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Abstract 

 
The Community Atmosphere Model (CAM) has several well known biases that 

have important dynamical implications for research.  Some examples of these biases 

include a cold temperature bias near the tropopause at high latitudes, systematic biases in 

the mean zonal wind, and transient momentum fluxes that are too strong.  One method 

for investigating the impacts that these biases have is to use data assimilation techniques 

to reduce the bias and observe how the system reacts.   

The cold polar tropopause temperature bias found in CAM is common to climate 

models.  For the Northern Hemisphere, the bias is generally observed in the summer 

months.  By assimilating a July 2003 set of observations in the region of this bias, we 

observe that reducing this bias forces the zonal jet and storm tracks to shift poleward.  

This finding mirrors the results of several earlier studies where the height of the polar 

tropopause influences the location of storm tracks and zonal jets by moving them 

equatorward as the height decreases, and poleward as the height increases as is predicted 

to occur with increased atmospheric concentrations of greenhouse gasses. 

With the recent CHAMP/COSMIC missions, GPS radio occultation observations 

have become available.  These observations have many desirable qualities including their 

global nature and accuracy in polar regions where quality observations are rare.  In this 

research, we determine how strongly these observations can constrain CAM through data 

assimilation.  We also begin to quantify the process by which these assimilated 

observations impact the model.  

We use an ensemble adjustment Kalman filter (EAKF) provided by the Data 

Assimilation Research Testbed (DART) to assimilate COSMIC data into CAM for 

January 2007.  We compare a case where only COSMIC observations are assimilated into 

CAM with cases where we assimilate observations from multiple sources.  We find that 

GPS observations do improve our analysis.  Further, when taken by themselves, the 

assimilation of GPS observations is capable of constraining CAM to a substantial degree. 

However, we find that water vapor, which is has a strong relationship to refractivity is 

poorly constrained and assimilated, while dynamical quantities are more accurately 

assimilated. 

Finally, we take a detailed look into the mechanism by which GPS observations 

impact the state of CAM’s modeled atmosphere.  By linearizing the refractivity forward 

operator, we use multivariate linear regression to piece apart the components of the 

operator.  Through this process we determine how the assimilation of a GPS observation 

will influence the state of our system differently depending on its location in Earth’s 

atmosphere.  In particular large cancellations due to correlated temperature and pressure 

variations in the midtroposphere of the midlatitudes seem to reduce the potential impact 

of assimilated GPS observations in this location. 
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1.  Introduction 

 

 A fundamental property of every model ever built is that it has imperfections.  

Whether through inexact initial or boundary conditions, errors in model formulation, 

incomplete parameterizations, or unknown physics, error is always present and must be 

taken into account in every type of scientific model.  Nowhere is this property of models 

more apparent than when investigating the complex interactions that make up the Earth 

system where nonlinearities can balloon small errors into large errors.  Lorenz states in 

his seminal 1963 paper: 

“When our results concerning the instability of nonperiodic flow are applied 

to the atmosphere, which is ostensibly nonperiodic, they indicate that prediction 

of the sufficiently distant future is impossible by any method, unless the present 

conditions are known exactly.  In view of the inevitable inaccuracy and 

incompleteness of weather observations, precise very-long range forecasting 

would seem to be non-existent.” 

 

In a weather forecast, the errors associated with initial conditions and imperfect models 

coupled with nonlinearities in the atmospheric system currently limit the timescale of 

useful prediction to the order of weeks.  These errors manifest themselves differently in 

global climate studies where models may be run for hundreds of years and the error 

associated with the forecast of a model on a specific day is of minimal concern.  In this 

case, relevant errors appear most clearly as systematic biases in the time-averaged model 

state.  Consequently, these systematic biases can have critical implications for long-term 

studies.   

 While the statement that all models are imperfect is unequivocal, the same is true 

for physical observations.  Every observation has some degree of error associated with it.  
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The errors can be introduced through instrumental deficiencies, poor retrieval schemes, 

or human error to name a few possibilities.   

 In other words, the two principal tools for understanding and investigating the 

Earth system are fundamentally imperfect.  Hence, we are left in the unenviable position 

of being forced to validate flawed models with flawed observations, or conversely, 

evolving inexact observations forward in time or across space with imperfect models.  

However, this quandary does not diminish the fact that each of these tools contain a 

tremendous amount of useful information that can be extracted and used to help constrain 

and define what we know about a system. 

 With the increase in computing speed and the advent of satellites over the past 

few decades, the amount of information available to a researcher from both models and 

observations has increased exponentially.  In the past, the connection between model and 

observations was mostly hidden away in the physics and parameterizations driving the 

model dynamics. However, in an effort to investigate the causes of model bias, reduce the 

discrepancy between modeled and observed states of the atmosphere, and quantify the 

error introduced by imperfect observations, a more intimate link between models and 

observations in the form of data assimilation has been developed.  Data assimilation is 

one tool used to maximize the amount of information that can be pulled from 

observations and models.  Data assimilation can be defined as “using all the available 

information, to determine as accurately as possible the state of the atmospheric (or 

oceanic) flow.” (Talagrand 1997)  This is an extremely powerful yet limiting statement.  

In reality data assimilation has applications beyond state estimation ranging from 

parameter estimation (Annan et. al. 2005) to observation system design (Morss and 
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Battisti 2003).  This research examines a couple of these applications.  The first 

application this research considers is the use of data assimilation to quantify the 

dynamical implications of a climatological bias in the National Center for Atmospheric 

Research’s (NCAR’s) Community Atmosphere Model.  The second is an assessment of 

how the assimilation of Global Position Satellite (GPS) radio occultation observations 

adjusts the zonal mean circulation of the previously mentioned model. 

 To begin this discussion Chapter 2 gives a brief background of data assimilation 

with an emphasis on the Ensemble Adjustment Kalman Filter (EAKF).  This chapter will 

derive the basic concepts associated with data assimilation, and also illustrate how it can 

be practically implemented.  Chapter 3 provides an investigation into how data 

assimilation can be used to help assess the dynamical implications of a climatological 

temperature bias that is common to climate models.  This section will discuss the 

motivation for looking at the polar tropopause bias, theoretical considerations for this 

case, and how data assimilation can be used to quantify the impacts of this bias.  The 

second application of assessing the impact of GPS occultation measurements will 

compose Chapter 4.  This section discusses the application and retrieval of GPS 

soundings, how well assimilation of GPS occultation measurements can constrain the 

atmospheric circulation and how characteristics of GPS refractivity interact with the 

atmosphere to provide different types of information at different points in the 

atmosphere.  Finally, Chapter 5 summarizes the findings of this research. 

 Through the outline given, there are several specific questions that this research 

attempts to answer.  These questions will be expanded in detail in Chapters 3 and 4.  In 

Chapter 3 the focus of the chapter will be on determining whether a local assimilation of 
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observations in the Polar tropopause can reduce a strong model bias in the Community 

Atmosphere Model (CAM) in the region, and how the reduction of this bias impacts the 

large scale circulation through secondary effects.  Chapter 4, will determine how stongly 

assimilated GPS radio occultation observations constrain CAM, and how the variations in 

the model state across an ensemble determine the impact that GPS radio occultation 

observations have in different regions of the atmosphere.  In addition, Chapter 4 will 

investigate the possible problem of moisture being dominant in refractivity yet hard to 

assimilate in models. 
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2.  Ensemble Kalman Filter Data Assimilation 

 

a. Overview of data assimilation and the ensemble Kalman filter 

 At the root of data assimilation is a desire to combine a model and observation in 

order to determine the state of a system as accurately as possible.  To illustrate the 

concepts, it is useful to examine a straightforward example.  To begin assume that we are 

looking at a temperature, T, at a single model gridpoint.  There are two estimates of T, 

one from a global model and one from an observation, both of which have errors 

associated with them.  The next step is finding the most likely temperature given these 

two pieces of information.  Following Talagrand (1998), this is expressed mathematically 

as  

Y1 = T
t 
+ !1,  Y2 = T

t 
+ !2.  (2.1) 

Where T
t
 is the true temperature, Y1 is the model estimation, Y2 is the observation, and 

!1,2 are the errors associated with each.  In this case, we will assume that the expected 

error is zero E(!1,2)=0, i.e. the observations are unbiased.  In addition, the variances are 

known,!1,2, E(!
2

1,2)="
2

1,2.  Finally, assume the errors are uncorrelated, E(!1!2)=0.  The 

estimate of the actual temperature which we will label T
a  

(analysis temperature), can be 

assumed to be a linear combination of the two estimates,  

T
a
 = a1Y1+a2Y2,   (2.2) 

where the weights a1,2 will be determined.  We want our analyzed estimate of temperature 

to be an estimate, which minimizes the variance of the difference between itself, T
a
, and 
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the truth, T
t
.  By minimizing "

2
=E[(T

a
-T

t
)

2
] we can show that the weights a1 and a2 are 

given by  

! 

a
1

=
"
2

2

"
1

2
+"

2

2
,     

! 

a
2

=
"
1

2

"
1

2
+"

2

2
,   (2.3) 

and the estimation error is given by  

! 

1

" 2
=
1

"
1

2
+
1

"
2

2
.   (2.4) 

We can now comment on some important aspects of data assimilation.  If we 

substitute the proper expressions for a1,2 into T
a
 = a1Y1+a2Y2, we find the most probable 

state of the temperature to be: 

! 

T
a

=
"
2

2

"
1

2
+"

2

2
Y
1

+
"
1

2

"
1

2
+"

2

2
Y
2
    (2.5) 

Inspection of equation 2.5 reveals that if an observation has a large expected error 

associated with it, the observation will be weighted far less than an observation that has 

small errors associated with it.  Equation 2.4 also provides an estimate of the error, ", of 

the analyzed temperature, T
a
.  Since all assimilation schemes will have some error 

associated with them as they are assimilating non-perfect models and observations, 

getting a quantitative estimate of the analyzed error is extremely important. 

 The previous example gives a simple demonstration of the purpose of data 

assimilation, however in a practical application there could be thousands of variables at 

thousands of gridpoints that need to be assimilated with observations that may not be 
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directly related to the quantities we are interested in. In this multivariate case, covariance 

relationships must be considered in addition to simple variance from the 1-d case.  In 

order to do this, a generalization of the concepts is necessary.  To begin, it is trivial to 

generalize the initial equation Y1 = T
t 
+ !1.  First, expand Y1 to be a vector Y that 

contains all the observations, <Y1,Y2,…>.  Similarly,  expand T
t
 to be a vector that 

contains the entire state of our system as opposed to just temperature.  This will be 

designated X, and we will refer to this as the state vector. !1 is also expanded to a vector 

that represents the error associated with each observation.  Finally, we need some way to 

connect the state variables to observations that are not directly related.  We will designate 

the matrix that operates on the vector X in such a way as to project the vector from state 

space to its analog in observation space, as H.  H is known as the forward operator.  

Equation 2.2 now becomes 

! 

Y
t
=H

t
X

t
+"

t
 (2.6) 

where the subscripts indicate these quantities are all evaluated at time t.  Returning to the 

simple example above, instead of an observation of temperature, say instead there exists 

an observation of radiance that is indirectly related to the temperature.  To assimilate this 

observation, we operate on T
t
 with H.  In this case, HT

t
 transforms the state temperature 

into an observed radiance, and now the previously stated method can be followed exactly.   

At this point we need to separate the estimate from our observation from the estimate of 

the unanalyzed model.  The unanalyzed, or background estimate, can be written as 

! 

X
t

b
= X

t

t
+"

t

b .  (2.7) 
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As before, the final important piece of information required is the error covariance that is 

written as 

! 

" =
E(# b# bT

) E(# b#T
)

E(## bT
) E(##T

)

$ 

% 
& 

' 

( 
) .   (2.8) 

where the superscript, T, indicates a transpose.  Although the mathematics now involves 

matrices and vectors, the same rules are applied as in the original example.  Through a 

series of matrix manipulations we can find the analyzed state, Xt
a
 and the analyzed error 

covariance, Pt
a
.  The expressions for these quantities are given in Kalnay (2003) as 

! 

X
t

a
= X

t

b
+ P

t

b
H

t

T
[H

t
P
t

b
H

t

T
+R

t
]
"1
(Y

t
"H

t
X

t

b
), (2.9) 

and  

! 

P
t

a
=P

t

b
"P

t

b
H

t

T
[H

t
P
t

b
H

t

T
+R

t
]
"1
H

t
P
t

b , (2.10) 

where P
b
=E(!

b
!

bT
), and R=E(!!

T
) is the observation error covariance. It was also 

assumed E(!
b
!

T
)= E(!!

bT
)=0 (i.e. the errors between observations and modeled data are 

uncorrelated).  The superscript “a” represents an analysis quantity formed after an 

observation is assimilated, and superscript “b” represents a background quantity formed 

before an observation is assimilated.  The quantity 

! 

