94 4 Equations Satisfied by a Moving Fluid

The heat and salinity equations (4.10.3) and (4.10.4) can be expressed in terms of
4, @, r coordinates by using the expressions (4.12.9) and (4.12.10) and the fact that the
components of the gradient vector Vy are

dy 1oy oy

1
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Chapter Five

Adjustment
under Gravity
in a Nonrotating System

motion affects the mean distribution of temperature. As Halley (1686, p. 165
ed (see Chapter 2), the system is driven by “the Action of the Suns Beams upon th
r and Water,” and so “according to the Laws of Staticks, the Air which is les
ified or expanded by heat, and consequently more ponderous, must have a Motio
wards those parts thereof, which are more rarified, and less ponderous, to bring i
n &quilibrium.” This chapter marks the beginning of a more detailed study of th
y the atmosphere—ocean system tends to adjust to equilibrium. The adjustmen
Drocesses are most easily understood in the absence of driving forces. Suppose, fo
tance, that the sun is “switched off,” leaving the atmosphere and ocean with som
nequilibrium distribution of properties. How will they respond to the gravitationa
oring force? Presumably there will be an adjustment to some sort of equilibriun
[f $0, what is the nature of the equilibrium? How long does the adjustment take? I
hat way is the adjustment process most readily described and understood?

The problem will be studied in stages, roughly following the historical develog
nent. In this chapter, for instance, complications due to the rotation and shape of th
farth will be ignored and only small departures from the hydrostatic equilibrium c
Ction 3.5 will be considered. The nature of the adjustment processes will be foun
deduction from the equations of motion developed in Chapters 3 and 4.

9
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This method was not available in the seventeenth century, but it was possible
instead to study simpler systems in the laboratory and thereby gain an improved
understanding of Nature. A remarkable example is found in the work of Marsigli
(1681). It seems (Deacon, 1971, pp. 147-149) that when Marsigli went to Constanti-
nople in 1679 he was told about an undercurrent in the Bosphorus that was well-
known to local fishermen. The undercurrent was in fact referred to in a sixth century
discussion of flows through straits by Procopius of Caesarea (History of the Wars
VIII, vi. 27) “. .. for the fishermen of the towns on the Bosphorus say that the whole
stream does not flow in the direction of Byzantium, but while the upper current which
we can see plainly does flow in this direction, the deep water of the abyss, as it is called,
moves in a direction exactly opposite to that of the upper current and so flows con-
tinuously against the current which is seen.” [That is, the undercurrent flows toward
the Black Sea from the Mediterranean. Defant (1961, Chapter 16) gives a modern
description. | By observing the distortions and feel of a rope lowered into the water,
Marsigli found that the current reversal occurred at depths varying between 8 and 12
Turkish feet. He reasoned that the effect was due to density differences, and so made
measurements of these differences using a hydrostatic balance. He found that water
from the Black Sea is lighter than water from the Mediterranean, giving readings on
his instrument up to 291 grains lower. He attributed the low density of the Black Sea
to lower salinity resulting from river runoff, Marsigli then measured the density of
samples taken from the surface of the Bosphorus and from the undercurrent. Here the
difference was 10 grains, values being consistent with a Mediterranean origin for the
undercurrent and a Black Sea origin for the surface water. To clinch the point, he
performed a laboratory experiment, which he illustrated as shown in Fig. 5.1. A tank

Fig. 5.1. A figure from Marsigli (1687) illustrating adjustment under gravity of two fluids of different density.
Initially the container was divided in two by a partition. Side X contained water taken from the undercurrent in
the Bosphorus. Side 7 contained dyed water having the density of surface water in the Black Sea. The experiment
Was to put holes in the partition at D and £ and to observe the resulting flow. The flow through the lower hole was

in the direction of the undercurrent in the Bosphorus, while the flow through the upper hole was in the direction
of the surface flow.
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The adjustment processes are, in fact, exactly the same as they would be in case (a) if
the gravitational acceleration were reduced to a value ¢’ given by

9= dlo;, " p1)ip,. (3, 160

g’ is called reduced gravity for this reason. This example also shows that the driving
force is proportional to

(02 — p1)g,

the density difference times g. This product is called the buoyancy force per unit
volume (see Section 4.5).

