of 

parameter ensemble disappear. In addition, to decrease the computational cost, the atmospheric 

observations are only used to update the state variables locally in EXP-M2.  It is expected that 

the state variables will be further improved when the observations are also used to update the 

nearby regions with a covariance localization scheme.  

 As expected, the improved parameters also improve the model climate. The bias of the 

SST climatology, generated by the initial parameter errors (see table 3.1), shows significant 

cooling with an average RMSE of ~0.61 oK (Fig.3.7a). The spatial pattern is very similar to 

Fig.3b because the effect of 𝑚! is the strongest among the three biased parameters. The weak 

bias along the equatorial region is due to the warming produced by the positive biases of SPD 

and 𝑚!, which counteracts the cooling generated by the biased 𝑚!.  The significant cooling of 

SST accompanies a cold bias in the atmosphere in FOAM, which lowers the GPH (Fig.3.8a). 

The GPH climatology at 500-mb shows a significant negative bias with an average RMSE of 

~12.5 m. The spatial pattern of GPH bias (Fig. 8a) matches the spatial pattern of SST 

climatology bias (Fig.3.7a). When the updated parameters (table 3.1) are used, the biases in SST 

and GPH climatology decrease dramatically with the RMSE of SST and GPH reduced to ~0.05 

oK and ~1.4 m, respectively (Fig.3.7b and Fig.3.8b). Overall, like the single parameter 
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experiment, the multi-parameter estimation also improves the model climate and forecast 

significantly.  

  

3.5 Summary 

    In this study, we explored the parameter estimation in a CGCM using an ensemble-

based assimilation scheme in the twin experiment framework. Here, our DAEPC successfully 

optimized the single imperfect parameter SPD using the conventional observations of monthly 

SST and SSS.  The SPD error was reduced from 3-m to 0.2-m after ~40 years of assimilation.  

The DAEPC also performed well in the experiment of multiple parameter estimation by using 

the 12-hourly atmospheric winds and temperature observations and the monthly SST and SSS 

observations in the ocean. The three imperfect parameters all converged on the “truth” values 

after a 16-year assimilation.  

The improved model parameter also improved the model climatology and model forecast. 

The RMSE of the SST climatology was reduced from ~0.6K to ~0.05K, from the model of initial 

biased parameters to the optimized parameters (table 3.1). The RMSE of the forecast monthly 

SST (1st month) was reduced by 12% with the parameter correction in the experiment of single 

parameter estimation. The forecast RMSE of monthly SST and GPH decreased from ~0.12 oK to 

~0.07 oK and from ~2.0 m to ~ 1.0 m, respectively, by correcting biased parameters in the 

experiment of multiple parameter estimation.  

It is important for ensemble based parameter estimation to choose the right observations 

to update parameters directly. Parameters are not dynamical variables; they cannot be modified 

by model dynamics, but only by the observations directly through the state-parameter 

covariance. The error of a parameter decreases when the parameter is directly updated by the 
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observations with signal dominated state-parameter covariance(s). The error of a parameter could 

increase when the parameter is directly updated by the observations with a noise dominated 

state-parameter covariance(s). The signal/noise ratios of state-parameter covariance(s) are 

different for different observational variables. To retain successful parameter estimation, we 

have to choose the observational variables with robust state-parameter covariance(s) to directly 

update the parameters. The other observations can still improve parameter estimation by 

improving the model forecast and enhancing the state-parameter covariance used for parameters 

updating. In this study, SST was chosen as the observational variable to directly update 

parameter, which leads to the parameter estimation success in single parameter estimation. When 

multiple parameters are biased in EXP-M1, the state-parameter covariance(s) of SST become 

less robust, which results in a failure to estimate the parameters of 𝑚! and 𝑚!.  Decreasing the 

forecast error of SST can enhance the state-parameter covariance and improve the parameter 

estimation. Indeed, The assimilation of additional atmospheric observations into the model in 

EXP-M2 narrows the SST uncertainty and produces successful estimation for all three biased 

parameters.  However, when we replaced SST as SSS to directly update parameters, the 

parameter estimation failed even for single parameter estimation, because the response of SSS to 

parameters is much weaker than that of SST.   

To our knowledge, this is the first demonstration of successful ensemble-based parameter 

estimation in a general circulation model with fully coupled ocean-atmosphere dynamic. It 

demonstrates the feasibility of parameter optimization in a complex CGCM using an ensemble-

based filter for parameter optimization and therefore suggests the potential of parameter 

optimization to reduce model bias and improve CGCMs in the future.  The idealized observation 

network used in this study is very different than the realistic observation network. The 
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atmospheric observations applied in this study are using the gridded reanalysis format setting. 

Previous works show that, by assimilating the reanalysis data, ECDA significantly improves the 

forecast and analysis in Geophysical Fluid Dynamics Laboratory Climate Models (Zhang et al, 

2007; Yang et al., 2013; Chang et al., 2013; Zhang et al, 2014). The ensemble-based parameter 

estimation in the CGCM using realistic reanalysis products as observations remains to be further 

studied.  

 

3.6 Appendix:  An experiment with unsuccessful parameter estimation  

We have demonstrated the successful parameter estimation in this chapter with the 

carefully selected test parameters. However, it is not guarantee that all the biased parameters can 

be estimated using EnKF. Our EnKF experiment (EXP-M3) fails to estimate a mixing parameter 

𝑣! in FOAM with the same experiment design in the multiple parameter estimation EXP-M2, 

which assimilate both atmospheric and oceanic observation.   

FOAM uses a Richardson-number based vertical mixing parameterization scheme, which 

is the PP mixing scheme (PP 1981) modified after Peters et al.  (1988). The equation for the 

vertical mixing coefficient for temperature and salinity is  

𝐾!" = 𝑀𝑖𝑛  ( !!
!! !

+ 𝑘! , 0.01)              (A3.1) 

where 𝑅! is the local gradient Richardson number and 𝑘! = 1.0 ∗ 10!!𝑚!/𝑠 is the background 

diffusivity.  

The EXP-M3 estimates the bias 𝑣! as well as the SPD, 𝑚! and 𝑚! at the same time. The 

results of estimation show that the DAEPC with ASA method successfully optimizes the 

parameters of SPD, 𝑚! and 𝑚!, but not 𝑣! (Fig.3.9).  The estimation of 𝑣! does not converge 

towards the “truth”. Rather, its value decreases monotonically from 3.05 to 2.50 in a 20-year 
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assimilation while its ensemble spread decreases dramatically. It therefore appears that this 

parameter suffers from filter divergence. We are not completely clear why the estimation of 𝑣! 

fails. One reason is, we believe, the strong nonlinear threshold feature of the vertical mixing 

coefficient. The response of the vertical mixing 𝐾!"to the 𝑣!  uncertainty is modulated by a 

maximum threshold of 0.01𝑚!/𝑠 (see eqn. (A3.1)). Once 𝐾!" reaches this threshold, it will not 

be affected by the variation of 𝑣!  any more. As such, it is difficult to find a clear linear 

relationship between the SST forecast ensemble and the 𝑣! ensemble. More studies are needed 

on this issue.  

The failure of the estimation of 𝑣! indicates the limitation of ensemble based parameter 

estimation. We have to avoid the limitation by choosing the estimated parameters with less 

nonlinearity. In the mean time, the failure of the estimation of 𝑣!  and the success of the 

estimation of the other three parameters, nevertheless, may have an important implication to 

more general multi-parameter estimation and, even the real world application.  

 

 
Table 
 
Table 3.1 Multiple parameter estimation experiment. (The estimated values are come from EXP-
M2.)   
 