P
t

b
H
t

T
[H

t
P
t

b
H
t

T
+R

t
]
"1 is known as 

the Kalman gain matrix (Ancell and Hakim 2006).  Equations 2.9 and 2.10 in a slightly 

modified form are classified as the Kalman filter equations.  If one can calculate all of the 

above quantities, these equations give the best linear unbiased estimate of the state and 

the error covariance at time, t (Kalnay 2003).  However, there are a few fundamental 

problems that need to be addressed.   
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 The first problem is how to obtain the background estimate of the state at time, t.  

The relatively simple answer is to use climatological data for the initial estimate, and then 

assimilate the initial observations, which gives a new estimate of the state vector X
a
.  

Initialized from this newly analyzed state, it is trivial to integrate a model forward until 

new observations become available, at which time the above process is repeated.  To 

describe this mathematically, we need a discrete representation of how the state, Xt, will 

propagate forward in time.  Following Jazwinski (1970), the evolution of the state can be 

written as  

! 

X
t+1

b
= MX

t

a
+"

t
. (2.11) 

In this equation, M is the forecast model being used (in this research M will be the 

Community Atmosphere Model), and the second term represents the model error 

Figure 1: Schematic of the assimilation process for ensemble Kalman filters.  Shows the evolution of a 

three-member ensemble.  Process begins with the model moving the initial ensemble forward in time.  

Then the ensemble is transformed to observation space using the forward operator, Ht.  A PDF is formed 

from the transformed ensemble assuming a Gaussian (red curve), and is assimilated with the observation 

PDF (green curve) forming the analysis PDF (blue curve).  The analysis ensemble is now extracted from 

the analysis PDF, and is transformed back to state space.  The ensemble is now updated and ready to 

repeat the process using the model M to move the ensemble forward in time. 
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(Anderson 2003).  A far more difficult question is how the error covariance is determined 

and how it will change through time.   

 

b. The ensemble Kalman filter 

When trying to determine how the error covariance should advance in time, the 

simplest solution is to simply hold it constant with climatological values.  This is done in 

the commonly used in three dimensional variational assimilation systems (3D-Var), 

which determines the best guess of the atmospheric state by using an adjoint model to 

minimize the variance of the analysis (Lorenc 1981).   However, using climatological 

values leads to a loss of information in the form of “errors of the day”, which describe 

how the background error covariance changes with the flow of the atmosphere (Kalnay et 

al. 2006).  

One example that is often mentioned of an example of how “errors of the day” 

can impact an assimilation is the case of synoptic-scale wave structures.  Since traditional 

assimilation systems use climatological background error covariances, this causes the 

background error covariance in the midlatitudes to look like the large-scale trough-ridge 

circulation.  In contrast, as will be discussed shortly, recent ensemble Kalman filter 

systems use the “errors of the day” which allows the synoptic-scale error covariances 

associated with the actual wave structure to be captured.  This has been shown to lead to 

improved analyses (Zhang and Anderson 2003). 

Classically, it has been shown that in Kalman theory that the error covariance 

evolves according to the equation 
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! 

P
t

b
= F

t"1Pt"1
b
F
t"1

T
+Q

t"1. (2.12) 

Where F is a tangent linear operator for updating the system state, and Q is the model 

error covariance matrix (Kalman 1960).  Equation 2.12 is derived from the Kolmogorov 

equation that describes the 

evolution of the probability density 

function for the analysis state 

(Evensen 1997).  A full derivation 

of the Kolmogorov equation can be 

found in Jazwinski (1977).  

However, equation 2.12 is an 

approximation based on a 2
nd

 order 

truncation of a Taylor series.  This 

approximation has been shown to 

lead to unbounded error variance 

growth (Evensen 1994).  There are 

two other immediate problems with 

using the Kalman equations in this 

form for atmospheric data 

assimilation.  First, 

! 

F
t"1

T  is known as 

an adjoint model, and the 

development of adjoints for climate 

models is non-trivial.  Second, Ft-1 is on the order of n x n where n is the number of 

degrees of freedom for the system.  For a global climate model (GCM)  this can be on the 

M 

Figure 2: Schematic of the analysis estimate for typical 

EnKF and 3D-Var data assimilation systems given the 

background forecast, the background error covariance 

! 

P
t

B
 

(climatological values and isotropic for 3D-Var), 

observations, and observation error covariance R (generally 

diagonal for both EnKF and 3D-Var).  The analysis estimate 

maximizes the joint probability distribution. (a) 3D-Var. (b) 

EnKF, where the ensemble forecast members define a 

subspace within which the analysis lies.  The dots represent 

adjustments to the ensemble mean.  Adapted from Kalnay et 

al. (2006). 
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order of 10
6
.  In essence, using the Kalman equations in this state require a linear tangent 

model and its adjoint to be run O(n) times, which with current computing power is 

unfeasible. 

To get around the limitations on the classical Kalman filter, the ensemble Kalman 

filter (EnKF) was originally presented by Evensen in 1994, and since then has morphed 

into many variations.  Now, as opposed to solving the Kolmogorov equation analytically 

using a truncated Taylor series, it is solved using a Monte Carlo method (Evensen 1994).  

In practical terms, the initial state of the system is slightly perturbed many times to form 

an ensemble of states.  These states are then each propagated forward in time by the 

model, as described in equation 2.11.  When observations are taken and assimilated, one 

can calculate the error covariance matrix of equation 2.10 from statistics taken from this 

ensemble of states. It now becomes 

! 

P
t

b
=

1

m"1
X
/b
X
'b T (2.13). 

where primed quantities represent deviations from the ensemble mean, and m is the 

number of ensemble members. 

 This process is shown schematically in Figure 1.  In Figure 1’s example, the 

model, M, integrates a 3-member ensemble forward in time to the point where 

observations are taken and assimilated (generally ensembles range in size from 20 – 200 

members for atmospheric applications).  The ensemble state is then transformed to 

observation space by the operator Ht from equation 2.6.  At this point, the ensemble state 

is represented by a Gaussian probability distribution function that is fitted to the 
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ensemble members.  The ensemble is then assimilated with the observations, and an 

adjustment to the ensemble, which will be described in more detail in the next section, is 

made.  Notably, this is the step where most of the various ensemble Kalman methods 

differ.  Lastly, the ensemble is transformed back to model space, and the model 

integration is repeated for each ensemble member.   

By assimilating the observations in this manner, we can continually update the 

error covariance statistics by performing statistical analysis on the ensemble members.  

The mean of the ensemble gives the best estimate of the state, and the variance of the 

ensemble members gives an estimate of the error covariance (Evensen 1994).  In this 

case, the accuracy of the method is only limited by the number of ensemble members.  

The more ensemble members that are available, the more accurate the representation of 

the probability distribution function for the state of the system (Evensen 1994). This is 

practical because the effective dimensionality of the local flow field is small compared to 

the dimensionality of the model.  The ensemble system for estimating the background 

error covariance also solves the problem of 3D-Var neglecting the errors of the day. With 

the EnKF, the use of a Monte Carlo analysis scheme allows for a flow-dependent 

background error covariance.  This decreases the dimensionality of the background error 

and improves forecasts.  This is shown schematically in Figure 2.  For a more detailed 

comparison between EnKF and variational assimilation, refer to Kalnay et al. (2007) or 

Ancell and Hakim (2006).  The next step is to look more closely at how the ensemble is 

updated at a single time, when an observation becomes available to be assimilated. 

c.  Bayesian statistics and the ensemble adjustment Kalman filter 
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All data assimilation methods can be formulated in a Bayesian framework 

(Talagrand 1997).  In this case, the complete solution to the EnKF assimilation problem 

can be written as the probability of a state (Xt) occurring, given all previous information 

(Yt) i.e. the probability distribution function p(Xt|Yt).  In the more general probabilistic 

case, Xt is the state of the atmosphere at a given time, and Yt is the set of both 

information from the ensemble and physical observations of the atmosphere that are 

taken at or near time t (Anderson and Anderson 1999).  If we take p(Xt|Yt-1) to be a 

known initial condition from which we wish to derive a future state of the system at the 

point in time when a new set of observations, yt, become available, the new conditional 

probability function will be written as p(Xt|Yt)=p(Xt|yt,Yt-1). To put the probabilistic 

formulation in a form directly applicable to data assimilation Anderson and Anderson 

(1999) uses Bayes’ rule: 

! 

p(X
t
|Y

t
) =
p(y

t
|X

t
,Y

t"1)p(Xt
|Y

t"1)

p(y
t
|Y

t"1)
. (2.14) 

By assuming any error in observations to be uncorrelated for different observation times, 

the above equation can be rewritten as 

.
)|(

)|()|(
)|(

1

1

!

!=
tt

tttt

tt

Yyp

YXpXyp
YXp (2.15) 

In this equation, the denominator acts as a normalization factor that forces the total 

probability of all the possible states to be equal to one.  In practice this quantity does not 

need to be calculated.  In the numerator, the first term represents the new information 

introduced by an observation.  This probability distribution function is generally assumed 

to be Gaussian in order to model instrumental uncertainties.  The second term represents 

all of the information from the ensemble of model runs up to the point of the assimilation.  

M 
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This is the prior state.  For most versions of the EnKF fitting a Gaussian to the ensemble, 

as shown in Figure 1, forms the probability distribution function (PDF) for p(Xt|Yt-1). 

Equation 2.15 is analogous to equation 2.6 and represents the ensemble adjustment step 

in Figure 1.  

 The flavor of EnKF used in this research is the ensemble adjustment Kalman filter 

(EAKF).  This filter was originally designed by Anderson (2003).  It can be further 

classified as an ensemble square root filter (Tippett et al. 2003).  Other filters included in 

this class include the ensemble transform filter (Bishop et al. 2001) and ensemble square 

root filter (Whitaker and Hamill 2002) among others.  It differs from the original EnKF 

only in the methodology of the assimilation step.  If it is assumed that the probability 

distribution functions described by p(yt|Xt) and p(Xt|Yt-1) are Gaussian, then the product 

of those two PDFs , p(Xt|Yt), will also be a Gaussian.  p(Xt|Yt) is the posterior or 

analysis PDF.  In general, this is a reasonable assumption for the observation PDF, 

p(yt|Xt), but not so robust for the prior model state PDF p(Xt|Yt-1).  However, it 

simplifies the representation of the processes greatly.  In this case, the posterior error 

covariance can be written as 

! 

P
a

= [(P
b
)
"1

+H
T
R

"1
H]

"1  (2.16) 

and the ensemble mean state as 

! 

X a = Pa [(Pb )"1 X b +HTR "1y] (Anderson 2001). (2.17) 

 In many ways, the EAKF is very similar to the original EnKF.  In both cases, the 

prior PDF is determined by fitting a Gaussian curve to the prior ensemble, and the 

observation.  However, the EnKF takes a random draw from the observation PDF and 

associates it with one of the ensemble members (Evensen 1994).  This is not done for the 
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EAKF.  Instead, the EAKF uses a deterministic algorithm to shift the entire original 

ensemble to first have the exact mean of the posterior PDF.  Next, we shift the ensemble 

again to have the exact variance of the posterior PDF.  This is done by updating each 

ensemble member using 

! 

X i

a
= A

T
(X i

b
"X 

b
) + X 

a, i = 1,…,m,  (2.18) 

where A
T
 is a linear operator selected so that the updated ensemble has the identical error 

covariance as equation 2.16, m is the number of ensemble members, and Xi is the state 

vector for the individual ensemble members (Anderson 2001). 

 Some advantages of the EAKF over the EnKF are that any possible bimodality in 

the initial ensemble can be maintained, and random outliers are nonexistent. This derives 

from the fact that the EAKF only changes the mean and width of the probability 

distribution without changing its shape.  This helps keep the ensemble from diverging, 

which occurs when analysis errors are underestimated and causes subsequent 

observations to be underweighted and have little to no impact on the assimilation 

(Houtekamer and Mitchell 1998).  In addition, noise is not introduced through the 

random draws of the observation PDF.  Anderson 2003 has shown that this can cause 

reduced accuracy in the assimilation. 

  

d.  Practical implementation of the ensemble adjustment Kalman filter 

 One key implication of equation 2.15 is that if observational errors are assumed to 

be independent (R is diagonal), then the observations can be assimilated sequentially in 

any order (Anderson 2003).  Furthermore, if X is considered to consist both of the state 
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vector, x
s
, and the transformation of x

s
 into observations space, Y=H(x

s
), (i.e. X= [x

s
,Y]) 

equation 2.15 can be reframed as  

! 

p(Xt

a
) =
p(yt |X t

b
)p(Xt

b
)

normalization
, (2.19) 

and the marginal distribution for z is 

! 

pz (z
a ) =

p(y ,zb )pz (Y
b )

normalization
 , (2.20) 

where the subscripts in equation 2.20 indicate a marginal probability distribution function 

for the state in observations space (Anderson 2003),.  By separating the original Bayes 

theorem form into marginal probabilities, it becomes clear that we can update Y separate 

from xs.  We can now simplify our approach to assimilating any set of observations in 

several ways.  First, by assuming independent observation errors we can simplify the 

EAKF equations by sequentially assimilating one observation at a time.  As a result, 

equations 2.16 and 2.17 can be reformulated in reduced forms with the posterior 

ensemble variance and ensemble mean in observation space now being 

! 