In the quantitative treatment of this problem, which will be developed in this
chapter, the difference / in initial levels will be assumed to be small. This simplifies
the mathematics because it leads to a linear problem, and so solutions can be super-
posed. This chapter is concerned with adjustment of a homogeneous fluid with a free
surface (including the case depicted in Fig. 5.2a). Chapter 6 deals with internal
adjustment of a density-stratified fluid, including problems such as that illustrated
in Fig. 5.2b.

Although the qualitative ideas in the above argument (relating to Fig. 5.2) can be
found in the work of Archimedes (287-212 BQ) [“On Floating Bodies,” English
translation in Hutchins (1952); see also discussion in Dugas (1957)], quantitative
treatment of the problem required first the development of the laws of motion and of
the calculus needed to apply the laws. Both of these developments are among the
achievements of Newton (whose Principia was printed in 1687 with the help and
encouragement of Halley). Also required was a proper understanding of hydrostatics
and the nature of pressure forces. The work of Stevin (1548-1620) and Pascal on this
subject is translated by Spiers and Spiers (1937). The main credit for developing the
equations of motion goes to Euler (1755), who commented:

But here we see well enough how far distant we yet are from the complete
knowledge of the motion of fluids, and that which I have just explained contains
only a feeble beginning, Nevertheless, all that the theory of fluids includes is
contained in the two equations presented above, so that it is not the principles of
mechanics which we lack in the pursuit of these researches, but solely analysis,
which is not yet sufficiently cultivated for this purpose. And thus we see clearly

¢ in this science before we can arrive at a
perfect theory of the motion of fluids.

(This translation appears in the commentary by Truesdell (1954b, p. LXXXIX) in
Euler’s Opera Omnia, The two equations referred to are the continuity equation,
derived by the first method used in Section 4.2, and the inviscid momentum equations,
derived in Section 4.5)

Among the first problems treated using the equations of motion were problems
of the response of the ocean and atmosphere to gravitational forces. Laplace (1778-
1779) developed the equations for motion on a rotating sphere under the action of
:am-mmsoam::m forces and found solutions for the “equilibrium” tide in a constant-

Q%ESOHE,S% ogm:.Iomwogoocamﬂoaﬁro problem of treating thermal forcing
of the atmosphere. Lasiiig

T
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' 5.2 Perturbations from the Rest State for a Homogeneous Inviscid Fluid
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Po(2) in this case is given by

(5124
po(2) = —gpz,

where p is the in-situ density, i.e., p. in the mE.a and zero .mvoé, and m Mﬁw“ﬂﬂ“ﬂ%
due to gravity. (If there is any fluid in the region z > 0, it is assume

Q%MWWWUOmo now that the equilibrium is slightly &m:,:ga. %:w.@mﬂc%ﬂwﬁwﬁom
assumed to be small enough for products of mﬂﬁcadm:o: quantities to Kicte i
In comparison with the perturbation quantities EoanFom. mﬂwvw% i :,mwﬁ v@
are the velocity components ooﬁow@oa_:m.ﬁo the woo.&_:mﬂ@m X5z

disturbed position of the free surface (see Fig. 5.3) is given by

S8
z = n(x, y, 0. (
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Fig. 5.3. The geometry of the disturbed surface. The displacement from the rest position is # and the undis-
turbed depth is H.

~ For this problem, it is convenient to define the perturbation pressure by

e (5.2.3)

where p is the insitu density, i.e., p, in the fluid and zero above. (This differs from the
definition of Section 4.5 only in the infinitesimal region between the disturbed and
undisturbed positions of the free surface.)