Parameter (unit) Initial guess 

value 
Estimated value Truth value CCI threshold 

SPD (m) 20.0 17.1 17.0 0.3 
𝑚! 1.20 0.99 1.0 0.02 
𝑚! 1.20 1.00 1.0 0.02 
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Figures 
 

 
Fig. 3.1. The climatological annual mean SST difference between two simulations with the same 

initial conditions but different SPD (20m -17m). The climatological mean SST(s) are calculated 

from the 80-years average after 20 years of spin up. The green contours represent the 95% 

confidence level. 
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Fig. 3.2. Single parameter estimation (SPD) uses DAEPC with the adaptive spatial average 

(ASA) method. The ensemble size is 30. The observations are the monthly SST and SSS. The 

blue line is for the temporal evolution of the ensemble mean of SPD and the red dashed lines are 

the 1-standard deviation of its ensemble spread. The black solid line is the “truth” and the black 

dashed lines are the minimum parameter ensemble spreads (uncertainty goals) of CCI in the 

experiment.  
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Fig. 3.3.  The spatial patterns of the  (a) RMSE and  (b) ensemble spread of the forecast monthly 

SST (1st month) averaging 332 cases, which initiate from each month of the simulation years of 

21-48 in the single parameter estimation experiment using DAEPC with the adaptive spatial 

average method.  
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Fig. 3.4.  The climatological annual mean SST difference between two simulations with the same 

initial conditions but different parameters: (a) the different m! (1.2 - 1.0);  (b) the different m! 

(1.2 - 1.0).  The climatological mean SST(s) are calculated from the 80-year average after 20 

years of spin up. The green contours represent the 95% confidence level.  
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Fig. 3.5.   The temporal evolution of estimated parameters for the multiple parameter estimation 

experiment of EXP-M1, which only assimilates the oceanic observations of monthly SST and 

SSS. The panel (a), (b) and (c) are for the SPD, m! and m!, respectively.. The solid blue lines 

are the parameter ensemble means and the red dashed lines are the 1-standard deviation of 

ensemble spreads; the black solid lines are the “truth” and the black dashed lines are the 

minimum parameter ensemble spreads of CCI in the experiment.  
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Fig. 3.6.   The temporal evolution of estimated parameters and forecast RMSE of SST and GPH 

for the multiple parameter estimation experiment of EXP-M2, which assimilates both the oceanic 

observations and the atmospheric observations. The panel (a), (b) and (c) are for the SPD, m! 

and m!, respectively. The panel (d) is for the SST RMSE. The solid blue lines in (a), (b) and (c) 

are the parameter ensemble means and the red dashed lines are the 1-standard deviation of 

ensemble spreads; the black solid lines are the “truth” and the black dashed lines are the 

minimum parameter ensemble spreads of CCI in the experiment. The solid line and the dashed 

line in panel (d) are the 1 monthly forecast RMSE and ensemble spread of SST (blue lines) and 

GPH (green lines), respectively. The RMSE and ensemble spread are first calculated in each grid 

and then averaged from 60S to 60N.  
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Fig. 3.7 The climatological annual mean SST difference between two simulations with the same 

initial conditions but different parameters: (a) the initial parameters (Table 1) minus the “truth” 

parameters; (b) the estimated parameters (table 1) minus the “truth” parameters. The 

climatological mean SST(s) are calculated from the 80-year average after 20 years of spin up. 

The green contours represent the 95% confidence level.  
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Fig. 3.8. The same as Fig. 3.7  except for GPH climatology difference at 500-mb  
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Fig. 9 The temporal evolution of estimated parameters for the multiple parameter estimation 

experiment of EXP-M3.  The solid blue lines are the temporal evolution of parameter ensemble 

mean and the red dish lines are the 1-standard deviation of its ensemble spread. The black solid 

line is the “truth” and the black dish lines are the minimum parameter ensemble spreads 

(uncertainty goals) for the experiment.  

The panel (a) is for parameter SPD, panel (b) is for parameter 𝑣!, panel (c) is parameter 𝑚!   and 

panel (d) is for parameter 𝑚!.  
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Chapter	  4	  Ensemble-‐based	  Parameter	  Estimation	  in	  a	  

Coupled	  GCM	  Using	  the	  Adaptive	  Spatial	  Average	  

Method 

 
The efficiency is very important for parameter estimation in a CGCM because we only 

have limited observation and computation resource available. In chapter3 we applied a new   cost 

and the limitation of observation.  We have proposed an adaptive spatial average method (ASA) 

to improve the efficiency of parameter estimation. The ASA has been applied in our parameter 

estimation experiments in chapter. In this chapter, we will discuss the ASA methodology in 

detail.  
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Abstract 

 Ensemble-based parameter estimation for a climate model is emerging as an important 

topic in climate research. For a complex system as a coupled ocean-atmosphere general 

circulation model, the sensitivity and response of a model variable to a model parameter could 

vary spatially and temporally. Here, an adaptive spatial average (ASA) algorithm is proposed to 

increase the efficiency of parameter estimation.  Refined from a previous spatial average method, 

the ASA uses the ensemble spread as the criterion for selecting “good” values from the spatially 

varying posterior estimated parameter values; the “good” values are then averaged to give the 

final global uniform posterior parameter. In comparison with existing methods, the ASA 

parameter estimation has a superior performance: faster convergence and enhanced signal-to-

noise ratio.  
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4.1 Introduction 
Parameter estimation using ensemble-based filter (Anderson, 2001) is emerging as a 

promising approach to optimize parameters in a complex model (Annan and Hargreaves, 2004; 

Hacker and Snyder, 2005; Annan et al., 2005 a & b; Ridgwall et al., 2007; Hacker and Snyder, 

2005; Aksoy et al., 2006 a & b; Tong and Xue 2008 a & b; Nielsen-Gammon et. al., 2010; Hu et 

al., 2010; Zhang el al, 2012; Zhang, 2011 a & b; Wu et al., 2012 a & b; Liu et al. 2014). In 

parameter estimation in a complex system, such as a coupled ocean-atmosphere general 

circulation model (CGCM), one common issue is sampling error accumulation when a large 

number of observations are used to update a single-value parameter sequentially (Aksoy et al, 

2006a). To address this issue, Aksoy et al (2006a) proposed a spatial updating technique that 

transforms a single-value parameter into a two–dimensional field and updates the field spatially, 

so that localization in filtering can limits the observational error accumulation. The final model 

parameter after each analysis has been derived in two methods. In the first method, the globally 

uniform parameter value is recovered using a spatial average of the entire spatially varying 

parameter field (demoted as SA, Aksoy et al, 2006a & b). In the second method, the spatially 

varying parameters are allowed to vary spatially after each analysis, in the so-called 

Geographically-dependent Parameter Optimization (denoted as GPO, see Wu et al., 2012, 2013). 

Here, our objective is the recovery of the spatially uniform parameter value. We propose 

an average method called adaptive spatial average method (ASA). The ASA is refined from the 

SA method to increase the efficiency of parameter estimation. The ASA uses the ensemble 

spread as the criterion for selecting “good” parameter values from the spatially varying 

parameter estimation; these “good” values are then averaged to give the final posterior 

parameter.  Liu et al. (2014) has recently shown some examples of successful ASA estimation in 

a CGCM. In this chapter, we will examine in detail the ASA methodology for parameter 



 

 

85 

estimation in a CGCM using ensemble-based filter. The e-folding solar penetration depth (SPD) 

is used as the major parameter for estimation in this study. We will show that, compared with the 

SA method and the GPO method, our proposed ASA produces a faster convergence rate for 

parameter estimation. The chapter is organized as follows.  Section 4.2 briefly describes the 

parameter estimation scheme and the CGCM used in this study. Section 4.3 shows the model 

sensitivity to the parameter (SPD). Section 4.4 discusses the ASA method. The ASA method is 

compared with GOP method and SA method in section 4.5. A summary and further discussion 

are given in section 4.6. 