P
a

= [(P
b
)
"1

+R
"1
]
"1   (2.21) 

and 

! 

Y a = Pa Y b

Pb
+

y

R

" 

# 
$ 

% 

& 
'  (Liu et al 2007).  (2.22) 

Second, by updating Y separate from x
s
, and assuming a Gaussian distribution for the 

prior ensemble, Anderson (2003) assumes that update of the state vector, #x
s
, which we 

will call the analysis increment, is simply a local least squares fit given by 

! 

"x j,i

s
=
# xj ,Y

# Y ,Y

"Yi , i=1,…,k;   j=1,…,M, (2.23) 

where M is the number of state variables, k is the number of ensemble members, "Y,Y is 

the ensemble variance of Y, and "x,y is the covariance of xs with Y for a given 
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observation.  This relationship is 

shown schematically in Figure 

3.  Equation 2.23 has several 

desirable qualities.  As the 

variance of an observation goes 

up, the impact that the 

observation has on the final 

ensemble goes down.  

Conversely, the stronger the 

covariance between a variable 

in observations and the state 

vector in state space, the 

greater the adjustment to the 

state vector.  Finally, if a 

variable in observation space 

has a very small update when an observation is assimilated, then that observation will 

also have a very small impact on the state space as well. 

 In practice it is now a straightforward process to assimilate an observation using 

the EAKF.  Following Liu et al. (2007) the following steps are taken: 

1.) Use a model to evolve an ensemble of states through time to the point that an 

observation is available to assimilate (equation 2.11).  At this point the ensemble 

becomes the prior ensemble (

! 

X
i

b , i=1,…,k where k is the number of ensemble 

members). 

 

Figure 3:  A schematic depicting the relationship between 

analysis increments for a state variable, x, and an observation 

y.  This example uses a 5 member ensemble.  The projection of 

the ensemble on observation space and state space are 

represented by the plus signs on the y and x axes respectively.  

The actual observation is marked with an X on the y-axis.  For 

this example the observation is related to the state variable by a 

function h.  The dashed line shows the least squares fit to the 

ensemble members.  Finally, the analysis increments for the 1
st
 

and 4
th

 ensemble members are shown.  From Anderson 2003. 
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2.) Determine a prior estimate of the observation by applying a forward operator to 

each of the ensemble members (

! 

Y
i

b=H(

! 

X
i

b ), i=1,…,k). 

3.) Find the mean and variance for 

! 

Y
i

b 

! 

Y 
b

=
1

k
Y
i

b

i=1

k

" , (2.24) 

! 

P
b

=
1

1" k
(Y

i

b "Y 
b
)(Y

i

b "Y 
b
)
T

i=1

k

# . (2.25) 

4.) Calculate the analysis variance and mean for the ensemble in observation space 

using equation 2.21 and 2.22. 

5.) Update the individual ensemble members by shifting them about the ensemble 

mean while retaining the mean and variance from step 4.  This is done using 

! 

Yi

a
= (Yi

b
"Y 

b
)

P
a

P
b

+ Y 
a .  (2.26) 

Which is the EAKF equivalent of equation 2.18 in observation space. 

6.) Find the covariance of the prior ensemble in observation space with state vector in 

state space and the variance of the ensemble in observation space: 

 

! 

" xj ,Y

b
=

1

k#1
(x i,j

b # x j
b )(Yi

p #Y p )T

i=1

k

$  (2.27)  

! 

"
Y ,Y

b
=

1

k#1
(Yi

b #Y j
b )(Yi

p #Y p )T

i=1

k

$  (2.28) 

7.) Use the results of equations 2.25, 2.27, and 2.28 to calculate the update to the 

ensemble in state space using a local least squares fit as given in equation 2.23 

with 

! 

"Y
i
= Y

i

a
#Y

i

b . 

8.) Finally, the updated ensemble becomes 
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! 

X j,i

a
= X j,i

b
+"x j,i , i=1,…,k; j=1,…,M.  (2.29) 

 Finally, it should be noted 

that in order to reduce the 

impact of spurious covariances 

from geometrically distant data 

points, which can frequently 

occur with realistic ensemble 

sizes, equation 2.27 is 

multiplied by a distant 

dependent factor that reduces 

the covariance to zero after a 

given distance.  This 

effectively reduces the 

dimensionality that the 

covariance relationship of the 

ensemble needs to capture.  

For this research, a Gaspari-

Cohn fifth order polynomial was 

used (Gaspari and Cohn 1999).    

 This relationship between 

dimensionality and ensemble 

accuracy can be seen in Figure 4.  This figure is taken from a typical DART EAKF 

assimilation using a 40-member ensemble.  The actual system used will be described 

a)

b)

Figure 4: First ten EOF’s for temperature with ensemble 

number as the sampling dimension.  The blue lines 

represent the percent variance explained by the 

individual EOF, and the red lines indicate the cumulative 

percent explained.  (a) is for a volume of state space 

from 300-200mb, 32-43N, and 118-128E.  (b) is for a 

volume of state space from 400-150mb, 26-49N, and 

112-140E. 
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in more detail in Chapter 3b.  Figure 4 shows the spectrum of the percentage of 

variance explained by the ensemble for first 10 EOF’s of temperature for two 

different volumes of state space located near the east coast of China.  These volumes 

were chosen to approximately represent the volume of state space in which an 

observation is allowed by Gaspari-Cohn distance dependent factor to impact the state 

vector (this will be evident in Figure 5 as well).  In this case the sampling dimension 

is no longer time, as is normally used in EOF analysis but instead ensemble member 

number.  It is clear that as the volume of effective space increases, the number of 

EOF’s necessary to explain 90% of the ensemble variance increases. 

 When forming the analysis increment given in equation 2.2 by calculating the 

error covariance matrices (Eqns. 2.27 and 2.28), it is difficult to see how the 

increment is physically relevant, and what forces the analysis to be dynamically 

balanced.  For example, Figure 5 shows the result of assimilating a single radiosonde 

temperature observation at 400mb, again using the DART EAKF system.  The left 

panel shows the horizontal extent that the observation impacts the ensemble’s 

temperature state.  In this case, the observation was cooler than the ensemble at that 

Jan example Tpost-Tprior

(Single radiosonde temperature observation)

  

Jan example Tpost-Tprior(colors), Vpost-Vprior(contours)

(Single radiosonde temperature observation)

 

Figure 5:  Left panel shows the temperature analysis increment at 400mb for a single assimilated 

radiosonde temperature (K) observation.  The right panel shows a vertical cross section across 40
o
N 

for temperature (shaded) and meridional wind(m/s) (contours). 
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location and caused a negative analysis increment in temperature.  The cooling is 

roughly symmetric around the location of the observation, and the analysis goes to 

zero far from the observation as expected due to the use of a distant dependent factor 

in the covariance equation.  Thus if all the ensemble members in the EAKF are in 

thermal wind balance as given by 

! 

"Vg

" ln p
= #

R

f

ˆ k $% pT .  (2.30), 

one expects that the background error covariance between temperature and 

zonal/meridional wind will capture that balance. 

 The right panel is a vertical slice along the latitude of the observation.  This panel 

shows both the temperature increment and how the meridional wind is updated.  It is 

clear that on the east side of the observation there is a southerly shift in the meridional 

wind, and on west side of the observation there is a northerly shift. This implies that 

across the ensemble, the covariance structure between meridional wind and 

temperature is positive on the west side of the observation and negative on the right.  

This is anticipated by inspection the thermal wind relation of equation 2.30.  This 

equation shows that for a positive gradient of temperature in the zonal direction, the 

geostrophic meridional wind should increase with height.  This corresponds to the 

analysis increment to meridional wind on the east side of the observation.  There, the 

observation causes a positive gradient in the analysis increment for temperature, the 

error covariance structure of the ensemble forces the thermal wind structure to be 

retained and thus accelerates the meridional wind with height.  On the west side of the 

observation an equal but opposite gradient in the analysis increment for temperature 

exists and the relation also holds.  This indicates that the background error covariance 
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has in fact captured the thermal wind structure. Thus the covariance structure of the 

ensemble forces the analysis increment for the state to be, at least approximately, 

dynamically balanced.
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Figure 6: Left panels shows change in zonal mean lapse rate 

(K/km) from 20
th

 to 21
st
 century(shaded), and modeled 20

th
 

century lapse rate (contours) from a simple GCM for (a) 

globally raised tropopause, (b) tropopause raised only near 

the pole, and (c) only near the equator.  The right panels 

show the corresponding images for zonal wind(m/s) in place 

of lapse rate.  Adapted from Lorenz and DeWeaver 2007 

figure 8. 

 

3.  Part 1- Evaluating Impacts of Arctic Model Bias 

 

a.  Motivation for investigation of polar bias 

 The extratropical surface westerlies are a critical component of the climate system 

because of their influence on local climate, air-sea gas exchange, ocean circulation, and 

other climatic impacts.  Accurate 

simulation of the strength, 

location, and seasonality of the 

surface westerlies is typically 

achieved through ad hoc "tuning" 

of surface and gravity wave drag, 

tuning which sometimes yields 

imperfect results (Robinson 

1997).  In the current NCAR 

model the Northern Hemisphere 

surface westerlies are too strong 

by up to a factor of two (Yeager et 

al. 2006).  Also, the tuning is 

resolution dependent since surface 

westerlies usually shift poleward 

with increased resolution (Hack et 

al. 2005). Beyond these specific 

 

(a) 

(b) 

(c) 
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problems, the tuning of the westerlies may obscure fundamental relationships between 

the strength and location of the westerlies, heat and momentum fluxes due to storm tracks 

and stationary waves, and other dynamical factors.  In recent years, this problem has risen 

in prominence in the climate community due to the observed poleward shift of surface 

westerlies in the Southern Hemisphere (Thompson and Solomon 2002), evidence of past 

shifts accompanying changes in paleoclimate, and a consistently modeled poleward shift 

for the next century in response to anthropogenic greenhouse gas increases (Yin 2005).   

 Accompanying this poleward shift in surface westerlies is a corresponding shift in 

storm tracks and large-scale zonal wind throughout the troposphere.  According to Chen 

et al. (2007), there have been several hypotheses presented to explain the cause of this 

behavior.  These hypotheses include changes in temperature gradients in the stratosphere 

 

Figure 7:  Ensemble-mean of IPCC 850mb climatological zonal wind (m/s) for the 20
th

 century 

(contour), and the difference between 21
st
 vs. 20

th
 century (shaded).  (a) is Winter months, (b) Spring, 

(c) Summer, and (d) Fall.  From Lorenz and DeWeaver (2007) their figure 4. 

(a) (b) 

(c) (d) 
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( Polvani and Kushner 2002) and near the surface (Son and Lee 2005), increased latent 

heating (Frierson et al. 2006), and changes in tropopause height (Williams 2006, Lorenz 

and DeWeaver 2007).  For the purposes of this research we will restrict ourselves to 

investigating only how changes in tropopause height can impact surface westerlies and 

zonal wind throughout the troposphere. 

 Using model simulations from the IPCC archive, Lorenz and DeWeaver  (2007) 

demonstrated a close association between the radiatively forced rise in tropopause height 

due to global warming and the concurrent poleward shift of the surface westerlies and 

zonal jet.  This association was reproduced in a simple "dry GCM" in which tropopause 

height could be externally controlled. Moreover, Lorenz and DeWeaver found that the 

height of the tropopause at high latitudes was the dominant driver of the position of the 

zonal jet and surface westerlies when compared with changing the tropopause height at 

lower latitudes.  Their results are shown in Figures 6 and 7 for reference.  This 

association is of interest for the simulation of surface westerlies because most current 

global climate models have a cold bias at the polar tropopause, which is equivalent to a 

high bias in tropopause height (Covey et al. 2004). Thus, we speculate that correcting the 

cold polar tropopause bias should result in a (possibly undesirable) southward shift of the 

surface westerlies and zonal jet. 

 This chapter will use the EAKF and an atmospheric global climate model 

(AGCM) for the purpose of identifying, quantifying, and analyzing the impacts of the 

polar tropopause bias.  This will be demonstrated by selectively assimilating observations 

in the region of the bias, and then observing the resulting shifts in atmospheric 

circulation.  We will begin with Section b describing the model, observations, and data 
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assimilation runs used in this part of the study.  Section c presents the results of the 

experiment.  Finally, Section d describes the conclusions that can be drawn from the 

results. 