The equations of motion consist of the continuity equation (4.2.3) and the
momentum equations (4.5.7)-(4.5.9) for an inviscid fluid. Since the density is constant
within the fluid, the rotation rate Q is 0, and products of perturbation quantities
can be neglected, the continuity equation is in this case

ou/0x + 0v/dy + ow/dz = 0, (5.24)

and the momentum equation is
pou/dt = —0p'/ox, pOv/ot = —0dp'/dy, (5.245)
pOow/ot = —0p’/oz. (5.2.6)

Adding the x, y, and z derivatives of the above three components of the momentum
equation, and using the continuity equation (5.2.4), there results an equation for p’,

namely, Laplace’s equation
Vp' = 9%p'/ox% + 0%p'/dy? + 9%p’'/0z% = 0. (5:2.7)

(In connection with the present problem, Laplace “(Euvres” (1893, pp. 301-310)
found this as an equation for the vertical displacement of a material particle). The

condition (see Section 4.1 1) that must be satisfied at the bottom, where Z = —H,is
one of no normal flow, i.e.,

=0 af oz (5.2.8)

The condition that a particle in the free surface z = # will remain’in it (see Section
4.11.1) is in this case

D(z — n)/Dt = 0,

W = 0n/ot + udn/ox + van/dy,

which, for small perturbations, reduces to

(129

w = dn/ot at (5.2.10)
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addition, the pressure must vanish at the free surface, i.e.,

PiE g = orl. p =pgn at

i i i lutions for w and p’ between z = 1 anc
Iso, since the differences in the so : i .
G%%w WBNE Egs. (5.2.10) and (5.2.11) can both be applied at z = 0 and will b
- the same order of approximation. . :
aou.%ww HMBEQB is to solve Laplace’s equation (5.2.7) mch% %m the Uocwmwmw
52,10 itz = U TaEEs i il :
conditi 5.2.8) at the bottom and (5.2.10) m_ﬁﬂ itz =
é.b&:_ommow of vmo_cao:m depending on the initial oo:.&‘:osN e, e mmz:m Omr the
k. Mﬂﬁos at the beginning. In the next section, solutions will be momm_mnnoa wher
_ EMOw sinusoidally with horizontal position. This is .:.9 a real restriction _umomcm.m mw.
Mﬂma\ disturbance can be described as a superposition of such waves by Fourier”

— (5.2.11

eorem.

3 Surface Gravity Waves

A disturbance that is sinusoidal in the horizontal can take Eo form of a :M,\m_::
ve or of a standing wave. In particular, a “long-crested” traveling wave has the forn

N = no cos(tkx + ly — wt), (5.3.1

ere 1o is the amplitude, the vector
o= &)
he wavenumber (proportional to the number of waves per unit distance), @ is th
quency, and the quantity
d=kx+1ly—wt=kx— ot (5.3

called the phase of the wave. Such a wave consists of a mws:.moam; oowacmmﬁ_o%%m ﬂ.w,
urface that moves at uniform speed. A sketch of the wave is shown in Fig. 5. Mﬂﬁ
ions cut normal to the wave crests and along the x axis. In the section norm

XN ‘o NAN S NNu AMWH
] the magnitude of the wavenumber. In this plane, the crests move at a speed
i A (5.3

h%ﬁﬁ@Pwv

led the phase speed (i.e., the speed of lines of constant phase evw Hvo:bﬂm%oﬁ m
novement in any other plane appears to be faster by a factor o@cm_. to the seca o
ngle between that plane and the plane normal to the crests. For wﬁﬁﬂbow Msﬁ moma. %.
© Cut along the x axis shows a greater apparent <<m<£o.:m9 2k ; than thaf 4
dne normal to the crests, and the apparent propagation mwoo& 1s proportiona _
gher. This should be borne in mihd when propagation is observed &osm««wmw
dne plane. : e

_ \mﬁrocmr one is free to choose the initial disturbance ﬁo._uo chm.omamW :Hb Q.
1zontal, it does not follow that the traveling wave (5.3.1) is a possible for
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Fig. 5.4. A plane sinusoidal wave train moving at an angle to the axis. The wavenumber (k, ) has magnitude .
Note that the wavelength 2r/k observed in a section along the x axis is larger than the actu

SN
motion. This can be deduced only from E\@\‘wa:mmozm. If, however, it is assumed that
p' is proportional to #, as given by (5.3.1), Laplace’s equation (5.2.7) gives

8’p'/0z* — K%p’ = 0,

al wavelength 2rt/x.