 

4.2 Model and Method 
4.2.1 Fast Ocean Atmosphere Model (FOAM) 

Our model, the Fast Ocean Atmosphere Model (FOAM, Jacob, 1997) is a CGCM with an 

atmospheric component of  a R15 (7.5o longitude, 4o latitude and 18 layers). The ocean 

component is a z-coordinate model with a resolution of 2.8o longitude, 1.4o latitude and 24 

layers. Without flux adjustment, the fully coupled model has been run for over 6000 years with 

no apparent drift in tropical climate (Liu et al., 2007a). In spite of its low resolution, FOAM has 

a reasonable tropical climatology (Liu et al., 2003), ENSO variability (Liu et al., 2000), and 

Pacific decadal variability (Wu et al., 2003, Liu et al., 2007b). 

 

4.2.2 Data Assimilation Scheme  

We will use a particular EnKF scheme, the Ensemble adjustment filter (EAKF, 

Anderson, 2001, 2003) in this study. Model parameters will be estimated simultaneously with the 

state variables by augmenting state variables with model parameters (Banks, 1992a, b; Anderson, 

2001).  
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The e-folding solar penetration depth (SPD) is used as the major testing parameter for 

estimation. Solar attenuation in the ocean is a function of the amount of biomass in the upper 

layers of the ocean (Smith and Baker, 1978; Ohlmann et al., 2000). Previous studies suggest that 

solar penetration can have a significant impact on the surface climate in a climate model 

(Schneider and Zhu, 1998; Nakamoto et al., 2001; Murtugudde et al., 2002; Ballabrera-Poy et al., 

2007; Anderson et al. 2007). In particular, some modeling studies found that a deeper solar 

attenuation leads to warming in the tropical Pacific annual mean SST, which may then reduce the 

cold bias in the equatorial Pacific in a coupled ocean-atmosphere model (Murtugudde et al., 

2002; Ballabrera-Poy et al., 2007; Anderson et al. 2007).  

Following Murtugudde et al. (2002), the downward solar radiation 𝐼 𝑧 , at depth of z in 

FOAM is calculated as  

𝐼 𝑧 = 𝐼 0 𝛾𝑒(!
!
!)          

where 𝐼 0  is the total incident solar radiation at sea surface and γ=0.47 (Frouin et al., 1989) 

represents the fraction of total solar radiation in the photosynthetically available radiation band 

(wavelengths from 380 to 700nm). The remaining fraction of solar radiance is fully absorbed in 

the top model layer of 20 meters. The ℎ is the e-folding depth of the solar penetration depth 

(SPD), which will be estimated in our experiments. In the real world, the SPD can be treated as a 

state variable, too, because it can be calibrated using the remote sensing observation of ocean 

color. Here, however, it is treated as a model parameter that will be estimated using conventional 

observation of sea surface temperature (SST) and salinity (SSS).   

 In this chapter, we assume the “truth” SPD has a globally uniform value of 17-m, and the 

truth simulation is performed with this SPD.  The first guess of SPD is assumed 20-m with an 

uncertainty of 3-m (standard deviation). The observation for the assimilations are the monthly 



 

 

87 

mean SST and SSS, which are generated by adding a Gaussian white noise to the corresponding 

“truth” states at each grid point. The observational error scales (standard deviation) are 1oK for 

SST and 1psu for SSS. An ensemble size of 30 is used in all of our experiments. A 30-year 

simulation from the control truth run is used for the initialization of the ensemble, with the restart 

file of January 1st of each year used as the initial condition for each ensemble member. For state 

variable, the upper 8 layers of ocean temperature and salinity (0~235m) are updated by the 

observations. The Gaspari and Cohn (1999) covariance localization is used with the influence 

radius of 3 grid points horizontally for both state variables and the parameter SPD. To extract 

signal-dominant state-parameter covariance, the enhancive parameter correction is applied 

(DAEPC, Zhang et al., 2012). Before the parameter estimation is activated, the data assimilation 

is performed in a “spin-up” period of 2 years in which only the state variables are estimated.  

 

4.3 Model sensitivity with respect to solar penetration depth 

We first investigate the model sensitivity to the parameter, solar penetration depth (SPD). 

Two types of parameter sensitivities need to be considered when DAEPC is used to improve the 

model climate. The first type is the sensitivity of the response of the model climatology to the 

change of the parameter; this sensitivity shows if the final model climate can be improved by 

tuning this specific parameter. The ocean surface climates of FOAM are significantly different 

between a deeper SPD (20-m) simulation and a shallow SPD (17-m) one, characterized by a 

warming of up to over 0.5oK in the tropical ocean and a cooling of up to -0.5oK in the subtropical 

ocean (see Fig. 3.1 in chapter 3). 

The second type of sensitivity tests the model’s sensitivity to parameter uncertainty 

(represented, say, by the ensemble spread of the parameter) in the observational space at the 
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observational time interval; this sensitivity examines the possibility of reducing parameter 

uncertainty using the observations available. Furthermore, the model response to parameter 

uncertainty consists of linear and non-linear parts. Since the Kalman Filter framework is derived 

as the optimal analysis for a linear system, some features involving non-linear dependence may 

be regarded as noise for parameter estimation. Successful parameter estimation requires a signal-

dominant state-parameter covariance, which is derived most favorably in a model whose state 

variables exhibit a strong linear dependence on model parameters (Aksoy et al., 2006 a, b).  

 An ensemble simulation starting from the same initial condition but using different values 

of the parameter SPD (i.e. an perturbed ensemble of parameters) demonstrates the second type of 

sensitivity (Fig.4.1). (Here, the parameter ensemble is constructed as a Gaussian distribution with 

the mean of 20-m and the standard deviation of 3-m). Since we will use the observations of 

monthly SST for parameter estimation, we will examine the ensemble response of the first month 

SST. The ensemble spread of the first month SST (monthly mean) represents the response of the 

model SST to the uncertainty of SPD in the observational space; the correlation coefficient 

between the SPD ensemble and the first month SST quantifies the linear part of the response. 

Fig.4.1 shows an overwhelmingly negative correlation between SST and SPD, implying 

predominantly a colder SST with a deeper SPD. This cooling is likely to be caused by the direct 

effect of solar penetration. Physically, a deeper SPD allows more solar radiation to penetrate 

below the surface layer, leaving less shortwave radiation heating the surface layer, and therefore 

cause surface cooling. The direct effect of solar penetration is dominant in the initial months in 

response to a sudden change of the SPD (Hokanson, 2006). One striking feature of the sensitivity 

is the strong variation with season and location. The SST ensemble spread is large and exhibits 

negative correlations in the summer hemisphere where the mixed layer is shallow and therefore 
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the SST is more sensitive to heat flux perturbations. Fig.4.1 is important for our parameter 

estimation, because it indicates the key regions for parameter estimation. The regions with large 

sensitivity and high correlation represent the regions of large linear model response to SPD. 

These regions have high signal/noise ratio and therefore are the regions where the observation of 

SST are most effective for parameter estimation. The rest of regions, which account for more 

than half of the grid points at each analysis step, are unlikely to provide significant information 

for parameter estimation. 