 

b.  Experimental setup and description of observations 

 The tools for this study consists of three main components that include an AGCM 

forward model for moving the ensemble forward in time, physical observations, and the 

EAKF framework to assimilate observations as described above. The AGCM used for 

this research is the third version of the Community Atmosphere Model (CAM3).  This 

model makes up the atmospheric component of the Community Climate System Model 

(CCSM3).  However, we use it as a standalone model.  A full scientific description of 

CCSM3 can be found in Collins et al. (2005).  This model can be run at various 

resolutions with finite-volume, semi-Lagrangian spectral, or Eulerian dynamics.  This 

research uses CAM3 exclusively with Eulerian spectral dynamics at T42 resolution. This 

resolution was found to have the beneficial properties of both consistent results and 

reduced computational cost.  Also, CAM does exhibit a clear bias in Arctic tropopause 

temperature.  Therefore, by assimilating data in the region of the bias, we can investigate 

the impacts of this bias. 

 The observations assimilated in this experiment include a subset of the 

observations used as input to the NCEP Global Data Assimilation System for the purpose 

of creating meteorological analyses and operational forecasts. Specifically this research 

uses radiosondes (U,V,T), surface pressure observations, conventional aircraft wind and 

temperature observations, ACARS (U,V,T), and satellite winds.  We also use the NCEP 
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Reanalysis product for comparison purposes as described in Kalnay et al. (1996).  The 

reanalysis data is provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, 

from their website at http://www.cdc.noaa.gov/.  

 The EAKF framework and forward operators for the observations were provided 

by the Data Assimilation Research Testbed (DART).  DART is a data assimilation 

software package being developed by the Data Assimilation Research Section (DARes) 

of NCAR, and is freely available from http://www.image.ucar.edu/DAReS/DART/. It 

includes several data assimilation schemes beyond the EAKF, including the original 

EnKF, and is compatible with many common atmospheric models.   

 In order to analyze the impact of a cold Arctic tropopause bias in CAM, three 

experiments were completed.  Each of these experiments used a 40-member ensemble.  

These experiments all covered the time period from July 1
st
, 2003 through July 25

th
, 

2003.  This period was chosen because the Polar tropopause bias in the Northern 

Hemisphere is most pronounced during the summer months, and this particular period 

exhibited a clear bias with respect to NCEP reanalysis as shown in Figure 8.  Each of the 

experiments was initialized with an identical 40-member ensemble.  This initial ensemble 

was generated by randomly pulling forty July 1st states from a 100-year climatology 

CAM run.  This process resulted in an ensemble with a large initial spread, and a mean 

state that is nearly climatology.  Observations were assimilated up to 100mb.  The three 

experiments are as follows:  

• Experiment 1 was a control run, and was completed assimilating no observations.  

In this experiment the initial ensemble was moved forward in time using CAM.  
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To remain consistent with subsequent experiments, output data was collected 

every six hours.  This 

experiment will be referred 

to as the CAM run. 

• Experiment 2 assimilated all 

the observations described 

above at all locations on the 

globe.  In this experiment all 

the available observations were 

assimilated in six-hour 

increments.  This experiment will be referred to as the full assimilation. 

• Experiment 3 restricted the assimilated observations to those observations which 

were found north of 66
o
N and between 300-100mb.  This region was chosen to be 

representative of the cold polar tropopause bias shown in Figure 8.  The relevant 

observations were also assimilated in six-hour increments.  This experiment will 

be referred to as the Arctic tropopause assimilation. 

These experiments were run and analyzed at the NERSC supercomputing site.  

The runs were completed on the Jacquard machine.  This computing power was 

necessary for both storage and processing requirements.  On average, a one-day run 

of the full assimilation with 40 ensemble members required 10 compute nodes with 

two processors apiece approximately 12 hours of wallclock time to complete.  Thus 

depending on the user load and queue time, a one-month run could take upwards of 

three weeks of real time to complete.  Also, day outputs about 5Gb of data to be 

Figure 8:  Average zonal mean temperature difference 

(degrees K) between CAM and NCEP reanalysis in the 

Northern Hemisphere, for July 2003. 
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processed and analyzed.  This 

development of the data was done 

on the Davinci machine at 

NERSC, which provides terabytes 

of work space and most of the 

computational tools required for 

climatological data sets. 

 

c.  Results   

 When assimilating observations, the ensemble weights the impact of the 

observations by their uncertainty relative to the spread or uncertainty in the ensemble 

members.  Since our initial ensemble had a very large initial spread, the first observations 

assimilated caused a large adjustment to the ensemble.  However, even with a relatively 

uncertain ensemble, the shift from a nearly climatological distribution of ensemble 

members to a distribution that represents the best guess of the filter to the actual state of 

the atmosphere takes many assimilation cycles covering several days.  Determining the 

time scale of this adjustment period is important in order to be able to effectively filter 

out data from the time period where the ensemble is adjusting.  Also, since we have 

several different experiment runs as described above, this adjustment time scale could 

change depending on the experiment.  In order to obtain consistent results the varying 

times need to be determined for each experiment. 

 One possible measure of the ensemble adjustment time is the ensemble spread.  

For temperature it is given by 

Figure 9: July 2003 ensemble spread in 

temperature (K) averaged from 60N-90N for full 

assimilation. 
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where j represents an ensemble member, Ne 

is the ensemble size, i represents individual 

grid points.  This metric essentially 

calculates the model uncertainty for 

temperature at a given time.  This measure 

is particularly relevant since a combination 

of the ensemble spread and the uncertainty 

of a given observation determine the 

impact that an observation will have on 

ensemble.  For the full assimilation 

experiment, the area average of the 

ensemble spread for temperature is shown 

in Figure 10.  In this case, it appears that 

the ensemble spread is quickly reduced as 

observations are assimilated.  The time 

scale for this reduction in ensemble spread 

appears to be around 5-7 days, slightly 

shorter than the time required to reduce the 

Arctic tropopause bias.  This tells us 

that as the ensemble reaches 5-7 days, 

the model will become more strongly weighted relative to observations.  As the ensemble 

  

July 2003 RMSE T (K)

Figure 10: July 2003 RMSE in temperature (K) 

averaged from 66
o
N to 90

o
N for (a) CAM run, (b) full 

assimilation, and (c) Arctic tropopause assimilation 

(a) 

(b) 

(c) 
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reaches this point the observations begin to make less extreme adjustments to the 

ensemble. 

 Although the ensemble spread partially determines the impact an observation may 

have on an ensemble, it does not necessarily describe how long it takes for a bias to be 

reduced by data assimilation.  Figure 10 shows the area average over the Arctic of the 

RMSE of temperature with respect to NCEP reanalysis for each of the experiments.  For 

the CAM run there is a clear bias throughout the month near the tropopause and 

throughout the troposphere.  At all levels, the RMSE for temperature is consistent 

through time.  This is as expected since no observations are being assimilated to reduce 

the error.  In the case of the Arctic tropopause assimilation, we see a large initial bias at 

the tropopause level, and smaller biases lower in the atmosphere.  However, as 

 
Figure 11: July 2003 mean temperature (K) averaged from 60

o
N-90

o
N and 250mb-100mb for NCEP 

reanalysis (red), full assimilation (green), Arctic assimilation (yellow), and CAM run (gray).
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observations are assimilated, the bias near the tropopause is slowly reduced to a smaller 

consistent value.  By inspection, it 

appears that the transition to a new 

stable state takes approximately 11-

13 days, and the biases change 

minimally lower in the atmosphere.  

However, the RMSE in the lower 

troposphere in the Arctic tropopause 

assimilation is somewhat reduced 

relative to the CAM run even 

though no observations are being 

assimilated in the region.  Finally, in the full assimilation throughout the troposphere, the 

RMSE of temperature is strongly reduced, and the tropopause bias again takes about 9-11 

days to reach a new stable state.   

 Figure 11 gives the averaged temperature from 66-90N and 250-100mb.  From 

this figure it is clear that both the full assimilation and Arctic tropopause assimilation 

reduce CAM’s cold bias, and nearly match NCEP reanalysis in this region.  As expected, 

the full assimilation does slightly better at reducing the bias, but the Arctic tropopause 

assimilation is quite effective as well.  Further, using Figure 10 the adjustment time for 

the full and Arctic tropopause assimilations can be more precisely determined.  It appears 

that the full assimilation takes approximately 9 days to adjust, while the Arctic 

tropopause assimilation takes about 13 days.  This gives an estimate for the initial time of 

a time series where both the Arctic tropopause bias and ensemble spread of our CAM 

 

Figure 12: Zonal mean temperature analysis 

increment (K) for Arctic tropopause assimilation, 

averaged from July 13 - July 30, 2003.   
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ensemble members has been reduced and are relatively stable.  As a result, the remainder 

of this section will use data exclusively from days 13-30 to investigate the impact of a 

reduced CAM Arctic tropopause bias in order to minimize transient effects. 
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Figure 13:  850 mb zonal wind (m/s) for CAM run (contours) differences between CAM 

and (a) NCEP reanalysis, (b) full assimilation, and (c) arctic assimilation (shaded).  The 

boxes highlight the region in which the storm track shifts are most clear. Averaged from 

July 13 – July 30, 2003. 

 

(a) 

(b) 

(c) 
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 When observations are 

assimilated into the Arctic 

tropopause region every six 

hours they effectively warm the 

region.  Figure 12 shows the 

zonal average analysis 

increment for temperature in 

the Arctic tropopause run.  It 

appears that on average, the 

assimilation of observations into the 

Arctic tropopause warms the region 

by about .5
o
K.  While the analysis increment occurs instantaneously in state space, this 

roughly converts to a heating rate as 

! 

.5°K

assimilation
"
.5°K

6hours
= 2°K /day .  (3.2) 

The application of this warming rate to the Arctic tropopause acts to keep the height of 

the polar tropopause lower than CAM’s climatological location.  Therefore, the overall 

impact of our Arctic tropopause assimilation is the opposite of what Lorenz and 

DeWeaver (2007) describe as occurring in the IPCC climate change scenarios where the 

tropopause rises with increasing greenhouse gas concentrations.  This indicates that if the 

polar tropopause height and location of the zonal jet and surface westerlies are highly 

correlated as detailed by Kushner (2001) and Yin (2005), we would expect the resulting 

Figure 14: Zonal mean temperature analysis increment 

in degrees Kelvin (shaded), and zonal mean of 

correlation of U with temperature at location of 

maximum analysis increment. 
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dynamical adjustment of the zonal 

winds and low-level westerlies for the 

Arctic tropopause assimilation to be 

roughly the opposite to that of Figures 

6 and 7. 

 We will first describe the 

impact of data assimilation on low-

level westerlies.  Storm track activity 

tends to be at a minimum during the 

Boreal Summer months, but Lorenz 

and Deweaver (2007) found that over 

the oceanic storm tracks, a signal of a 

shift could be found in the 850mb 

winds.  Here we will focus on the 

Pacific storm track.  During July 

2003, the CAM run appears to place the 

850mb zonal winds too far to the North 

with respect to NCEP reanalysis (boxed region of Figure 13a).  When we assimilate data 

at all levels globally in our full assimilation we find that the storm track region as 

represented by 850mb winds shifts equatorward and closely resemble NCEP reanalysis 

(Figure 13b).  This is to be expected since we are assimilating temperature and wind 

observations directly in the storm track region.   Figure 13c shows the difference between 

the Arctic tropopause assimilation and the CAM run.  In this case we see a smaller 

Figure 15:  Northern Hemisphere CAM zonal wind  

(m/s) for July 13- July 30, 2003 (contours), (a) Arctic 

tropopause run zonal wind (shaded), and (b) full 

assimilation zonal wind (shaded). 

 

(a) 

(b) 
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equatorward shift than the full assimilation, but it is still present.  This is somewhat 

surprising since the only place we are introducing information into the model is North of 

66
o
 and between 300-100mb, well away from the 850mb winds in this region.  

Additionally, for the Arctic tropopause assimilation, we see the difference between it and 

the CAM run goes to zero as the distance from the Arctic increases.  Finally, comparing 

Figure 13 to Figure 7, we see that the pattern of the Pacific storm track response for the 

Arctic tropopause assimilation appears to be nearly opposite of what Lorenz and 

Deweaver found from the A2 IPCC climate scenario.  This result seems to indicate that 

by assimilating data into the Arctic tropopause, we directly lower the height of the 

tropopause in the Arctic, and through a dynamical adjustment process shift the storm 

track region equatorward in the Pacific.  However, there are features poleward of the 

stormtrack region (North of boxed areas in Figure 13) that indicate this may be a tripole 

or quadrapole response.  To separate out these responses, figure 14 shows the correlation 

of temperature at the location of the maximum analysis increment with zonal wind across 

the ensemble for the Arctic tropopause assimilation.  The correlation structures are 

located directly on the latitudes of the features poleward of the stormtrack.  This suggests 

that these poleward features are being impacted directly by the assimilation of 

temperature near the tropopause, while the zonal wind shifts outside of this region, such 

as those in the storm track region are a result of secondary circulation effects possibly 

associated with tropopause adjustments. 

