NOAA/NASA Annual Global Analysis for 2017

2017 was another top-three record-warm year

Gavin A. Schmidt

Director, NASA's Goddard Institute for Space Studies

Chief, Monitoring Branch, NOAA's National Centers for Environmental Information

NOAF

January 2018

NASA 2017 Global Temperature

2017: 0.9°C / 1.6°F above 1951-80 average

2nd Warmest year of NASA GISTEMP record GISTEMP Annual Mean 2017 Baseline 1950-1951

NOAA 2017 Global Temperature

0.84°C / 1.51°F above 1901-2000 average; 3rd warmest year of record

USA - CONUS 3rd warmest year Wetter than average

ENSO Neutral to La Nina conditions prevailed most of the year

Argentina 110°F on 27 Jan at Puerto Madryn was highest temperature recorded this far south

Continental Temperatures records begin 1910

S. America 2nd warmest year

Asia 3rd warmest year

Africa 4th warmest year

Europe 5th warmest year

N. America, Oceania 6th warmest year

South of 20°S latitude: Warmest year of record

Global Temperature Time Series NOAA GlobalTemp

Annual Global Temperature: Difference From 1951-80 Average, in °F

Global Temperature Time Series NASA GISTEMP

Annual Global Temperature: Difference From 1951-80 Average, in °F

January 2018 NOAA/NASA – Annual Global Analysis for 2017

El Niño / La Niña & Global Temperature

Months with La Niña conditions in blue Months with El Niño conditions in red

Impact of ENSO on NASA analysis

Maximum correlation to annual mean is Feb-Mar ENSO index

ENSO contribution to specific years: 2015: 0.04°C 2016: 0.12°C 2017: 0.00°C

Global Analyses Side by Side

Several major datasets: relative to a common 1951-1980 base period

Looking at the Atmosphere

• Lower Stratosphere (38 yr record)

- RSS, NESDIS: 9th coolest (tie)
- UAH: 5th coolest (tie)
- Middle Troposphere (38 yr record)
 - UAH, RSS, UW-RSS, NESDIS: 4th warmest
 - UW-UAH: 3rd warmest
- Lower Troposphere (38 yr record)
 - RSS: 4th warmest
 - UAH: 3rd warmest
- Radiosonde / balloon data (59 yr record, not shown)
 - ~5,000 ft (850mb): 2nd warmest
 - ~10,000 ft (700mb): 2nd warmest
 - ~18,000 ft (500mb): 2nd warmest
 - ~30,000 ft (300mb): 2nd warmest
 - ~40,000 ft (200mb): 16th warmest

Upper Ocean Heat Content

Source: NOAA/NCEI Center for Coast, Oceans & Geophysics

Arctic Sea Ice Extent Since 1979 (inset: Arctic temperature change vs. Global average)

Arctic Sea Ice: Day-by-Day in 2016

Mon	% vs avg	Rank (of 38)		Arctic Sea Ice Extent - Daily
Jan	-8.67%	Smallest		18
Feb	-7.78%	Smallest		16
Mar	-7.52%	Smallest	Ê	
Apr	-6.33%	2 nd smallest	juare k	
May	-5.04%	5 th smallest	s of sc	5 To 10
Jun	-8.92%	4 th smallest	million	
Jul	-16.58%	4 th smallest	xtent (x xtent (
Aug	-24.03%	4 th smallest	a Ice E	
Sep	-25.12%	7 th smallest	Se	8 ⁴
Oct	-19.64%	5 th smallest		2
Nov	-11.59%	3 rd smallest		0 1-Jan 1-Feb 1-Mar 1-Apr 1-May 1-Jun 1-Jul 1-Aug 1-Sep 1-Oct 1-Nov 1-Dec
Dec	-8.45%	2 nd smallest		1981-2010 average 2016 - Smallest December Extent 1982 - Largest December Extent 2017 ±2 Standard Deviations Data provided by the National Snow and Ice Data Cent

Antarctic Sea Ice: Day-by-Day in 2016

Northern Hemisphere Snow Cover Extent Period of record: 1967-2017 (50 years)

Departure from Normal – January 2017

Northern Hemisphere Snow Cover Trends (1967-2017)

Data provided by the Rutgers Global Snow Lab http://climate.rutgers.edu/snowcover/

Questions?

Gavin A. Schmidt

Director, NASA's Goddard Institute for Space Studies

Deke Arndt

Chief, Monitoring Branch, NOAA's National Centers for Environmental Information