  

4.4 The Adaptive Spatial Average scheme (ASA)  

The sensitivity experiments in section 4.3 show that the model response to the parameter 

SPD varies significantly in both space and time. We speculate that neither GPO nor SA is most 

efficient for estimating the parameter. This follows that only the regions with large model-to-

parameter linear response can provide state-parameter covariance with high signal/noise ratio for 

parameter estimation. Figure implies that the state-parameter covariance is insignificant over 

about half of the grid points at a time and in about half of the year at a given grid point.  

Therefore, for the purpose of parameter estimation, the estimations are not useful for more than 

half of the time at a given grid, and the estimations are not useful for more than half of the grids 

in the basin for a given observation time. Therefore, both SA and GPO are not the most efficient 

methods to estimate the parameter SPD, as will be shown below.  

Here we refine the SA method to the Adaptive Spatial Average (ASA) method, to 

increase the efficiency of parameter estimation. In SA, the final spatially uniform parameter is 

estimated as the average of all the spatially different posteriors, each derived at a grid point using 

localization. The ASA is based on the idea that a parameter estimation, which will be derived 
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from an average of spatially different posteriors, should be more accurate if it only includes 

average those posteriors of smaller uncertainties (i.e. errors). For practical applications where the 

truth parameter, and therefore, the parameter error, is unknown, we can consider the ensemble 

spread as a representation of the error, as in traditional application of ensemble filtering to state 

variables (e.g. Evensen, 2007). (We will return to this point later).  Therefore, the ensemble 

spread can be considered as the indicator of the quality of each posterior parameter values and a 

higher quality posterior has a smaller ensemble spread. The ASA will only retain those high 

quality values for the final averaging to derive the value for the spatially uniform parameter.  

This average value of high quality values should have smaller error than the average value of 

averaging all the values as in SA, which include the high quality as well as low quality values. A 

preliminary theoretical analysis of this point is given in the appendix.  

A posterior value is “good” if its ensemble spread is relatively small among all the 

posteriors estimated at all the grid points. In practice, we use a threshold of the spread ratio 

between the posterior and the prior to judge the quality of the posterior and a posterior with a 

spread ratio below the threshold is considered a “good” posterior to be included for the final 

spatial average. (It should be noted that the ensemble spread of the prior is spatially uniform over 

the globe. Therefore, this spread ratio of the posterior over prior does not affect the relative 

magnitude of the posterior.) The speed of the decrease of the parameter uncertainty depends 

greatly on the magnitude of the signal. Initially, the ASA can use a small ratio as the threshold 

because the initial parameter uncertainty is large and the response magnitude (signal) is large. 

The threshold will be increased during the simulation with the decrease of the parameter 

uncertainty. The ASA is applied every few EnKF analysis cycles to obtain sufficient numbers of 

“good” parameter posterior values. The ASA therefore differs from the SA of Aksoy et al 
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(2006a), in which the spatial average is performed every EnKF analysis cycle and on all grid 

points. A conditional covariance inflation technique (CCI) as in Aksoy et al. (2006b) is also 

employed here on parameter ensemble after each ASA step to avoid the filter divergence for 

parameter estimation. The CCI inflates the parameter ensemble back to a predefined minimum 

value when necessary. The predefined minimum value is also the final uncertainty target for the 

estimated parameter.  

 

4.5 Comparison of ASA with GPO and SA 

  We now compare ASA with SA and GPO schemes in FOAM. Two sets of experiments 

of parameter estimation are performed using observations of monthly SST and SST at every grid 

point. The first set of experiments (EXP-1a and EXP-1b) use the GPO scheme and confirm that 

the parameter ensemble spread is a good index for the parameter uncertainty (Figs. 4.2, 4.3). The 

second sets of experiments (EXP-2a and EXP-2b, Figs. 4.4, 4.5) compare the parameter 

estimations between SA and ASA schemes. The details of experimental setting are shown in 

table 4.1. 

4.5.1 The assimilations with GPO scheme 

 Both EXP-1a and EXP-1b use the GPO scheme but with different observations. EXP-1b 

uses regular observations that consist of the “truth” plus noise. EXP-1a, called perfect 

observation experiment, uses the “truth” from control as the observations but nevertheless treats 

it as having the same uncertainty scale as in EXP-1b. For these two GPO experiments, neither 

EXP-1a nor EXP-1b is able to produce good parameter estimation, if only the monthly SST and 

SSS data are assimilated. Therefore, we are forced to also assimilate daily atmosphere wind (U, 

V) and temperature (T) with the error scale of 1 m/s and 1K, respectively; the observational error 
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scales for SST and SSS are also forced to be reduced from 1oK and 1 psu to 0.5oK and 0.5 psu, 

respectively. The initial SPD error is also reduced from 3-m to 1-m. 

 As speculated, the spatial pattern of the RMSE of SPD in EXP-1a is very consistent with 

the ensemble spread after 20 years of simulation (Figs. 4.2a, b). There are some regions of low 

uncertainty of SPD in different ocean basins.  A further study shows that the low uncertainty in 

the mid-latitude North Pacific and North Atlantic are related to the large model sensitivity to 

SPD during the boreal summer (Fig.4.1b) and fall (Fig.4.1c); the low uncertainty in the eastern 

South Pacific, western equatorial Pacific, South Atlantic and southern Indian Ocean are partly 

related to the large sensitivity of the model SST to SPD in the austral fall (Fig.4.1a) and summer 

(Fig.4.1d). The high positive correlation between the parameter uncertainty and its ensemble 

spread can be seen more clearly in the scatter plot, for example, at the simulation year of 40 

(Fig.4.3a).   The RMSE of SPD estimation and its ensemble spread show a strong positive linear 

correlation with only modest spread residual.  The estimate values are closer to the truth when 

the ensemble spread is small, except for the case of very small ensemble spread (<~ 0.3 in 

Fig.4.3a). The positive correlation between the posterior error and ensemble spread supports our 

speculation before that the ensemble spread can be used to represent the estimation error or 

uncertainty. Furthermore, it is clear that a spatial average will decrease the parameter error 

because the average reduces the part of parameter uncertainty that is spatially independent (see 

eqn. (A4.4 in the appendix). The error of SPD can be further reduced by using only the posterior 

values with smaller ensemble spread for average (Fig4.3b), as hypothesized for the ASA. The 

error of SPD is reduced to 0.40-m when the posterior values of SPD over all the global grid 

points are averaged in EXP-1a (after 40 years of assimilation), compared with the global mean 

RMSE of SPD of 0.6-m (first RMSE and then global average); this error is decreased to 0.2-m 
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and 0.1-m when the top 50% and 20% of grid points of smallest ensemble spread are averaged, 

respectively.  When the ensemble spread is at its smallest values, the estimated values suffer 

from an overshoot, i.e. the parameter error becomes negative. This phenomenon also occurs in 

chapter 3 when the similar observation coverage is applied, i.e. U, V and T for the atmosphere 

and SST and SSS for the ocean. The reason for the overshoot will be discussed in a future study.  

 The positive correlation between the parameter uncertainty and parameter RMSE, 

however, is disrupted significantly when the regular observation (“truth” plus noise) is used as in 

EXP-1b. Now, the spatial pattern of the parameter ensemble spread (Fig.4.2d) remains similar to 

that in EXP-1a (Fig.4.2b), but the pattern of the SPD uncertainty (Fig.4.2c) become very noisy. 