(5.3.5)

so that, at a given horizontal position and time, the vertical variation of p’ must be a
sum of exponentials or hyperbolic functions. The boundary condition (5.2.8), together
with (5.2.6), shows that Op'[dzmust yanish at z — —H. Since p’ is also given by
(5.2.11) at z = 0, the solution must be

+ _ Pgho cos(kx + ly — wt) cosh k(z + H)

T s e e e Gl g 53.6
- cosh kH é ( )

with the vertical velocity component [see (5.2.6)] given by
w = K910 sin(kx + ly — wt) sinh x(z + mb. (537)

w cosh kH

It remains to satisfy condition (5.2.10) at z = 0. Substitution shows that this is
consistent with the assumed form (5.3.1), provided that

w? = gxtanhkH. 17 (5.3.8)

This important equation determines the frequency and hence the phase speed of
Waves of a given wavenumber, such an equation being called a dispersion relation. The
above dispersion relation was obtained by Laplace “@uvres” (1893, pp. 301-310).
Figure 5.5 shows graphs of w and ¢ = w/x as functions of .

One important property is that the frequency does not depend on the direction of
the wave, but only on the magnitude of the wavenumber. Thus waves of a given
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5.5. ._.rmM._mnmﬂmwo: _‘m_mn\wo: for surface gravity waves on water of depth H. fa
5. WG

imati r kH < 1and the
tions of wavenumber x. The dashed line shows the long-wave wnﬁqox_Bam:ow *M i
e imation for kH > 1. The maximum error in these approximations is 13% ai
ave approxi

) Frequency @ and (b) phase

in di irecti 11 do so at the same speed. Consider
MHMW Mwmﬂﬂwwwﬂmvﬂohww MMMQMM MWMMMMM% _wuw the superposition of such waves. For
ce, the wave given by
a“mmoom@x + ly — wt) + cos(kx — ly — wt)] = 21, cos ly cos(kx l 8@. G.u..ov
nts a wave with crests parallel to the y axis that moves in .ﬂro o a:_moawm M,Mvw
.&\w (faster than w/x). The height varies along the crest with waveleng ;
r example is the standing wave
.,m_uoom@x + Iy — ot) + cos(kx + Iy + ot)] = 25y cos(kx + ly)cos wt (5.3.10)

ith
hich the wave crests remain stationary, but the mEWoo J_o%mﬂ Mﬁwm:a AMMMMVMMQ
: ity field can be calculated from (5.2.
. For each wave form, the velocity :
%M@Eo 5.6 shows how velocities relate to the free surface for (a) a traveling

and (b) a standing wave.

(b)

; The motion, shown by arrows, of fluid particles associated with a :m<w__:mw,_\<m<mn”v m:on”_mwwm“wﬁ_ﬂ
Ol The solid line shows the free surface at some initial time m:a. nrw dotted line s Mém <<mm,_\oa gt
short time later. The arrows mark particlg displacements in .E_m time. woﬁ the NS: _MM fiit m:m g
straight-line segments whose orientation depends on position qm_w:,,\ﬂno_. t meM_mmG e
Particle paths are ellipses that become circular for large xH and straight _L._m seg

the perturbation pressure is highest below crests and lowest below troughs.
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5.4 Dispersion

Another important consequence of (5.3.8) is that the phase speed ¢ = w/k varies
with x (see Fig. 5.5). Thus waves of different wavelengths, starting at the same place,
will move away at different speeds and thus will disperse or spread out. The phe-
nomenon is called dispersion—hence the name dispersion relation for equation (5.3.8).
The concept is quite a general one, and any waves whose speed varies with wave-
number are called dispersive waves. The effect of dispersion is particularly noticeable
with ocean waves that are generated by a distant storm (Barber and Ursell, 1948).
Since long waves (small x) travel fastest, these arrive first and may precede shorter
waves from the same storm by one or two days. The fact that waves of different length
become separated and arrive at different times explains why swell is so regular
compared with waves produced by local winds.