 When we investigate the impacts assimilating data near the Arctic tropopause 

have on the zonal jet, we find similar results as those on storm track location.  In Figure 

15a we compare the Northern Hemisphere mean zonal wind for that CAM run and for the 
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Arctic tropopause 

assimilation.  We see that the 

Arctic tropopause assimilation 

does appear to shift the jet 

equatorward.  Also, the Arctic 

tropopause assimilation 

generates a secondary maxima 

in the zonal jet near the pole.  

This feature does not exist in 

the CAM run.  When we look at 

the full run results (Figure 15b), 

we see a more distinct equatorward shift in the zonal jet and the secondary maxima.  

Figure 16 shows the average analysis increment for zonal wind in the Arctic tropopause 

assimilation.  By comparing this to Figure 15, we see that the secondary maxima feature 

is directly influenced by the assimilation of observations in the Arctic tropopause region.  

In addition, we also find that the shift in the zonal jet is due to secondary dynamical 

effects such as wave-mean flow interaction since the jet region lies well outside of the 

region where the assimilation directly impacts zonal wind.  Finally, Figure 17 shows the 

difference between the Arctic tropopause assimilation and the CAM run.  This figure 

clearly shows the equatorward shift in the zonal jet.  By comparing Figure 17 with Figure 

6, we see that our results neatly mirror the structure of those obtained by Lorenz and 

DeWeaver (2007) using a simple GCM with a raised Arctic tropopause.  The main 

Figure 16:  Mean zonal wind (m/s) for the Arctic tropopause 

assimilation (contours), and average analysis increment in 

zonal wind for the Arctic tropopause assimilation (shaded) 

for July 13 – July 30, 2003. 
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difference, is the sign change due to their experiment raising the Arctic tropopause, while 

our experiment lowered it. 

 

d.  Conclusions on the impacts of Arctic model bias 

 By inspecting the zonal mean temperature difference between CAM and NCEP 

reanalysis we identified a cold polar tropopause bias in CAM.  By selectively 

assimilating only observations poleward of 66N, and between 300 and 150mb, we were 

able to reduce this bias significantly.  In reducing this bias we effectively lowered the 

height of the Arctic tropopause.  Through evaluation of statistical relationships found in 

the ensemble, we found the direct impact of assimilating polar tropopause observations to 

be localized near the region of the observations.  However, the resulting zonal mean 

circulation throughout the Northern Hemisphere, was influenced by the assimilation 

through secondary effects.  The consequences of this influence included equatorward 

shifts in the 

extratropical storm 

tracks and midlatitude 

jet, as well as reduced 

model bias in the 

zonal mean wind field 

throughout the 

hemisphere.  These 

results are broadly 

consistent with the 

Figure 17: CAM run zonal mean wind (m/s) (contours) and difference 

between Arctic tropopause assimilation zonal mean wind and CAM zonal 

mean wind (shaded) for July 13 – July 30, 2003. 
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association between jet location and tropopause height found in the IPCC simulations and 

simple GCM experiments.  

 One important distinction between our data assimilation experiment and simple 

GCM experiments is that in the simple model the only forcing was tropopause 

temperature.  In the assimilation experiment, T is not the only observation assimilated.  

Observations of U,V, and other variables are also included.  So, we are not only 

specifying the temperature profile, we are also specifying the momentum profile.  By 

doing this, we are essentially prescribing the tropopause wave structure in the Polar 

region.  Therefore, the dynamical relationships that cause the shifts in the simple GCM or 

IPCC runs may not correlate with those resulting from assimilating data in a constrained 

region.  More work is needed to determine the mechanisms by which the zonal winds 

shift.  In addition, our work is limited by length of our time series.  Longer assimilations 

covering multiple years are necessary to remove some of the uncertainty in determining 

what proportion of our results may be due to transient weather conditions that happen to 

exist in the month of our experiment. 

 In this experiment we have not only given some validation to an existing theory of 

how zonal winds shift in response to changing climatic variables, but have also 

demonstrated how data assimilation can be used to begin to tease out the dynamical 

impacts of model biases.  By assimilating data into a restricted region of a known model 

bias we were able to demonstrate that the impacts of reducing this bias reached far 

beyond the local area.  While doubtlessly there are simpler, less costly ways to achieve 

similar results for bias correction, this work is really a first step in using the power of data 

assimilation to understand the dynamical impacts of model biases.  In the future some of 
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the more unique and powerful techniques associated with data assimilation such as 

sensitivity analysis and parameter estimation can be integrated to give us information that 

may not be easily obtainable with other methods.  
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4.  Part 2- Assimilating GPS Occultation Observations 

in CAM 

 

a. Introduction to GPS occultation applications to climate research 

 As discussed in the previous section, the Community Atmosphere Model (CAM) 

has several biases that have important dynamical implications for research.  Some 

examples of these biases include a cold temperature bias near the tropopause at high 

latitudes, systematic biases in the mean zonal wind, and transient momentum fluxes that 

are too strong.  One method for investigating the impacts that these biases have is to use 

data assimilation techniques to reduce the bias and observe how the system reacts. There 

Figure 18:  Schematic illustrating basic concept of GPS radio occultation observations. 
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are also applications for reanalysis and weather prediction systems.  In fact these that are 

likely to be the prime users of these sets.  The far-reaching applications of these data sets 

make understanding their properties and defining their limits essential.  

There are several observation types that have a global nature such as existing 

satellites and, to a certain extent the radiosonde network, but each has its limitations.  

Over the past decade, the German Challenging Minisatellite Payload (CHAMP) and the 

Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) 

missions have made GPS occultation observations available to add to the set of global 

observations available.  This chapter will make a preliminary inspection of how the 

assimilation of GPS occultation measurements can constrain and impact the CAM state 

vector in various regions of the atmosphere, and also what the limits of assimilating these 

observations in CAM are. 

 GPS occultation observations sample the atmosphere by using low Earth-orbiting 

Figure 19:  Red dots indicate Northern Hemisphere GPS radio occultation observation locations for 

(a) January 2003 and (b) January 2007. 

 

(a) (b) 
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CHAMP/COSMIC satellites to collect radio waves emitted by GPS satellites (Ware et al. 

1996).  As a GPS satellite rises or sets relative to a receiver, the delay of the radio wave 

due to the atmosphere is measured by a receiver satellite (Kursinski et al. 1997).  The 

delay of the radio waves is caused by the refraction of the waves as the ray moves 

through density differences in the Earth’s atmosphere as shown schematically in Figure 

18.  Using the Abel inversion and assuming local spherical symmetry, the refractivity and 

bending angle can be retrieved as described in Kuo et al. (2004).  By using an assumption 

of local refractivity at the tangent point of the ray as shown in Figure 18, the refractivity 

of the atmosphere can be related to the specific humidity q, temperature T, and pressure 

p.  This assumption generally provides good results, however large local density 

differences in the atmosphere can cause errors.  These large local density differences 

generally occur in the lower troposphere due to the possible presence of hurricanes, 

strong convection, or atmospheric fronts (Sokolovskiy et al. 2005).  There are methods 

that use nonlocal assumptions and take advantage of additional information from the ray 

path of the radio wave (Healy et al. 2006).  However, these methods increase the 

computational cost of assimilation considerably. 

Another difficulty in using GPS occultation measurements is that separating the 

influence of q, T, and p on refractivity can be impossible without prior estimates of the 

various quantities (Liu et al. 2007).  However, assimilating these observations with CAM 

or any other atmospheric model alleviates this problem by providing an estimate of the 

system state prior to assimilation from short-term model forecasts as described in Chapter 

2.  Once we have our prior estimate of the system in state space we interpolate to 

observation space and estimate local refractivity using a forward operator given by 
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,  (4.1) 

where N is the index of refractivity, p is pressure in hectopascals, T is temperature in 

Kelvins, and pw is the partial pressure of water vapor in hectopascals (Kursinski 1997).  

Using equation 2.26 we can then update the ensemble in observation space, and then 

update the ensemble in state space using equation’s. 2.25, 2.27, and 2.28. 

 The strong connection between refractivity and T, p, and q as given in equation 

4.1 implies that as refractivity observations are assimilated, updates for the above 

components of the state vector will occur as described in equation 2.23.  However, the 

magnitude of the updates will vary by type and region, and depend on what atmospheric 

variables are controlling refractivity in a region.  An important question to ask is how 

much of the information provided in a refractivity observation is associated with T, p, and 

q in various regions?  Not only does the answer strongly constrain how refractivity 

observations will influence the state vector components in various regions, it may also 

have implications for the usefulness of GPS observations in many of its possible 

applications. 

In addition to being a novel and useful application of the multibillion-dollar GPS 

system, the GPS radio occultation measurements have many desirable qualities.  The 

most obvious of these properties include their global nature.  As more satellites continue 

to be launched, the coverage of these occultation measurements has increased 

considerably.  Also, the density of observations increases toward the poles where 

conventional observations can be scarce.  Figure 19(a) gives the locations of GPS radio 

occultation measurements in the Northern Hemisphere for January 1, 2003, and Figure 

19(b) shows the locations four years later.  One drawback of radiosonde observations are 
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their reduced accuracy in Polar regions.   Conversely, GPS occultations provide 

radiosonde-like measurements with increased accuracy in Polar regions where the 

ambiguity between T, Q, and p is reduced (Kursinski 1997).  Another advantage is that 

the vertical resolution of GPS measurements is between a few hundred meters and one 

kilometer, which is high compared to similar satellite observations.  However, the local 

assumption tends to smear the horizontal resolution, which causes each observation to 

effectively be an average measurement over several hundred kilometers (Ware et al. 

1996).  On the other hand, when assimilating these observations into a climate model 

such as CAM where the horizontal resolution is on the same order as the observation, this 

horizontal averaging property of GPS occultation measurements can be advantageous.  

Furthermore, the instruments that provide the occultation measurements are inherently 

stable.  Once a satellite is in orbit it requires no additional recalibrations or adjustments 

(Ware et al. 1996).  This property makes radio occultation observations particularly 

important to climate studies where problems associated with recalibrating or adjusting 

instruments are common over long time series.  Finally, GPS occultation measurements 

are insensitive to clouds and precipitation. 

The goals of this chapter are twofold.  First, we begin by determining how 

strongly these observations can constrain CAM to match the actual atmospheric state.  In 

order to do this the assimilation must overcome the climatological biases that exist in 

CAM, as we saw in chapter 3.  Therefore by observing how strongly the assimilation of 

GPS observations reduces well-known biases in CAM we can infer the power of the 

assimilation to constrain the model.  From equation 4.1 water vapor is directly connected 

to  refractivity.  Thus, the assimilation of a refractivity observation should make a strong 
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constraint on water vapor in CAM.  However, water vapor is known to be a difficult 

quantity to model, so Section c of this chapter will inspect the impact of refractivity 

observations on CAM’s representation of water vapor closely.  Second, we look closely 

at the structure of the GPS forward operator given by equation 4.1.  By linearizing 

equation 4.1 we can investigate the relationship between refractivity and temperature, 

pressure, and specific humidity.  This allows us to describe how GPS occultation 

measurements impact various regions of the atmosphere differently due to distinct 

covariance structures. Through data assimilation and understanding the process by which 

such assimilated observations impact CAM, we can begin to predict what power they will 

have in constraining different fields of our state vector in various regions of the 

atmosphere.  In particular, there are interesting relationships between how the two terms 

of equation 4.1 interact.  We will see that the first term dominates the mean state of 

Figure 20:  Zonal mean refractivity (a) and variance of refractivity (b). 

 

(a) 

(b) 
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Figure 21:  Zonal mean of term 1 of refractivity eqn 4.1(a) and variance of term 1(b).  Zonal mean of 

term2 of refractivity eqn 4.2(c), and variance of term 2(d).  Difference between term 1 variance and term 

2 variance. (e). 

 

(a) 

(b) 

(c) 

(d) 

(e) 
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refractivity throughout the atmosphere as well its variability in the upper troposphere of 

the extratropics, while the second term dominates the variability in the tropics and lower 

atmosphere.  Figures 20 and 21 show these relationships.  The implications of this will be 

presented in Section d by considering the correlation and covariance structures of 

components of the state vector with refractivity in a linearized setting.  

Section b of this chapter describes the GPS occultation observations and methods 

used in this experiment.  Section c provides results describing the capability of 

assimilated GPS observations to constrain the state vector by overcoming CAM model 

bias, and represent the real atmosphere.  This section will emphasize the degree to which 

assimilated GPS observations can impact CAM’s water vapor representation.  Section d 

is described above.  Finally, section e, offers the conclusions for this experiment. 