This occurs because the parameter updating using EnKF also introduces observational errors into 

the SPD posterior, which is equivalent to adding random noise onto the parameter posterior of 

EXP-1a. This noise leads to a decrease of the consistence between the SPD uncertainty and its 

ensemble spread. The distortion on the correlation is seen clearly in the scatter plot Fig.4.3c, 

where the error value of SPD and its ensemble spread of EXP-1b shows a very weak linear 

relationship with a much-enhanced residual variance. Nevertheless, this correlation is still 

significant at the 99% level. Furthermore, since the uncertainty associated with the observation 

errors is spatially independent, it can be reduced dramatically using a spatial average.  Indeed, 

the averaging values of SPD are very similar for EXP-1a and EXP-1b (Figs.4.3b vs. d), although 

the estimated values of SPD are much more noisy in EXP-1b than in EXP-1a. 

  Overall, the consistency between the parameter uncertainty and its ensemble spread 

indicates that the parameter ensemble spread can be used as a good index for the uncertainty of 

the parameter value and therefore can be used as the criteria for selecting “good” posteriors for 

averaging.  A spatial average of those “good” posteriors tends to give a better final estimation. 
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4.5.2 Comparison between SA and ASA 

As discussed regarding EXP-1a, 1b, and in the appendix, the uncertainty of the parameter 

posterior can be reduced using spatial average. The ASA and SA are applied in EXP-2a and 

EXP-2b, respectively. A predefined minimum ensemble spread value of 0.3-m for the CCI is 

applied in the EXP-2 (s). Unlike the GPO experiments above, now, the error of SPD is reduced 

dramatically in both EXP-2a and EXP-2b even only with monthly mean SST and SSS 

observations (Fig. 4.4a), implying an increased robustness of parameter estimation using spatial 

average. 

Based on the ensemble sensitivity shown in Fig.4.1, we apply the ASA every 6 analysis 

cycles (6 months) in EXP-2a with an initial threshold of 0.68. To prevent the degeneration case 

of too few “good” values, the threshold increases by 0.1 until it reaches 0.98 whenever the total 

number of “good” values is smaller than a given number, here set as 400. The ASA picks 

different grids at different times for averaging. The number of grid points of “good” values also 

varies temporally in the range of 400~4000, which is around 2~40% of total ocean grids 

(Fig.4.4b). The ensemble spread of SPD initially decreases much faster than its real uncertainty 

(Fig.4.4a), reaching the minimum parameter ensemble spread of 0.3-m in 5 simulation years. 

Although this ensemble spread (0.3) is smaller than the real error in years of 5-20, the SPD 

continues to converge to its “truth”. The SPD error in EXP-2a is decreased from 3-m to 0.3-m 

(the estimating goal) in 20 years (Fig. 4.4a).  

 During the assimilation cycle, the ensemble spread still remains positively correlated 

with the estimation errors among different points, albeit with a substantial spread (as discussed 

for Exp.1b in Fig.4.3b). This can be seen in the two examples of scatter plots of SPD after the 

first and fifth spatial updating cycles in Fig.4.5a and 4.5b, respectively.  The ASA produces a 
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good SPD estimation by averaging only a moderate number of  “good” values (200-2000) once 

the threshold (the uncertainty ratios between the posterior and prior) is selected appropriately. 

This can be seen in Figs.4.5c and Fig.4.5d, which shows the number of “good” values and the 

average of these “good” values respectively, as functions of the threshold in ASA for the first 5 

assimilation cycles. For example, for the first assimilation cycle, the average of SPD is 18.5 with 

the threshold of 0.8 and the number of “good” value of ~400; the average SPD is 17.6 with the 

threshold of 0.65 and the number of “good” value of ~1000. If the threshold is too small, too few 

values are defined as “good” values. This will lead to a too small sample size and large sampling 

error, such that ASA no longer produces good results (Fig.4.5b & d).  

The final estimation also depends on the minimum ensemble spread specified in CCI. 

The error of the estimated SPD seems to saturate at the equilibrium level of ~0.2-m error in ~30 

years in EXP-2a if the minimum parameter ensemble spread remains at 0.3-m. This minimum 

ensemble spread can be decreased afterwards to yield more accurate estimation.  The ASA 

estimation is repeated from year 31 to year 47 but now with the minimum parameter ensemble 

spread reduced from 0.3-m to 0.2-m; now the SPD error further decreases from 0.2-m to ~0.1-m 

(Fig.4.4a,green lines). ). In this case, a reduced minimum ensemble spread further improves the 

final convergence of the parameter estimation.  

In comparison with the ASA (in EXP-2a), the spatial average using all the grid points in 

SA (EXP-2b) shows a considerably slower convergence in the SPD estimation, with the SPD 

error barely reaching 0.3-m after 47-years of assimilation (red lines, Fig.4.4a).  Similar to the 

ASA, the ensemble spread of SPD in SA also decreases much faster than its real error scale. The 

CCI with the minimum parameter ensemble spread of 0.3 prevents the filter divergence of the 

parameter estimation. In the mean time, the evolution of estimation SPD in SA is more stable 
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than in ASA because more grids and in turn a bigger sample size in the former than the latter. 

Overall, ASA demonstrates a faster convergence rate than SA for SPD estimation because the 

former uses only  “good” values for averaging.  

 

4.6. Summary and Discussions 

Refining the Spatial Average scheme (SA), we proposed the Adaptive Spatial Average 

scheme (ASA) to improve the efficiency of the parameter estimation in a complex system, such 

as a CGCM.  The ASA is explored in the twin experiment framework in FOAM, where the 

biased parameter (SPD) is the only model error source. The e-folding scale of the solar 

penetrating depth is used as the biased parameter for estimation. Sensitivity experiments show 

that the response of the FOAM to the parameter uncertainty varies spatially and temporally. The 

ASA is demonstrated to increases the efficiency of parameter estimation significantly over 

previous assimilation techniques such as the SA (Aksoy et al., 2006a) and geographic dependent 

parameter optimization (GPO) (Wu et al, 2012a).   

The ASA uses the posterior ensemble spread as the criterion to select the “good” values 

from the spatial updating posterior parameter values and only use the “good” values for the 

averaging to yield the globally uniform posterior.  In comparison with the SA scheme, the ASA 

produces a faster convergence for parameter estimation. The faster convergence of ASA than SA 

is robust in other settings, as seen in two additional pairs of experiments the same as EXP-2a & 

b, except for the observational interval of 10 days (EXP-3a & b) and 1 day (EXP-4a & b), 

respectively (table 4.1). When the observational interval is shortened, the model response to the 

parameter uncertainty becomes more linear. However, the response amplitude still varies 

spatially and temporally (not shown). Therefore, ASA is still more suitable than SA. Similar to 
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EXP-2, both EXP-3 and EXP-4 show faster decreases of the SPD ensemble spread than its real 

uncertainty in the initial stage. The convergence time is also shortened for a shorter observational 

interval.  In ASA, the SPD errors reach the objective uncertainty (0.3-m) in ~10 years (EXP-3a, 

Fig.4.6a) and ~5 years (EXP-4a, Fig.4.6b) of simulations, for the observational interval of 10 and 

1 days, respectively, while, in SA, they take ~30 years  (EXP-3b, Fig.4.6a) and ~10 years (EXP-

4b, Fig.4.6b).  It is noted that the estimated SPD in EXP-4 (Fig.4.6b) is less stable than that in 

EXP-2 or EXP-3 (Fig.4.3a, Fig.4.6a). The observational interval in EXP-4 is only 1 day, while 

the decorrelation time scale of SST is a few months. This results in the accumulation of sampling 

error because the model SST does not have the time to respond before another observation is 

added. The accumulation of sampling error causes poor parameter estimation compared to the 

other experiments. Furthermore, the instability of the estimated parameter in Fig.4.6b could 

become worse as the total assimilation time increases. We could increase the assimilation time 

interval for parameter estimation to reduce the instability of parameter estimation. 