The dispersion effect has been used to identify the point of origin of waves that
have traveled extraordinarily large distances (Snodgrass et al., 1966). One set of waves
observed in the North Pacific was estimated to have traveled halfway around the
world from the Indian Ocean, the great circle route passing south of Australia. The
direction of travel is determined from the orientation (in deep water) of the wave
crests, and the distance is calculated from the difference in arrival time of waves of
different length, and hence of different frequency. The dominant frequency increases
progressively with time as the progressively shorter waves arrive, and the rate of
change of this frequency gives the distance of travel.

Despite the effects of dispersion, in practice waves are never purely sinusoidal,
but are instead a mixture of waves of different wavenumber. As a wave train travels
away from its source region, the waves at a particular point become more “pure” in
the sense that the wavenumbers that give significant contributions to the wave become
confined to a narrower band. Hence there is particular interest in waves made up of
components with nearly equal wavenumber. The simplest example (Stokes, 1876)
consists of a superposition of two plane waves with equal amplitude:

II

n = cos[(k + dk)x — (w + dw)t] + cos[(k — dk)x — (o0 — dw)t], (5.4.1)

e

Il

1 = 2cos(ok x — dw 1) cos(kx — wt),

(5.4.2)
and this example is shown in Fig. 5.7. Equation (5.4.2) shows that this can be in-

terpreted as a wave that is approximately sinusoidal with phase ® = kx — ot
but with amplitude

2c0s(0k x — dw t) & 2 cos[Sk(x — tdw/dk)], (5.4.3)

which varies from place to place and from time to time. Because 5k is small, however,
the amplitude change from one wave crest to the next is only slight, and so (5.4.2) is an
example of what is called a “slowly varying wave train.” Individual wave crests move
with the phase speed w/k, but the region in which waves have large amplitudes

moves with speed
@, = el

g

(5.4.4)
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5.7. A superposition of two sinusoidal traveling waves, illustrating the difference Umﬁs\wm:anrwwvmma G
. i f the regions of large amplitude. The group
the wave crests and the speed ¢, of the mJ<m_o_um of %m <<m<m@@..m; o i <<m.m<mm g
ity ¢, equals dw/dk, which in this case is equal to 3¢, as for deep-wal :

ven by (5.4.3). This speed is called the group velocity. It depends on the derivative
) because the region of large amplitudes occurs where the phase difference between
i lue.

se two component waves has a certain <m. . : :

A more mowoam_ example (Landau and Lifshitz, 1959, mmoﬁos 66) oosm_m.ﬂm of a
‘ rposition of many waves with wavenumber close to k, but with a range of 9@0.35
es of k. This combination also may be considered as a superposition .Om mo:.:_.o.bm
e form (5.4.2) with a common factor cos(kx — wt). It follows that if the initia
rposition has the form

n = f(x)cos kx, (5.4.5)

, to the same level of approximation as (5.4.3), the solution at time ¢ will have

 form

n = f(x — tdo/dk) cos(kx — wt). (5.4.6)

0 other words, since each contribution to the amplitude moves with the group
ocity, the amplitude function f moves with the group ﬁ.&oo&\ as well. H_: %mmg in
ich f is significant only in a finite region, the waves in this region are called a wave

p. Hence the name “group velocity” for the velocity at which ;.Eo group .Eo<mw.
A description of the phenomenon (which preceded the explanation) was given by
0tt Russell (1844) [see Lamb (1932, Section 236)]:

: ~ It has often been noticed that, when an isolated group of waves, of sensibly the
~ same length, is advancing over relatively deep water, the <.o_00.:% of the m.mocm
- @8 a whole is less than that of the individual waves composing it. If mzosmos:
~ fixed on a particular wave, it is seen to advance through the group, gradua M
dying out as it approaches the front, whilst its former place in the mwo‘.wwmﬂ
- Occupied in succession by other waves which have come forward from the rear.



n=2cos(0k x + 8l y — S 1) cos(kx + Iy — wt). (5.4.7)

As before, this can be interpreted as a wave of slowly varying amplitude, and the

amplitude factor is now [instead of (5.4.3)]