 

b. Description of GPS observations and experimental setup 

 Similar to the Arctic tropopause bias experiment of Chapter 3, this study consists 

of three components.  We use CAM3 at T42 resolution with Eulerian dynamics as our 

AGCM forward model.  We assimilate the same types of physical observations described 

in Chapter 3, as well as additional COSMIC and CHAMP GPS radio occultation 

observations described in more detail below.  However, in this chapter we will be using 

observations from January 1-30, 2007.  This time period was chosen due to the recent 

availability of COSMIC observations.  Finally, the assimilation framework used is the 

EAKF provided by DART.  We use a 40-member ensemble initialized from a 

climatological spread as described in Chapter 3.  Observations are assimilated in 6 hour 

increments. 
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The raw CHAMP/COSMIC datasets used in this research are freely available with 

registration at the website of the Taiwan Analysis Center for COSMIC 

(http://tacc.cwb.gov.tw).  Specifically, we use thinned level-2 refractivity atmospheric 

profiles.  We extract the profiles from 500m-20,000m and then vertically bin and average 

the high resolution profiles into 22 levels spaced every 700m below 10000m and 1200m 

above 10000m.  These observations are then assimilated up to 100mb. 

In order to test the ability of assimilated GPS observations to reduce CAM model 

bias we completed four runs at the NERSC facilities described in Chapter 3 for the time 

period of January 1, 2007 to January 30, 2007.  They are as follows: 

• GPS assimilation:  Assimilated only GPS occultation measurements globally. 

• GPS+NCEP assimilation: Assimilated GPS observations and a subset of the 

observations used as input to NCEP reanalysis (ACARS measurements, 

radiosondes, satellite winds, surface pressure measurements). 

• NCEP assimilation:  Assimilated only NCEP input observations as described 

above. 

• CAM control run: Assimilated no data into the model. 

 

 In addition, we use NCEP reanalysis from January 2007 for comparison purposes.  

The results from these runs are used to compare their representations of common forecast 

metrics such as 500mb geopotential height, as well as known CAM model biases.  In 

particular, we will analyze biases in the Polar tropopause temperature, zonal wind, and 

transient momentum fluxes. 
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We also take a detailed look into the mechanisms by which GPS observations 

impact the state of CAM’s modeled atmosphere.  By linearizing the refractivity formula 

given by equation 4.1, we can use multivariate linear regression to piece apart the 

correlation structures that determine how the assimilation of a GPS observation at a given 

location will influence the state of our system.  We will use the GPS assimilation 

exclusively in this process of exploring the correlation structure of refractivity with state 

variables.   

  

c. GPS observations and CAM model bias results 

 In this section the ability of GPS observations to constrain CAM and overcome 

model biases is examined.  We begin by looking at how well GPS observations can 

constrain CAM to simulate and forecast 500mb geopotential height.  We then take a 

detailed look at how well the assimilation of GPS observations assimilation can reduce 

CAM biases in transient momentum flux, zonal wind, and Polar tropopause temperature. 

 In order to define how well an analysis matches the actual atmosphere one 

compares the analysis with the true state of the atmosphere.  One difficulty in this process 

is determining what is the “truth”.  In many cases NCEP reanalysis is accepted as the 

truth.  However, NCEP reanalysis has known biases of its own and is an imperfect 

product (Kalnay et al. 1999).  Moreover, the uncertainties associated with these biases are 

not well defined.  In this experiment we are essentially creating our own reanalysis 

product, albeit with limited observations for January 2007.  Even though our assimilation 

and subsequent analysis uses a lower resolution model, fewer observations, and a less 

well tested assimilation system, it is still not unreasonable to hypothesize that in some 

(a) 

(b) 
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regions our system may better represent portions of the actual atmosphere on a given day 

than NCEP reanalysis.  With that caveat in mind, we will assume NCEP reanalysis to 

represent the true state of the atmosphere.  It will be with respect to NCEP reanalysis that 

we will define the skill with which our assimilations represent the state of the atmosphere 

by constraining CAM and overcoming model bias. 

 One common way to define the skill with which an analysis matches the actual 

atmosphere on a given day is to compare the analysis 500mb geopotential height with the 

true 500mb geopotential height.  The metric often used to accomplish this is the anomaly 

Figure 22:  Anomoly Correlation Coefficient for global 500mb geopotential height from January 14 – 

January 20, 2007.  Dashed lines indicate analysis, and solid represents forecasts.  Results are given for 

GPS+NCEP assimilation (black), NCEP assimilation (blue), GPS assimilation (red), and the CAM 

control run (green). 
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correlation coefficient (ACC).  There are several variations on this formula, one that is 

commonly used for ECMWF forecasts, and we will use here is: 
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(Persson and Grazzini 2005). (4.2) 

Usually, this equation is used in with X representing a forecast and 

! 

ˆ 
X  an analysis.  

However we will use this equation with X representing an assimilation run, 

! 

ˆ 
X  being the 

“truth” run/NCEP reanalysis, and C is the climatological 500mb geopotential height field 

for January.  This formula gives us a measure of how closely our assimilation’s 

deviations from climatological 500mb geopotential height correlate with those of NCEP 

reanalysis.  In applying this formula we also initialized a 6-day forecast for each of our 

runs on January 14, 2007.  In these cases X becomes the forecast run, and 

! 

ˆ 
X  remains the 

NCEP reanalysis field.  The ACC’s from January 14, 2007 through January 20, 2007 for 

the various month-long runs and their associated forecast are displayed in Figure 22. 

 There are several important points to emphasize from Figure 22.  First, unlike 

classical ACC plots our plot does not smoothly depart from a value of close to one.  

Instead our various runs start anywhere from approximately .55-.9, and the forecast runs 

are not smooth as the deviate from their initial values.  This is an artifact of using NCEP 

reanalysis as our “truth.”  In classical applications of the ACC the truth is considered to 

be an analysis run using all available information, and the forecasts are generated using 

the same model, analysis system, and initial conditions with slightly different sets of 

observations which cause the forecasts to deviate only slightly from each other.  In our 

case, we are using massively different sets of observations to initialize each run, and our 

forecast model is not the same as that used for NCEP reanalysis.  This combination of 
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factors causes the ACC for each of our runs to be clearly distinct, and most likely 

decorrelate more quickly than expected.  However, one advantage of calculating the ACC 

using this method is that it does give us some measure of the skill of our analyses/forecast 

relative to the accepted values provided by NCEP reanalysis.  Starting with the CAM 

control run we see that it has an initial ACC of about .55, and stays relatively constant 

although it does increase slightly over the forecast time.  This compares fairly well with 

.6 being the approximate accepted value of a forecast with no useful forecast skill.  It can 

be shown mathematically that .5 is the ACC for a model state with no correlation to the 

analysis (Persson and Grazzine 2005).  Figure 22 also gives a reference baseline to 

determine when the forecasts for the other runs have lost their skill.  By inspection of 

Figure 22, this appears to occur around 4 days.   

Another important point to take away from Figure 22 is a comparison of the 

analysis runs relative to NCEP reanalysis.  Since the GPS analysis starts this period with 

an ACC of about .83, it appears that GPS observations can reduce the error of CAM’s 

representation of 500mb geopotential height.  However, relatively more information is 

gained from assimilating the observations that make up the NCEP analysis ( ~.88 initial 

ACC).  Finally, the combination of assimilating both the GPS observations and NCEP 

observations forces CAM to give the best representation of 500mb geopotential height 

relative to NCEP reanalysis (GPS+NCEP analysis ~.91 initial ACC).   

 While a general skill score as given in Figure 22 is useful for determining the 

power of our system to reproduce the daily variations that make up the weather, it could 

be argued that understanding a model’s long-term biases is more important for studying 

the dynamics of climate.  As we saw in Chapter 3, data assimilation systems can be a 



 56 

useful tool in understanding the impacts of 

climate model bias.  With GPS radio 

occultation measurements being a new 

product that provides quality observations 

in previously poorly observed regions, such 

as much of the Southern Hemisphere and 

over oceanic regions (Kursinski 1997), it is 

important to determine how strongly their 

assimilation will interact with CAM’s 

major biases. 

 Figure 23a shows the zonally 

averaged temperature bias for CAM with 

respect to NCEP reanalysis for the Southern 

Hemisphere.  In Chapter 3 we 

investigated a large temperature bias near 

the Arctic tropopause during the month of 

July.  During the boreal winter months, 

this common bias shifts to the Southern Hemisphere’s Polar region with similar 

implications (Covey et al. 2004).  Figure 23b gives the difference between NCEP 

reanalysis and our GPS assimilation.  From this figure it appears that the assimilation of 

GPS occultation measurements alone is capable of reducing the Polar tropopause bias, 

but not eliminating it.  However, in regions where biases are not so clear, such as the 

tropics, the GPS assimilation does not correct temperature very strongly.  The next 

Figure 23:  Difference between NCEP reanalysis 

zonal mean temperature (K) and (a) CAM run zonal 

mean temperature, (b). GPS assimilation zonal 

mean temperature averaged from January 10 - 

January 30, 2007. 

 

(a) 

(b) 
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section will take a closer look at the varying regions where GPS occultation observations 

impact different components of the state vector. 

 We discussed in Chapter 3 that biases in temperature and zonal wind may have 

dynamical connections. Figure 24a gives difference between NCEP reanalysis and 

CAM’s representation of the zonal wind for January 2007.  Here we find a similar result 

to those of Chapter 3, with the zonal jet for the summer hemisphere being shifted toward 

the equator relative to NCEP 

reanalysis as evident by the negative 

values between 45-30S, positive 

values between 60-45S and the jet 

being located near 45S.  Figure 24b 

shows the difference between NCEP 

reanalysis zonal wind and the GPS 

assimilation’s zonal wind.  This 

shows that the GPS assimilation 

effectively eliminates CAM’s errors 

in the troposphere below about 

400mb.   

Finally, it is also clear that as 

GPS observations are assimilated, 

the biases in the zonal winds are 

reduced.   Unlike the temperature 

field this adjustment appears to be more uniform throughout the troposphere, although 

Figure 24:  Difference between NCEP reanalysis zonal wind  

(m/s) and (a) CAM run zonal wind, (b) GPS assimilation 

zonal wind averaged from January 10 - January 30, 2007. 

 

(a) 

(b) 
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strong biases still exist at upper levels.  However, This may be due to artificially limiting 

the assimilation and impact of observations to levels below 100mb. 

 By replacing partial pressure of water vapor with specific humidity equation 4.1 

can be rewritten as 

! 

N = 77.6
p

T
+ 5.997"10

5 pq

T
2

. (4.3) 

Where q is specific humidity in (kg/kg), T is temperature in kelvins, p is pressure in 

hectopascals, and N is the same refractivity index as equation 4.1.  This form is useful 

because the variables in equation 4.3 are all easily accessible diagnostic variables in 

CAM.  This form clearly demonstrates that variations of specific humidity across the 

ensemble will correlate with changes in refractivity through the second term of equation 

4.3.  This indicates from equation 2.23 that assimilating observations of refractivity 

should strongly influence and constrain CAM’s representation of specific humidity. 

Figure 25a shows the zonal mean difference in specific humidity between CAM and 

NCEP.  In the tropics above the boundary layer, it appears that CAM is too wet in the 

zonal mean, and this extends to a lesser extent out to the subtropics and midlatitudes.  

Figure 25b gives the difference between the GPS assimilation and NCEP reanalysis.  

Clearly, figures 25a and 25b appear very similar.  Unfortunately this indicates that the 

assimilation is not constraining CAM’s water vapor field very strongly.  Finally, Figure 

21c shows the mean analysis increment between the posterior and prior ensemble means.  

From this figure, the assimilation of GPS occultation measurements actually slightly 

moistens the tropics, and slightly dries the subtropics.  This appears to be a strange result  
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Figure 25:  Zonal mean difference in specific humidity between CAM and NCEP (a), Posterior GPS 

assimilation and NCEP (b), and analysis increment (c) in kg/kg. 

 

(a) 

(b) 

(c) 
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Figure 26:  Difference in the vertical integral of specific humidity (kg/kg) between CAM and NCEP (a), 

Posterior GPS assimilation and NCEP(b), and analysis increment(c). 

 

(a) 

(b) 

(c) 
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given figure 25a.  Figure 26 shows the vertical integral of specific humidity or total 

precipitable water in the x-y plane.  Figure 26c shows that CAM is integrating some 

information of specific humidity.  However, the analysis increment is relatively small 

compared to the biases shown in Figure 26a.  There are several questions that this result 

raises.  The first most obvious question is why is CAM’s water vapor field so weakly 

constrained by GPS observations?  One possibility is that the assimilation is rejecting the 

specific humidity updates as being too far from the model state.  However, more research 

is needed to understand this.  The second question is what impact does the moisture that 

is assimilated have on the model state?   Is the moisture simply precipitated out by the 

model physics, or does it remain in the modeled atmosphere?  Again, additional research 

is needed to clarify these questions. 