The ASA is designed to deal with the spatially and temporally varying feature of model 

response to parameter in CGCM. As pointed out by one reviewer, for SPD, SST shows little 

sensitivity to the parameter perturbation in about half of the world ocean (Figs.4.1a-d). One may 

speculate that our experiments for the estimation of SPD are too peculiar. The SA is inferior to 

ASA because the posteriors in these regions of little sensitivity are subject to too large a noise 

(with little response signal) and therefore contaminate the SA estimation seriously. To clarify 

this, it will be desirable to test the estimation for a parameter that has a more spatially uniform 

response sensitivity. Therefore, we repeated the estimation for two other parameters 𝑚! and 𝑚! 

in chapter 3. The  𝑚! and 𝑚! are artificial multipliers to the momentum and latent heat fluxes 

between the ocean and atmosphere, respectively, with 1 as the default truth model value. The 
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model SST sensitivity to either parameter is more uniform than for SPD (not shown). Our 

experiments EXP-5a and b and EXP-6a and b use the same experimental setting as EXP-2a and b 

except for estimating the imperfect parameter 𝑚! and 𝑚!, respectively (table 4.1, Fig.4.7). Both 

EXP-5a and EXP-6a show faster decreases of the parameter errors than EXP-5b and EXP-6b. 

The  𝑚!  reaches the objective uncertainty of 0.04 (set by the minimum ensemble spread 

specified in CCI) in ~10 years with ASA but in more than 30 years of assimilation with SA 

(Fig.4.7a). Similarly, the  𝑚! reaches the objective uncertainty of 0.04 in ~25 years with ASA  

but in more than 40 years of assimilation with SA (Fig.4.7b). Therefore, the improvement of 

ASA over SA is valid for more general cases than the SPD.  

The ASA has also been shown successful for the estimation of multiple parameters (Liu 

et al., 2014). Therefore, we believe that the ASA method is well suited for the estimation of 

those parameters with a globally uniform feature in CGCM. The estimation of a spatially varying 

parameter in CGCM, however, remains to be further studied.  

 

4.7 Appendix: Preliminary Theoretical Consideration for ASA   

Here, we will discuss the SA and ASA from a more quantitative perspective. When we 

implement the spatial updating in ensemble-based parameter estimation, we obtain a spatially 

varying parameter posterior field. The posterior errors at different locations are correlated 

because the parameter priors are identical for the entire field. To quantify the effect of spatial 

averaging, we can separate the posterior errors into two independent components: one linearly 

dependent on the parameter prior error and the other uncorrelated with the first one.  

In EnKF, the covariance(s) between the parameter and the model forecasts in 

observational space are used directly to update parameter in exactly the same manner as for the 



 

 

99 

state variables. When we use a forecast x! and an observation x! to update a parameter β, the 

(σ!!)! of a parameter posterior can be written as  

(σ!!)! = σ!!(1− θ)   (A4.1) 

where θ = !!!!!

  (!!!!!)
 with 0 ≤ θ < 1. Here the σ!!,𝑅 are the error scales (variances) of x! and x!, 

respectively; ρ is the correlation coefficient between forecast x!  and parameter prior.  The 

uncertainty of parameter posterior decreases with the increase of θ. The ratio between parameter 

posterior uncertainty and prior uncertainty 

              
(!!
!)!
!!
! ≡ r = 1− θ.  

In EnKF, (σ!!)!  and σ!!  are represented by the variance of parameter posterior and prior 

ensemble, respectively. So the r is the ratio between the posterior and the prior ensemble spread. 

For a spatial updating, different location has different r. The ASA uses the r as index to select the 

“good” values from a posterior field.  

  The parameter posterior error of ε!!  originates from different sources: x!, x! and β!, and 

can be written into two parts based on the correlation relationships among the error sources 

ε!! = σ!N!! (1− θ)+ σ! θ− θ!N!!     (A4.2)   

where N!
!and N!! are independent white noise with the scale of 1.  The two terms on the right 

hand side of (A4.2) represent two independent components of the total uncertainty (error) of a 

posterior value for any given σ! and θ. The 1st term linearly depends on the error of parameter 

prior of (σ!N!! ), while the 2nd term is uncorrelated with the error of parameter prior. The 2nd term 

is produced by the errors from observations, initial conditions and the nonlinear part of model 

response to the parameter prior. The 1st term is dominant when θ is close to 0 and the uncertainty 
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of posterior is close to the uncertainty of parameter prior. The second term become primary when 

θ is close to 1 and the uncertainty of posterior is much smaller than the uncertainty of parameter 

prior (Fig. 4.8). 

 For a spatial updating, we can rewrite (A4.2) into a spatially varying field 

ε!,!! = σ!N!! 1− θ! + σ! θ! − θ!!N!,!!     (A4.3)     

where i = 1, 2… ,N indicate the  locations. The first term on the right hand side is all linearly 

dependent among different locations, while the second term on the right hand side can be regard 

as independent among different locations when the posterior values are widely distributed over a 

large domain. For a spatial average, the two terms have opposite changes. Averaging the β!! to 

obtain a single-value parameter, the posterior error is 

  ε!,!! = !!
!

N!! 1− θ!! + !!
!

θ! − θ!!N!,!!!    (A4.4) 

We now discuss the two terms on the right hand side of (A4.4) one by one, regarding the 

difference between SA and ASA. The first term is linearly dependent on the parameter prior 

error (N!! ), therefore its scale mainly affect by the distribution of θ! but not the averaging sample 

size of M.   The first term can be discussed conveniently by assuming a uniform distribution  

[θ!"# θ!"#] for θ!. The SA scheme (Aksoy et al 2006a) averages all posterior values over the 

entire domain. This term becomes σ!(1−
!!"#!!!"#

!
)N!! . The ASA sets a threshold θ!" 

(θ!"# ≤ θ!" ≤ θ!"#) to remove the values with θ! < θ!" from the average pool such that this 

term becomes  σ!(1−
!!"!!!"#

!
)N!! , which is smaller than that using the SA scheme when the 

difference between θ!"#  and θ!"#  is large and θ!"  is significantly greater than θ!"# . When 
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θ!" =   θ!"#, the ASA recovers to the SA.  When θ!" =   θ!"#, the ASA just picks the posterior 

value with the “best” posterior, i.e. the minimum analysis error. 

The second term on the right hand side of  (A4.4) decreases with the increase of the 

average sample size of M because the N!,!!   are independent among different sites. Therefore the 

second term in ASA is larger than that in SA because ASA uses a smaller M than SA. However, 

when the number of average values (M) is sufficiently large, the second term for both SA and 

ASA is smaller than the first term (unless the θ!(s) are all close to 1), and therefore has limited 

impact on the total error. When the θ!(s) are all close to 1, the first term is trivial comparing with 

the second term before average (see  (A4.2) and Fig.4.8); but this rarely happens for parameter 

estimation with EnKF in a complex system like CGCM, because it would require ρ! ≈ 1,σ!! ≫

R. The θ!"# is usually close to 0, especially when the parameter is nearly converging. 

The ASA can reduce the error related to the parameter prior error in spite of a reduced the 

averaging sample size, because “good” posteriors are used which have sufficiently large θ!. The 

ASA produces a better analysis of β than SA after averaging the same posterior field when the 

θ!"  is significantly smaller than the θ!"#  when they average the same posterior field. In 

summary, the SA reduces the errors related to the observations and forecasts. These errors are 

uncorrelated between different locations. The ASA scheme enhances the signal during the 

averaging by filtering out the region with weak signal or no signal. Therefore the ASA can 

produce a faster convergence than the SA (see Fig.4.4a, Fig.4.6 and Fig.4.7).  