2008(0kx + 61y — dwit) ~ 2 cos[Sk(x — t 0w /dk) + 6l(y — t0w/dl)]. (5438

If a set of such waves with different values of 6k and §] Is superposed and the initia]

form of the waves [cf. (5.4.5)] is

N = f(x,) cos(kx + ly), (5.4.9)

then, to the level of approximation of (5.4.8), the form at time ¢ will be
i 0 e DLl Ol A t0w/dl) cos(kx + Iy — wt). (5.4.10)
The velocity ¢, of translation of the group is therefore the pector quantity

¢, = (do/ok, de/ol), (5.4.11)

particular type of wave, and it will be useful again and again in future chapters.
Further discussion is given by Lighthill (1965, 1978).

5.5 Short-Wave and Long-Wave Approximations

The length scale that appears in the dispersion relation (5.3.8) and hence deter-
mines the character of the waves is the fluid depth H. Different approximations apply,
Qowo:&:m on how k™! relates to H. F or the case of short waves, i.e., for k7! « H,
(5.3.8) is approximated by (see dashed line in 1915 515)

®® = g (5.5.1)
and (5.3.6) by

P’" = pgn, cos(kx + Iy — wt) exp(xz). (5.5:2)

These are also called deep-water waves because H > - '. The pressure perturbation
and the motion are confined to a distance of order k™! from the surface, so propa-
gation is unaffected by the bottom. For instance, the dominant waves that one sees
In the ocean have periods 27¢~! of order 10's. By (5.5.1) a deep-water wave of period
10 s has a wavelength 27xc~ ! of about 150 m, its amplitude has an e-folding depth of
25m, and the phase speedis 15ms~*. [Such a phase speed is typical because it matches

Eo.cs.:m speeds found near the water surface in the generation regions, and the
period follows by (5.5.1).]

. i i i Hydrostatic Approximation -
> Adjustment under Gravity in a Nonrotating Systen low-Water Equations Derived Using the Hy P

ter th

3.8t
,mﬁ_“

servin

. The dividing line

pt = —1p\1/2

sth 27! less than 2nH ~ 30 km and periods 2ne ™" less than 2n(g~"H)
K

: se are also called shallow-water waves because H « K
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imation i for such waves when the depth is
- approximation is reasonable
j mmmvwaw\wwoamw%om the ocean is about 5-km deep, these waves move om\oﬂ Q_MMM
mbmoo -?mﬁoa waves, and only feel the effects of the co.zoB éw_o: t owﬂon £z
o g %wo frequency remains constant as they move into mrm. oMz:so\o Sw@n
. ves become shorter and the phase speed Qo.oammom. For ins ﬂ vm -
h &Nmumcooa to 1 m, the wavelength of a 10-s wave mm 30 m mMnM Mrw Mnowmuom %m T
i i h and phase speed tha
T deductions about wavelengt . : .
- m\_, %% w beach can lead to erroneous conclusions about their properties
g wave
i between deep-water and shallow-water waves &%omam on :Mo
i deep-water waves must have wave-
1. For the deep ocean, which has depth 5 km, deep i

h ceds must be less than 200 m s~ *. For a continental shelf of depth 50 m,
Phase sp

he other hand, deep-water waves must have wavelength less than 300 m, period
eo )

than 15 s, and phase speed less than 20 m s~ 1 Since this book is primarily about
an 15s,

ge-sca 1)

ed for additional information to Kinsman (1965), Lamb (1932), O. M. Phillips

77), and Stoker (1957). . ¥ : aidod
F ww”omwﬁwﬂoﬁamaos to (5.3.8) for long waves, ie., for k=' > H, is (see

in Fig. 5.5) AL A j (5.5.3)

w

e = sk (5.5.4)
1 and they are :c:&m-
B L o o i At i
“MWMOmMoM& owow MMHWM\HNW _m.r.m_w of depth .u.o m is less @.% a factor of ten, i.e.,
,,a 20 m s~ !. The corresponding approximation to (5.3.6) is

il = ey Cesllies Sk iy — @) (5.5.5)

i i tion
, the pressure perturbation is independent of depth. Since the density perturba

s d
: 10, this is precisely the result that would be obtained ._m the pressure were MMN__HNMM@
) s mro hydrostatic equation (3.5.5). It will be shown in the next section