 The final bias this research will inspect is CAM’s meridional transient momentum 

flux.  This measure has important climatic consequences for the location and strength of 

synoptic activity as well as the regional balances of energy and momentum.  Figure 27a 

shows the transient meridional momentum flux ([u’v’]) at 250mb for the CAM control 

run (black), GPS assimilation (yellow), and NCEP reanalysis (green).  This product is 

formed taking the average value from January 10, 2007 – January 30, 2007 (The first 10 

days were ignored to reduce errors due to assimilation adjustment), and subtracting the 

instantaneous value of U and V at each time step to form u’ and v’.  The product of u’ 

and v’ is then calculated at each time step, averaged in time, and finally averaged zonally.  

We find similar results to DeWeaver and Bitz (2005, their Figure 11).  The CAM control 

run’s transient meridional momentum flux is nearly twice that of NCEP reanalysis in the 

midlatitudes.  Additionally, there are small biases in the latitude at which the sign of  
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Figure 27:   (a) shows the transient momentum fluxes (m
2
/s

2
) for the CAM run (black line), NCEP 

reanalysis (green line), and GPS assimilation (yellow line).  (b) shows the transient momentum flux for 

NCEP reanalysis (green line) and the transient momentum flux for the GPS assimilation with the transient 

momentum flux calculated for individual ensemble members (black line) and from ensemble mean U and 

V (yellow line).  (c) is the same as (b) but for the GPS+NCEP assimilation. 

 

(a) 

(b) 

(c) 
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[u’v’] changes.  The assimilation of GPS occultation observations effectively eliminates 

the transient momentum flux strength bias, and reduces biases in the latitudinal 

placement bias. 

 There is an additional question that is raised when using an ensemble analysis to 

determine transient quantities such as the momentum flux.  In general, the ensemble 

mean is assumed to be the most likely state of the atmosphere at a given point in time for 

an ensemble analysis, as was done for the U and V fields used in constructing Figure 27a.  

However, the averaging process involves some amount of smoothing and reduces some 

of the sharpness in wave structures that contribute strongly to quantities such as the 

transient momentum flux.  Therefore, is it more accurate to calculate the transient 

momentum flux for the individual members and take the ensemble mean of that quantity, 

as opposed to finding the ensemble mean zonal and meridional winds and determining 

the transient momentum flux from that mean?  Figure 27b compares the results for the 

transient momentum fluxes obtained by each method for the GPS assimilation (Figure 

27b), and the GPS+NCEP assimilation (Figure 27c).  In each case the transient 

momentum fluxes were underestimated, particularly at high latitudes, by the fluxes when 

calculated using the ensemble mean U and V.  The transient momentum fluxes increase 

in the extratropics and appear to improve overall when the transient momentum flux is 

obtained for each ensemble member individually and then averaged. 

 

d. Covariance structure of linearized refractivity and the state vector results 

 When examining Figures 20-27 it is clear that the assimilation of GPS radio 

occultation measurements is capable of overcoming many of the strong biases that occur 
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in CAM.  However, closer inspection reveals that the assimilation of these observations 

do not impact all regions of the atmosphere equally.  For example, Figure 23 gave the 

differences in temperature between NCEP reanalysis and the GPS assimilation.  The 

assimilation apparently greatly reduced the polar tropopause bias.  However, biases in the 

mid-troposphere of the tropics were not impacted significantly.  Similarly in Figure 27, 

the bias in transient meridional momentum flux was impacted significantly in the 

midlatitudes, but had a negligible impact on [u’v’] near the equator.  This section 

attempts to understand 

how assimilating GPS 

radio occultation 

measurements impacts the 

state vector, and what 

dependency that impact 

has on the physical region 

of assimilation. 

 Equation 4.3 

describes how the state of 

the atmosphere determines 

the refractivity at a given point.  According to this equation, the three main components 

that define refractivity at a given point are temperature, pressure or atmospheric mass, 

and water vapor. Since these elements of the state vector have a direct relation to 

refractivity we expect them (or closely related quantities) to be highly correlated with 

refractivity in regions where their term in equation 4.1 dominates.  Furthermore, since 

Figure 28: Northern Hemisphere time mean-zonal mean 

distribution of refractivity correlation with (a) specific humidity, (b) 

surface pressure, and (c) temperature for a December perfect model 

assimilation.  From Liu et al. (2007), their Figure 3. 
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these components of the state vector can be expected to be strongly correlated with 

refractivity in some regions, this implies that the assimilation of refractivity observations 

in those regions would cause large analysis increments updates to the state vector as 

described in equation 2.23.  Therefore, by determining the spatial correlation structure of 

temperature, pressure, and water vapor with refractivity we can predict what state 

variables will be most influenced by the assimilation of GPS radio occultation 

measurements in various regions of the globe.  Liu et al. (2007a) used this procedure in a 

perfect model setting to determine how observations would impact the state vector for a 

given December.  Their results for the correlation structure of refractivity with 

components of the state vector for the Northern Hemisphere are given in figure 28.  At 

high latitudes in the midtroposphere, particularly near the pole, they found that 

refractivity was significantly positively correlated with surface pressure.  Meanwhile, 

refractivity was correlated with temperature in the upper troposphere in mid-high 

latitudes, and strongly correlated with water vapor (specific humidity) in the tropics. 

 While it is clear from equation 4.3 that refractivity should be strongly correlated 

with water vapor in regions where the atmosphere is moist such as the tropics, it is not as 

obvious how refractivity should correlate with temperature and atmospheric mass.  To 

understand these correlation structures, we can separate the components of equation 4.3 

by linearizing it about the ensemble mean state of po,To, and qo.  It becomes 

! 

L(N ) = N (po,To,qo )+
"N

"T po,To,qo

(T #To )+
"N

"P po,To,qo

(P#Po )+
"N

"q
po,To,qo

(q # qo ) +O(2).... (4.4) 

This results in the linearized version of refractivity that can be written as 

! 

L(N ) = "l
po

To

2
" 2m

poqo

To
3

# 

$ 
% 

& 

' 
( T + m

qo

To
2

+ l
1

To

# 

$ 
% 

& 

' 
( p + m

po

To
2

# 

$ 
% 

& 

' 
( q + const , (4.5) 



 66 

where l and m are unitless quantities with values l = 77.6 and m = 5.997*10
5
.  This can 

be simplified as 

! 

L(N ) = aT + bp + cq + const ,  (4.6) 

where a,b, and c represent the terms in parentheses in equation 4.5.  Equation 4.3 has now 

become a simple formula that describes how refractivity is linearly influenced by local 

changes in T, p, and q.  Finally, multivariate linear regression can be used to determine 

the covariances and correlations of N with T, p, and q.  For the covariances we have 
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 .  (4.7) 

Where <…> denotes a covariance, and a,b, and c are given in equation 4.6.  In addition, 

plots of the fields described by a, b, and c are given in Figure 29.  The covariances of the 

elements of the state vector between themselves are calculated from the GPS assimilation 

ensemble at each time step for each grid point.  The correlation of N with q is  

! 

corr(N ,q)=
a q,T

q,q N ,N[ ]
+

b q,P

q,q N,N[ ]
+

c q,q

q,q N ,N[ ]
,  (4.8) 

and similar equations exist for the correlations of N with p and T.  Equations 4.7 and 4.8 

can be calculated at each time step for every grid point to get an estimate of the various 

covariances and correlations between refractivity and components of the state vector at 

that point.   

Figure 30 shows the zonally averaged mean correlations of N with T,p, and q 

using statistics from the last 10 days of the GPS assimilation run for January 2007. The 

fields of T, p, and q were found in observation space by interpolating their value in state 

space to the location of each GPS occultation whose latitude, longitude, and height  

(b) 

(c) 

(d) 
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are known.  These fields were 

then updated by the assimilation, 

and the prior and post values of T, 

p, and q were recorded for each 

ensemble member.  From these 

values, post and prior refractivity 

was calculated using equation 4.3.  

For this section, prior values are 

used exclusively since it is the 

properties of the prior ensemble 

that determines the ensemble 

update. These values were then 

binned and interpolated to a grid.  

Since the GPS occultation 

observations are globally distributed and numerous, bin size was chosen to maximize 

resolution while ensuring a significant number of observations would be collected in the 

bin over the 10 days.  In the end the atmosphere was binned with 64 latitude bins, 128 

longitude bins, and 18 height bins going from the surface up to 14km.  Figure 31 gives 

the corresponding figure using our linearized equations 4.7 and 4.8. Comparing Figures 

30 and 31, we see that the linearization method reproduces the observed correlations and 

covariances accurately.  Also, comparing our results with Figure 28 it is clear that many 

of the December correlation structures found in Liu et al. (2007a) are reproduced in our 

analysis.  At this point we now have a concise system of equations that we can use to 

Figure 29:  Zonal mean of (a) term a, (b) term b, and 

(c) term c from equation 4.6. 

 

(a) 

(c) 

(b) 
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extract the components that determine the correlation of refractivity with the state vector.  

By doing this, we can consider them separately in order to understand the correlation 

structures of figures 28, 30, and 31.  

 We will first look at the correlation structure of refractivity and specific humidity.  

From Figure 31c, refractivity and specific humidity have a strong positive correlation in 

the tropics and lower troposphere.  If we deconstruct equation 4.8, we find that there are 

three components that determine the correlation of refractivity and specific humidity.  

Figure 32 shows the time-mean zonal average for each of the components.  Here we find 

that the variance of specific 

humidity is the dominant term in 

determining the correlation of 

refractivity and specific humidity.  

This term gives the strong positive 

response in the lower troposphere 

and tropics.  In the upper 

troposphere the covariance terms of 

<q,T> and <q,p> tend to have equal 

and opposite impacts on the 

correlation of N and q.  This 

indicates that variations in 

refractivity are highly sensitive to 

changes in water vapor in the 

tropics and lower troposphere, and 

Figure 30:  Observed zonal mean correlations between 

refractivity and (a) temperature, (b) surface pressure, (c) 

pressure, and (d) specific humidity for the January 2007 

GPS assimilation. 

 

(a) 

(c) 

(b) 

(d) 
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that little of this sensitivity due to changes in water vapor is from local dependencies on 

temperature and pressure variations.  We can further deconstruct the third term of 

equation 4.8 by comparing the structures defined by the numerator and denominator.  

Figure 33c,d shows the multiplicative factor that the terms in the denominator represent.  

Figure 34 gives the corresponding plot for the numerator.  Comparing figures 31c, 32, 33, 

and 34 we see that the correlation structure of refractivity with specific humidity is 

determined mostly by the strong variance of specific humidity in the tropics.  In the 

extratropics, and in particular the upper atmosphere near the poles, the covariance of q 

with T and p becomes important. 

 We can use the linearized framework to further understand the relationship 

between refractivity, specific humidity, and the other state variables by using equation 

4.7 to write 

<q,N> = a<q,T> + b<q,p> + c<q,q> .  (4.9) 

From equation 2.23 we can calculate what we will call the linearization analysis 

increment for q as 

! 

"q =
< q,N >

< N,N >
"N .  (4.10) 

For this calculation we use the observed refractivity variance (<N,N>) and analysis 

increment (#N), and <q,N> is calculated using equation 4.9.  From here we can calculate 

a linearization posterior specific humidity field by 

! 

qpost = qprior + "q.  (4.11) 

This new posterior field can now be compared with the observed posterior field for 

specific humidity.  Now by repeating these calculations while setting either term 1, 2, or 

3 in equation 4.9 to zero, we can clearly see the impact that the various covariance and 

(b) 

(c) 
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variances of equation 4.9 have 

on updates to q.  Figure 35 

shows the RMSE profiles 

between the actual posterior 

specific humidity field and our 

linearized version with 

various terms set to zero.  As 

expected, Figure 35a shows 

that in the tropics the analysis 

increment is dominated by the 

variability of water vapor.   

Also, Figure 35b shows that in 

the midlatitudes the 

covariability of specific humidity 

with temperature and pressure 

plays are larger role, particularly at upper levels of the atmosphere. 

 We can complete similar exercises for the correlation structure of refractivity with 

pressure and temperature as well.  From Figure 31b it appears as if the correlation 

between refractivity and pressure is relatively weak throughout the atmosphere.  The 

deconstruction of the terms of equation 4.8 with q replaced by p is given in Figure 36.  

From this figure we see that there is very little contribution from the covariance of 

pressure with specific humidity.  Meanwhile, there are very clear structures both for the 

pressure variance term, and the <p,T> term.  However, when summing these structures 

Figure 31: Zonal mean correlations from linearization between 

refractivity and (a) temperature, (b) pressure, and (c) specific 

humidity for the January 2007 GPS assimilation. 

 

(a) 

(c) 

(b) 
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there is almost a perfect cancellation between the two terms.  In particular there are large 

cancellations between 40-60
o
 and 6000-8000m in both hemispheres.  This result seems to 

have important consequences for the potential impact of refractivity observations the 

state vector, since variations in the 

atmospheric state are only “correctable” 

to the extent that they cause substantial 

variations in atmospheric refractivity 

through the forward operator (equations 

2.24-2.27).  By going through the same 

process for p, as we did for q in 

equations 4.9-4.11 we see in Figure 37 

that increments for p in the tropics are 

dominated by its covariance with q.  