It should be mentioned that the sampling error generated by the limited ensemble size is 

ignored in our derivation.  The sampling error is not represented by the parameter ensemble, and 

therefore will not affect the derivation discussed previously. Usually both SA and ASA can 

reduce sampling error to a small term compared with two error terms in  (A4.4) when the number 
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of average values (M) is sufficient. However, when an estimated parameter is near its 

convergence limit, the σ! is small and the θ!(s) are close to 0. Although the 2nd term at the right 

hand side of (A4.4) is much smaller than the 1st term (See Fig.4.8), the sampling error could be 

comparable with the other two error sources in the equation even after the averaging. Therefore, 

the sample size of averaging values (M) becomes critical. Parameter estimation under this 

condition is very dangerous, especially for the ASA method because of its smaller average 

sample size. We can avoid this situation by applying a CCI as in Aksoy et al. (2006b). The 

minimum ensemble spread of CCI maintains the uncertainty of a parameter (σ!) at a reasonable 

level. That makes the sampling error relatively small compared to the other two error terms.   
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Table 

Table 4.1 the experiment setting. The oceanic observations are SST and SSS; and atmospheric 

observations are T, U and V. EXP-1a uses the perfect observations (truth).  EXP-5 a & b 

estimate the parameter of  𝑚! and  EXP-6 a & b estimate the parameter of   𝑚!. 

EXP Method Obs.  (Ocn.; 

Atm.) 

Parameter 

(Truth) 

Initial guess/Truth/ 

uncertainty  

1a &b GPO 1 month; 1 day SPD 18m/17m/1m for SPD  

2a ASA 1 month; N/A  N/A 20m/17m/3m for SPD 

2b SA 1 month; N/A N/A 20m/17m/3m for SPD 

3a ASA 10 days; N/A N/A 20m/17m/3m for SPD 

3b SA 10 days; N/A N/A 20m/17m/3m for SPD 

4a ASA 1 day; N/A N/A 20m/17m/3m for SPD 

4b SA 1 day; N/A N/A 20m/17m/3m for SPD 

5a ASA 1 month N/A 1.2/1.0/0.2 for 𝑚! 

5b SA 1 month N/A 1.2/1.0/0.2 for 𝑚! 

6a ASA 1 month N/A 1.2/1.0/0.2 for 𝑚! 

6b SA 1 month N/A 1.2/1.0/0.2 for 𝑚! 

 
 
 
 
 
 
 
 
 
 
 



 

 

104 

 
Figures 

 
 

 
 
 
Fig. 4.1. The model monthly SST response to 3-m SPD uncertainty at different month for (a) 

March, (b) June, (c) September and (d) December.  The shading represents the correlation 

coefficient between the SPD ensemble and the 1st month monthly SST response while the 

contours represent the magnitude of the monthly SST response (ensemble spread). A 30-member 

ensemble simulation that starts from the same initial condition but use different values of the 

parameter SPD. The SPD ensemble is constructed as a Gaussian distribution with the mean of 

20-m and the standard deviation of 3-m. We integrate the model from the beginning of each 

month to the end of the month to obtain the monthly mean response. 
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Fig. 4.2. Solar penetration depths estimated using DAEPC with the GPO method. The total 

ensemble size is 30. Panel (a) and (c) are the spatial distribution of parameter error values and 

parameter ensemble spreads after 20 years simulation for the perfect observation experiment. 

Panel (b) and (d) are the parameter error values and parameter ensemble spreads after 20 years 

simulation for regular observation experiments.  
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Fig. 4.3. The estimated SPD after 40-year simulations using DAEPC with the GPO method. 

Panels (a) and (b) are for EXP-1a using perfect observations:  (a) the scatter diagram between 

SPD error values and ensemble spreads. The red line is the regression line. (b) The blue line is 

the averaging value of SPD using top percent grids (with smallest ensemble spread) and the red 

dish lines represent 1-standard deviation of the averaging values. The black dish line is the 

“truth”. 

Panels (c) and (d) are the same as (a) and (b) but for EXP-1b using regular observations. 
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Fig. 4.4. The Estimated SPD using DAEPC with the ASA (EXP-2a) and SA (EXP-2b).  

(a)Temporal evolution of parameter error (thick lines) and 1-standard deviation of ensemble 

spread (thin lines). The red lines are for EXP-2b and the blue lines are for EXP-2a the green lines 

are also for EXP-2a but with a reduced minimum parameter ensemble spread of 0.2 for the year 

31~47.  The black solid line is the “truth” and the black dish lines are the minimum parameter 

ensemble spreads (uncertainty goals) for the experiments. (b) temporal evolution of total 

numbers of grids used for average in ASA. 
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Fig.4. 5.  (a) the scatter diagram between SPD error values and its ensemble spreads for EXP-2a 

after the 1st analysis cycle of parameter updating. The red line is the regression line. (b) is the 

same as  (a) but for after the 5th analysis cycle. 

(c) the numbers of “good” grids (values) for the 1-5 analysis cycles of EXP-2a using ASA with 

different threshold. The blue line is for the 1st analysis cycle, the green line is  for the 2nd,  the red 

line is for 3rd, the cyan line is for 4th and the magenta is for 5th. 

(d) the mean SPD values of the “good” grids from (c) respectively. 
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Fig. 4.6. (a) the temporal evolution of SPD (thick lines) and 1-standard deviation of ensemble 

spread (thin lines) for EXP-3. The red lines are for EXP-3b and the blue lines are for EXP-3a. 

The black solid line is the “truth” and the black dish lines are the minimum parameter ensemble 

spreads (uncertainty goals) for the experiments. 

(b) is same as (a) but for EXP-4. 
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Fig. 4.7. (a) the temporal evolution of 𝑚! (thick lines) and 1-standard deviation of ensemble 

spread (thin lines) for EXP-5. The red lines are for EXP-5b and the blue lines are for EXP-5a. 

The black solid line is the “truth” and the black dish lines are the minimum parameter ensemble 

spreads (uncertainty goals) for the experiments. 

(b) is same as (a) but for the temporal evolution of  𝑚! for EXP-6. 

 

0 10 20 30 40 500.95

1

1.05

1.1

1.15

1.2

assim time (yr)

(a) md (1 month)

 

 

SA
ASA

0 10 20 30 40 500.95

1

1.05

1.1

1.15

1.2

assim time (yr)

b) mq (1 month)

 

 



 

 

111 

 

Fig. 4.8. The scale (variance) of each term in equation (A2). The blue curve represents the scale 

of the 1st (σ!N!! 1− θ ) at the right hand side of the equation, which is related to the error of the 

parameter prior; the green curve represents the scale of the 2nd term (σ! θ− θ!N!!) at the right 

hand side of equation, which is related to the uncertainties of the observation and forecast, but 

unrelated to the parameter uncertainty. The black curve is the scale of the total error (ε!!). 
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Chapter	  5	  Summary	  and	  Future	  work	  
	  
 
5.1 Summary  
 
 Coupled ocean-atmosphere general circulation models (CGCM) are very useful tools for 

climate study and climate prediction. The uncertainty of model parameters is one of the 

important sources of model bias that cause the model climate to draft from real world. The 

tradition method of tuning parameters through trial-and-error sensitivity experiments is 

subjective and very inefficient. In this study we apply a novel strategy for systematic parameter 

estimation in a CGCM using ensemble based parameter estimation (Anderson, 2001). 