: G
med that the pressure is approximately equal to Emﬁ given wu\ ﬁrcwmﬂu%mwmwﬂmm, m_vo
ation (called the hydrostatic approximation), (5.5.3) is obtained as :

] imati -wave
1 other words, in this case at least, the hydrostatic approximation and the long

i limit,
shallow-water) approximation are equivalent. Note also that H_: &M MWWMMM kg
(5.3.7) for w shows that the vertical velocity increases linearly wi

€ bottom to a maximum of 35/t at the surface.

Shallow-Water Equations Derived Using
- the Hydrostatic Approximation

i 4 i ueh
‘The emphasis of this book is on motions cﬁz.w roENos.S_ m.om_oﬁ _m_wwo,\MﬂM . m:
mpared with the vertical scale for the hydrostatic approximation to
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: flux from the right-hand face and the inward flux across the left-hand face is
re. to the appropriate level of approximation,

ox dy d(pu(H + n))/0x.

H ccount of the other two sides and equating the net rate of inflow to the rate of
oa i
= of the total mass p(H + 1) 6x 0y then give
f gy (O ik K (5.6.7)
. Ty —[(H+ nu] + —[H + n)]
[ ) 1 o |
i ided that the horizontal velocity
i n for large perturbations, provid . :
b <mWQ: MMM v are independent of depth. Equation G.m.d.om: in fact be QQEQQ.@%
__MMW (5.2.4), using (5.2.8) and (5.2.9) as boundary conditions. If the perturbation

1, (5.6.7) reduces to the linear equation
on/ot + 0(Hu)/d0x + 0(Hv)/dy =0, (5.6.8)

) i tant.
h in turn reduces to (5.6.6) when H is cons . e
2 _M@meos with only one dependent variable # can be obtained by eliminating

om (5.6.4), (5.6.5), and (5.6.8). The result is (Lagrange, 1781)

this section, the pressure is assumed at the outset to satisfy the hydrostatic equation .

\mﬁ\mw = —pg. G.Q.C,

This leads to simplifications in the treatment of the equations, and the result is found
to be the same as that obtained ,,\3\ applying the limit xH — 0 to the more genera]
solution. ,

For a homogeneous fluid, G.@C implies that the perturbation pressure p’ satisfies

\

{

( ,,4.\ %@\\DN —_ O.\. AM@NV
and so the boundary condition (5.2.11) at the surface implies

P =g (5.6.3)

at all points within the fluid [in agreement with (5.5.5)]. The momentum equationg :
(5.2.5) therefore become

ou/ot = —gon/ox, (5.6.4)
ov/0t = —gon/oy, (5.6.5) ,

showing that time-varying currents are independent of depth. This simplifies the
continuity equation (5.2.4), which can now be integrated with respect to depth, using
as boundary conditions (5.2.8) and (5.2.10). The result is

on/ot + H(ou/ox + 0v/0dy) = 0. (5.6.6)

The quantity (ou/dx + 0v/0y) is called the horizontal divergence, being the diver-
gence of the horizontal component of the velocity.

The continuity equation can also be derived from first principles by considering
the fluid column above a fixed element of area, as shown in F ig. 5.8. Suppose (u, v) is
the velocity at the center of the element, and # the surface elevation there. Since (u, v)
is independent of depth, the rate of mass flux across the central section normal to the
X axis is pu times the area (H + 1) dy of the section. The difference between the

i 0y O o Oy, (5.6.9)
. i G

showing that the hydrostatic approximation _om.mm to the mm_MaH MOMEH%MNMM
ave approximation. Also, as Lagrange Q.\.w: pointed out, (5. ._u ) is o
quation for sound propagation, so there is a complete mbm_.om QMN.@@ bt
itude shallow-water waves and mEm:-wB@:EQw sound waves in two HBgMHo om
wave equation (5.6.10) has very simple solutions when there isno aoﬁobﬁ en
particular, if the fluid is initially at rest and has surface displacemen