However, in the midlatitudes both the 

<q,q> and <q,T> terms make 

significant impacts particularly in the 

vertical levels where large cancellations 

occur.  Moreover, Figure 38 shows the observed correlation of temperature with pressure 

across the ensemble.  This shows that the region of strong cancellation is a local 

maximum in their correlation. 

The region of large cancellation is also the same region where the variance of the 

first term of the refractivity becomes larger than the second term (Figure 21e).  This 

indicates that in this region, any variations in the prior  

Figure 32: The time and zonal mean of (a) term 1  

of correlation equation for specific humidity (eqn. 

4.8), (b) term 2, and (c) term 3 for January 2007. 

 

(a) 

(c) 

(b) 
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Figure 33: These panels represent the 

multiplicative factor that the variances in the 

denominator of the correlation equations (eqn. 

4.8)  for T,q, and p represent.  (a) is the inverse of 

the square root of temperature variance, (b) is the 

same for pressure variance, (c) specific humidity 

variance, and (d) refractivity variance.  

 

(a) 

(b) 

(c) 

(d) 

Figure 34: Numerator of term1 of correlation equation 4.8 

for (a) specific humidity, (b) numerator of term2, and (c) 

numerator of term3. 
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Figure 35: RMSE of specific humidity between actual posterior and 

linearized posterior in kg/kg (black line).  Also shown are the RMSE with 

terms from eqn. 4.9 removed.  Blue is the p-term removed, red q-term, and 

maroon the T-term. (a) represents the tropics, and (b) the midlatitudes. 

 

(a) 

(b) 
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ensemble’s estimation of refractivity 

through the forward operator are strongly 

influenced by the first term in equation 4.3, 

which is proportional to p/T. If N is 

proportional to p/T then changes in N are 

small if p and T are strongly positively 

correlated.  Since T and p both decrease 

with height in the troposphere, we should 

expect cancellation if variations in p and T 

are happening because of vertical 

displacements.   

We can inspect how the variance 

of refractivity in the ensemble is related 

to pressure and temperature using the linearized refractivity equation 4.5.  If we calculate 

a linearized prior refractivity with the water vapor term of equation 4.5 neglected, we find 

the variance of refractivity becomes that of Figure 39a.  Now with water vapor removed 

the variance of refractivity can be written as 

! 

< N,N >= b
2

< p,N > +a
2

< T ,N > +2ab < p,T >. (4.12) 

Where a and b are coefficients given by equation 4.5.  The variance of refractivity 

calculated from equation 4.12 is shown in Figure 39b.  If p and T are independent as 

would be expected in a nonadiabatic relationship, this equation becomes 

! 

< N,N >= b
2

< p,N > +a
2

< T ,N > .  (4.13) 

Figure 36:  The time and zonal mean of (a) term 1 

of correlation equation for pressure (eqn. 4.8 with q 

replaced with p), (b) term 2, and (c) term 3 for 

January 2007. 

 

(a) 

(b) 

(c) 
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Figure 37: RMSE of pressure between actual posterior and linearized 

posterior in hPa (black line).  Also shown are the RMSE with terms 

equivalent to eqn. 4.9 for pressure removed.  Blue is the p-term 

removed, red q-term, and maroon the T-term. (a) represents the 

tropics, and (b) the midlatitudes. 

 

 

 

(a) 

(b) 
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The variance of refractivity with p and T independent is shown in Figure 39c, and the 

difference between the dependent variance and independent variance is shown in Figure 

39d.  Figure 39d implies that if T and p are allowed to covary there is locally less 

variance of refractivity in the regions of strong cancellation.  This means that in these 

regions, the covariance of T and p across the ensemble is reducing the efficiency by 

which GPS refractivity observations can correct the ensemble. 

 However, there is one major caveat to this discussion.  In general, people are not 

concerned with updates to the pressure field of a model since it is neither a prognostic or 

diagnostic variable.  However, the previous discussion seems to indicate that cancellation 

may also strongly impact ability of refractivity to correct variations in geopotential 

height, since geopotential height on pressure surfaces and pressure on geometric surfaces 

are so closely related.  However, Figure 40 shows the correlation between refractivity and 

geopotential height on pressure surfaces.  This shows that similar to the correlation 

between refractivity and pressure there is little correlation in the tropics.  However, 

unlike pressure, geopotential height retains a relatively large correlation in the regions of 

large cancellation for pressure.  This indicates that refractivity observations are capable  

Figure 38: Correlation across prior ensemble of temperature with pressure. 
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of correcting variations in geopotential height.  The discrepancy between these two 

results requires more research. 

Finally, inspection of figure 31a shows that, in general, refractivity is negatively 

correlated with temperature.  Also, the higher in the atmosphere the stronger this negative 

correlation becomes.  One feature that deserves closer inspection is found below 2000m 

Figure 39: (a) is the linearized variance of refractivity neglecting specific humidity contributions.  (b) 

is the refractivity variance from equation 4.12.  (c) is the refractivity variance from equation 4.13 

assuming independent T and p.  (d) is the difference between (b) and (c).  

 

 

 

(a) 

(c) 

(b) 

(d) 
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near 50
o
S.  Here the correlation between refractivity and temperature actually becomes 

positive, the opposite of what would be expected from density considerations.  Also, from 

Figure 31a it seems that this positive anomaly extends upward and to the south causing a 

sharp gradient in the N-T correlation structure.  Figure 41 shows the deconstruction of 

equation 4.8 with temperature replacing specific humidity.  Here we see that the region 

where the correlation becomes positive, is precisely the region where the <T,q>  term 

dominates.  Also, the influence of the water vapor term extends upwards and to the south 

in the same structure found in figure 31a.  This structure combines with cancellation from  

<T,P> to reduce the correlation of refractivity with temperature in an isolated region, and 

create a strong gradient in the correlation field above it.  Figures 33a,d and 42 show the 

respective numerator and denominator deconstruction.  Inspection of Figure 42 confirms 

that the strong covariance of T with q near 50
o
S is responsible for the sign reversal. 

 

e. Conclusions for the Assimilation of GPS Observations in CAM 

These experiments begin to show the influence that GPS radio occultation 

observations can have when assimilated with an atmospheric climate model. By 

(a) 

(b) 

(c) 

(c) 

Figure 40: (a) Correlation of geopotential height with refractivity in pressure coordinates.  

200hPa roughly approximates 12km in previous height coordinate plots.  
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comparing a case where we assimilate only COSMIC data into CAM versus assimilating 

multiple data sources or no data sources it is apparent that assimilating GPS observations 

with the EAKF and CAM does improve CAM’s representation of the atmosphere on a 

given day.  In addition, when adding GPS occultation measurements to existing 

measurements it seems that GPS measurements do add information that was previously 

missing.  However, it is also evident that assimilating GPS radio occultation observations 

alone does not completely constrain the model.  When we compare the GPS run to other 

runs that assimilate observations from radiosondes, other satellites, etc… there is clearly 

a lot of information in those observations that GPS observations alone cannot reproduce.  

For climate studies, the same can be said about major biases.  When we assimilated GPS 

observations we were able to reduce all the biases we looked at.  However, the 

assimilation of these observations did not constrain the model to such a degree as to 

overcome these biases completely.  In addition, we highlighted considerations for the 

calculating transient momentum fluxes using ensemble data.  Here it appeared that 

calculating transient momentum fluxes with ensemble mean wind fields degrades the 

calculation versus calculating the transient momentum fluxes for the individual ensemble 

members, and taking the ensemble mean of this quantity. 

When looking for ways to improve the power of GPS observations to constrain 

CAM there are several promising possibilities for future work.  One possible way to pull 

more data from the observations is to include data from the vector path of the GPS 

observation in the forward operator.  This data is available with the refractivity 

observations, but its assimilation becomes more computationally expensive.  However, 

methods that do assimilate this information have been implemented in several systems 
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already, with promising results (Liu et al. 2007b).  Also, as more GPS satellites continue 

to launch the number of 

observations will continue to 

increase, further improving their 

coverage.  Finally, more months of 

assimilation with varying 

ensemble sizes and varying model 

resolutions would be useful to see 

how the ability of assimilated GPS 

observations reduce model biases 

depends on these parameters.   

The fact that refractivity is 

dependent on multiple pieces of 

the state vector is a fundamental 

property of these observations is 

self-evident.  Since refractivity is essentially a function of density in the lower 

atmosphere, the assimilation of refractivity observations will influence the various 

components of the state vector that determine the density of the atmosphere at a given 

point.  The proportion of density that is due to temperature or pressure or water vapor 

changes depending on where in the atmosphere one looks.  This makes understanding the 

relationship between refractivity and components of the state vector essential to 

predicting how the assimilation of a GPS radio occultation measurement will impact the 

modeled state of the atmosphere.  By linearizing the forward operator we were able to 

Figure 41: The time and zonal mean of (a) term 1 of 

correlation equation for specific humidity (eqn. 4.8 with q 

replaced by T), (b) term 2, and (c) term 3 for January 2007. 

 

(a) 

(c) 

(b) 
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separate the components that strongly influence refractivity.  Once separated, we could 

determine what components of the state vector were strongly influenced by refractivity 

observations.  One result that came out of this is that the relationship between the state 

vector and refractivity in the tropics 

appears to be dominated by water 

vapor.  In this region it is not clear 

how much the assimilation of GPS 

observations will impact any variable 

besides those that are water vapor 

related. Possible indications of this 

may be seen in figures 23 and 27 

where the assimilation of GPS 

observations appeared to do little to 

reduce tropical biases in temperature 

and transient momentum fluxes.  

More work is needed to determine if 

GPS observations are capable of 

reducing tropical biases for fields not 

influenced by water vapor. 

Finally, we found that large cancellations in the prior estimate the correlation of 

pressure with refractivty occur in the midlatitudes at 6000-8000m due to covariance 

between temperature and pressure.  This has important implications for the power of GPS 

observations to adjust the atmospheric state in these regions.  Adiabatic variations in the 

Figure 42: (a) Numerator of term1of correlation 

equation for temperature (eqn. 4.8 with q replaced 

by T), (b) numerator of term2, and (c) numerator of 

term3. 

 

(a) 

(c) 

(b) 
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ensemble members appear to be partially responsible for this cancellation.  However, 

calculations of the correlation of refractivity with geopotential height did not mirror this 

result, so whether this result is consequential requires more analysis.
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5.  Conclusion 

 

a.  Summary and Future Work 

 This research was based on taking a first step toward the overarching goal of 

determining how data assimilation can be used to improve our understanding of climate 

models, and what value various observations and data assimilation systems can add to 

future work.  With the large number of possible directions to go to achieve these goals, 

and the always evolving and expanding set of observations available for assimilation, we 

approached this problem by considering a few simple examples.   

 In Chapter 3, we used a brute force method of selectively assimilating data only in 

the region of known climate bias in CAM.  We found that by reducing this bias we were 

able to begin to understand the sensitivity of major climate features such as the zonal jet 

and stormtracks to this bias.  In doing so, we found that our work mirrored many of the 

results found in previous studies such as that of Lorenz and DeWeaver (2007).  This sets 

the stage for us to use more advanced ensemble assimilation techniques such as 

sensitivity analysis as described by Torn and Hakim (2008) to more elegantly describe 

the impacts of this bias.  Also, with many climate features including the zonal jet being 

effectively tuned by parameterization, the use of data assimilation for parameter 

estimation could also be an important future step.   

 Chapter 4 took a close look at the assimilation of a single observation type, the 

GPS radio occultation observation.  This observations type was of particular interest for 

several reasons.  First, this observations type is a relatively recent addition to the global 

observation net.  Also, GPS radio occulation observations have exciting implications for 
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climate research due to its long-term stable nature, global coverage, and ability to ignore 

clouds.  By considering the effectiveness of this observation to reduce CAM model bias, 

we found that these observations were valuable.  However they were not effective to the 

point where they could be used exclusively in the EAKF to reproduce a decent facsimile 

of the actual atmosphere.  However, the ability of GPS observation assimilation to 

reproduce a close representation of the actual atmosphere may be improved in future 

work.  Some possibilities for improvement include integrating the application of a non-

local forward operator that takes into account additional path information for GPS 

observations, and varying ensemble sizes that may improve the first guess required to 

separate out the connection between refractivity and the components of the state vector.   

 There are many possibilities for using data assimilation to go beyond its 

traditional use as a tool for creating weather forecasts and reanalysis products, and 

become an instrument for investigating dynamical relationships and diagnosing the 

impacts of model biases by creating a system capable of combining the advantages of 

both observed and modeled data.  However, in order for data assimilation to become 

commonly used in that capacity, many more questions must be answered. Taken as a 

whole, the experiments contained in this research represent investigations into a small 

selection of the questions that need to be answered for the EnKF to reach its full 

potential.
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