We developed a random subgrouping scale for deterministic ensemble based filter to 

improve the ability handing nonlinearity. The ensemble based parameter estimation is based on 

the data assimilation skill of the ensemble-based filter (Evensen, 1994, 2007; Burger et al., 1998; 

Houtekamer and Mitchell, 1998; Anderson, 2001, 2003；Bishop et al. 2001, Whitaker and 

Hamill 2002; Tippett et al 2003; Houtekamer et al., 2005; Sakov and Oke 2007).  The ensemble-

based filter is a linear filter, although it could be used in the nonlinear regime. The ability of an 

ensemble-based filter handling nonlinearities is very important for ensemble based parameter 

estimation because the model response to a parameter uncertainty could be very nonlinear. Based 

on the methods of updating analysis ensemble, ensemble-based filters can be divided into two 

categories: stochastic and deterministic.  A deterministic filter avoids the sampling error 

introduced by perturbed observations and tends to generate better analyses than a stochastic filter 

when applied to a linear model, especially for a small ensemble size (~10-20) (Whitaker and 

Hamill 2002, Evensen 2003, Anderson 2010). However, a deterministic filter suffers from the 

problem of generating extreme outliers in the ensembles produced in a nonlinear system, 
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especially when the ensemble size is large (Lawson and Hansen, 2004; Anderson, 2010). To 

address the problem of extreme outliers, we developed a new random subgrouping technique for 

the deterministic filter.  The random subgrouping technique randomly divides the full ensemble 

into sub-ensembles of equal size for each observation at each analysis step. All sub-ensembles 

are updated independently using deterministic filter algebra.  Compared to regular stochastic and 

deterministic filters, the new technique significantly improves performance of data assimilation 

in the Lorenz-63 systems (Lorenz, 1963), the Lorenz-96 system (Lorenz, 1996) and a global QG 

atmospheric model coupled to a slab ocean.  

In a twin experiment framework, we successfully implemented a simultaneous estimation 

of model state variables and parameter with the assimilation of time evolution observations in a 

CGCM – the fast ocean atmosphere model (FOAM) (Jacob, 1997) for both single parameter 

estimation and multiple parameter estimation. In the case of the single parameter estimation, the 

error of the parameter (solar penetration depth, SPD) is reduced by over 90% after ~40 years of 

assimilation of the conventional observations of monthly sea surface temperature and salinity. 

The results of multiple-parameter estimation are less reliable than the single-parameter 

estimation when the same experimental setting is used. Assimilating additional observations of 

atmospheric data compromises the less reliability of multiple-parameter estimation. The errors of 

the parameters are reduced by 90% in ~8 years of assimilation. Finally, the improved parameters 

improve the analysis quality of state variables as well as the model climatology. With the 

optimized parameters, the bias of the climatology of SST is reduced by ~90%.  Our study 

suggests the feasibility of the ensemble based parameter estimation in a CGCM.  

We proposed an adaptive spatial average scheme (ASA) is to increase the efficiency of 

parameter estimation. The ASA is well suited for the estimation of those parameters with a 
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globally uniform feature in CGCM. When we estimate globally uniform parameters in FOAM, a 

spatial updating technique is applied to prevent the sampling error accumulation issue when a 

large number of observations are used to update a single-value parameter sequentially. Proposed 

by Aksoy et al (2006a), the spatial updating technique transforms a single-value parameter into a 

two–dimensional field and updates the field spatially, so that localization in filtering can limit the 

error accumulation. To recover the globally uniform feature of a parameter, the parameter values 

are recovered by using ASA on the spatially varying parameter field. For a complex system such 

as a CGCM, the sensitivity and response of a model variable to a model parameter may vary 

spatially and temporally. The area with stronger linear response to a parameter uncertainty can 

produce better estimation of the parameter. Refined from a previous spatial average method 

(Aksoy et al, 2006a & b), the ASA uses the ensemble spread as the criterion for selecting “good” 

values from the spatially varying posterior estimated parameter values; the “good” values are 

then averaged to give the final global uniform posterior parameter. In comparison with the 

spatial average, the ASA parameter estimation has a superior performance: faster convergence 

and enhanced signal-to-noise ratio.  

 

5.2 Concluding remarks  
 

This work is a pilot study of parameter optimization in CGCMs using ensemble based 

filter strategy. We focus on the study of feasibility and effectiveness of parameter optimization.  

This work has made new contributions on ensemble-based filter and ensemble based parameter 

estimation. 

Firstly, we developed a random subgrouping ensemble based filter scheme to improve the 

filter performance in a nonlinear regime. 
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 Secondly, we proposed a new average scheme- adaptive spatial average scheme to 

increase the efficiency of parameter estimation in complex system such as a CGCM. 

Finally, we presented the first study of successful ensemble-based parameter estimation 

in a CGCM in a twin model framework, demonstrating the feasibility of parameter estimation in 

a CGCM.  

 
5.3 Future work  
 

Much further work remains. The ultimate goal is to develop an effective coupled data 

assimilation strategy for parameter optimization with ensemble based filter to improve CGCMs 

using the real observational data. All of our experiments of parameter estimation in this study 

were still implemented in a twin experiment framework, where the model error sources is 

identified as the estimated parameters. The parameter estimation using the real observational 

data will be much more complex than that.  

One of the major challenges for parameter estimation with real observational data is how 

to identify of the biased parameters in a CGCM. Aside from the parameter uncertainties, the 

model bias can be generated in a CGCM due to model structural errors, such as the imperfect 

dynamical framework and the incomplete understanding for physical processes. It remains a 

great challenge to identify the sources of the model bias from the candidates of the model 

structural deficiencies, as well as the large number of model parameters. Hu et al (2010), in their 

real-data parameter estimation study, pointed out that the parameter estimation using real 

observations might produce the right answer for the wrong reasons. Furthermore,  As discussed 

in appendix 3.1 in chapter 3, it is not guarantee that a biased parameter can be estimated using 

EnKF. The parameter estimation is much more challenge for a highly nonlinear parameter 
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because the EnKF is only a linear filter.  We may not be able to extract a signal dominated linear 

partition from the total model response to the parameter uncertainties.    

 One major challenge for parameter estimation with real observational data is the 

deficiency of ensemble spread. The uncertainty generated by the model structural errors cannot 

be included in a single model ensemble forecast. Therefore, the background uncertainty 

estimated from the ensemble perturbations usually suffers a negative deficiency when we apply 

ensemble based filter using real observations. A negatively biased background uncertainty could 

cause poor filter performance or even for parameter estimation with real observational data and 

therefore cause parameter estimation failure. One has to inflate the background variance to 

compromise the uncertainty deficiency and improve filter performance using a state-of-the-art 

inflation schemes, such as the covariance inflation/relaxation (Zhang et al., 2004), the additive 

inflation (Hamill and Whitaker, 2005), or the adaptive covariance inflation (Anderson, 2007, 

2009).  The effect of these inflation schemes on parameter estimation remains to further study. 

Some study also use the parameter uncertainty as a carrier for the forecast uncertainty 

generated by the model structural deficiencies (Hansen, 2002). From this angle, the constant 

parameters in deterministic model will be regarded as stochastic parameters.  Ensemble based 

parameter estimation techniques can use to estimate the PDFs of stochastic parameters (Hansen 

and Penland 2007).  The implementation of this technique in a CGCM remains to further study.  
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