n = G(x),
e solution of (5.6.10) is
pltHemu-§& [Henu] 8} QIIV R 5 = 3[6Cx + cf) + G(x — ct)]. (5.6.11)
H+n e o corresponding fluid velocity distribution obtained from (5.6.4) is
e IWnLQﬁQAx + ct) — G(x — 2&. (5.6.12)
# [€ 5.9 shows two special cases. (These will be oo::mmﬁom E O:ﬁ:ﬁ 7 with the
8x nding solutions in a rotating system.) Case (a) has initial displacement the

that in Fig. 5.2a, namely, *
Fig. 5.8. The mass balance for a fluid column of area dx dy when the horizontal velocity components u, v are
independent of depth. The mass fluxes across two of the planes are shown.

N = —1n, sgn(x), (5.6.13)
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(b)

Fig. 5.9.  Solutions of the shallow-water wave equation for two different initial surface displacements. In case
(@) waves move out from the initial discontinuity with speed ¢, leaving behind zero displacement but a steady
motion from right to left with velocity ¢~ 'gn,, where #, is the magnitude of the initial surface elevation. In case
(b) there are two pairs of wave fronts. The velocity is zero everywhere except where the surface elevation is il
where 1, is the initial displacement at the center. In these places, the velocity is 2™ 'gn, and directed away from

the axis of symmetry. Since no motion occurs at the axis of symmetry, a wall could be placed there without alter-
ing the solution.

where sgn(x) is the sign function (sign of x) defined by

1 foRE ()]

) = —1 Toic: <o)

(5.6.14)
“Wave fronts,” consisting of discontinuities in both surface elevation and fluid
velocity, propagate out from the initial discontinuity as shown. The fluid at any
point remains at rest until a wave front passes, after which the surface elevation is
zero and there is a current directed toward the region of low surface elevation.

The case shown in Fig. 5.9b has the initial perturbation confined to a finite region,
the initial surface elevation being given by

30.\. ‘X\._ < H\u

6118
0 e (5.6.15)

_ il
rgetics of Shallow-Water Motion

s case there is symmetry about the center line, which could ﬁ.rmammoﬂo be replaced
i o:& boundary, with no motion taking place across this line.

~ Energetics of Shallow-Water Motion

i i derived directly from the
roy equations for shallow-water motion can .@o ( :
JzoMM“M NM:M&OE (5.6.4) and (5.6.5) and the ooa_:EJ\. omrm:os (5.6.8). The
# nical energy equation [cf. (4.6.3)] is obtained by multiplying (5.6.4) by pHu,
: 5) by pHv, and adding. This gives

s

0 0
I:!@._.Ec}:.

s (5.7.1)
0x ay

Wmum@N +v*)] = —pg
e quantity SpH(u® + v*) being the kinetic energy per unit area. Now by the
tion in Section 4.7, the potential energy per unit area 1s

n n

p®@dz =

sk =H

pgz dz = Spg(n* — H?), (572
so the perturbation potential energy per unit area is w.nmsm. The on.sma.oc ooﬁoﬂ
ding to the potential energy equation (4.7.2) is obtained by multiplying (5.6.8
/ pgn to give

g 2) = £ i (573
M@vmil —pg :mxﬁ?v:%ﬁ v) \

g g S ol 574
= [2pHW* + v*) + 3pgn’] + oy (gHun) + & (pgHvn) = 0. (574

ect to x over the region |x| < X gives

dE/dt + F(X,0) — F(—X,1) = 0, (5.7.5

D.¢

E = [1pHW* + v*) + 3pgn’] dx (5.7.6

=
total perturbation energy per unit length in the y direction in the region x| < 3

F(x,t) = pgHun (577

© rate per unit length in the y direction of transfer of energy in the x directios
mnt x. . ;
'Or the case shown in Fig. 5.9a, the perturbation potential energy per unit area 1
o in the undisturbed region in which the kinetic energy is zero. After the wav
assed, the perturbation potential energy has dropped to zero, but the kineti
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