KOLMOGOROV CASCADE

The velocity fluctuations of a high Reynolds number
flow in a three-dimensional velocity field are typically
dispersed over all possible wavelengths of the system,
from the smallest scales, where viscosity dominates the
advection and dissipates the energy of fluid motion, to
the effective size of the system. This is not so bizarre:
our everyday experience tells us it is so. On the corner
of a city street, one might watch the fluttering and
whirling of a discarded tram ticket as it is swept by an
updraught, driven by localized thermal gradients from
traffic or air-conditioning units; later, on the television
news, one might see reports or predictions of storms on
the city or district scale, and a weather map with isobars
spanning whole continents. If you are a sailor you will
know how to sail, or not, the multi-scaled surface of
a turbulent ocean (Figure 1). The mechanism for this
dispersal is vortex stretching and tilting: a conservative
process whereby interactions between vorticity and
velocity gradients create smaller and smaller eddies
with amplified vorticity, until viscosity takes over
(Tennekes & Lumley, 1972; Chorin, 1994).

An alternative, crude but picturesque, description of
multi-scale turbulence was offered by the early 20th
century meteorologist Lewis Fry Richardson (1922)
in an evocative piece of doggerel: “big whirls have
little whirls that feed on their velocity, and little whirls
have lesser whirls and so on to viscosity”. Richardson’s
often-quoted rhyme is apparently a parody of Irish
satirist Jonathan Swift’s verse: “So, naturalists observe,
a flea—Has smaller fleas that on him prey—And
these have smaller still to bite—And so proceed ad
infinitum.”

The statistics of the velocity fluctuation distribu-
tion in turbulent flows were quantified rather more
elegantly and rigorously by the mathematician An-
drei N. Kolmogorov , who derived the sub-
sequently famous “—5/3 law” for the energy spectrum
of the intermediate scales, or inertial scale subrange,
of high Reynolds number flows which are ideally ho-
mogeneous (or statistically invariant under translation)
and isotropic (or statistically invariant under rotation
and reflection) in three velocity dimensions. Two thor-
ough, but different in style and emphasis, accounts of
Kolmogorov’s turbulence work are Monin & Yaglom
(1971) and Frisch (1995).

Kolmogorov’s idea was that the velocity fluctuations
in the inertial subrange are independent of initial and
boundary conditions (i.e., they have no memory of
the effects of anisotropic excitation at smaller wave
numbers). The turbulent motions in this subrange
therefore show universal statistics and the flow is
self-similar. From this premise Kolmogorov proposed
the first hypothesis of similarity as: “For the
locally isotropic turbulence the [velocity fluctuation)]
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Figure 1. Turbulent action on many different scales in a high
Reynolds number flow: woodcut print by Katsushika Hokusai
(1760-1849).

distributions F, are uniquely determined by the
quantities v, the kinematic viscosity, and ¢, the rate
of average dispersion of energy per unit mass [energy
flux].” His second hypothesis of similarity is: “For
pulsations [velocity fluctuations] of intermediate orders
where the length scale is large compared to the scale of
the finest pulsations, whose energy is directly dispersed
into heat due to viscosity, the distribution laws F, are
uniquely determined by F and do not depend on v.”
Kolmogorov derived the form of the distribution or
energy spectrum, which we denote as £(k), where k
is the wave number given by k? = kf + k% + kf, over
the inertial subrange simply by dimensional analysis.
By the first and second hypotheses, the spectrum must
be a function of the energy flux and wave number and
independent of the viscosity or any other parameters:

Ek) = f(e.k).

By reference to the table below (after Vallis, 1999) we
find

E(k) ~ ¢*3g(k) (since k is time-independent)
e Bt 3l (1)

where C is a dimensionless constant which Kol-
mogorov (and subsequently many others, see Sreeni-
vasan, 1995) deduced from experimental data to be of
order 1.

Quantity Dimension
Wave number 1/length
Energy per unit mass length? /time?
Energy spectrum £ (k) length3 /time?

Energy flux e energy/time ~ lengthzltime3

The physical picture associated with Equation (1)
is that the kinetic energy of large-scale motions
(whirls or eddies) is successively subdivided and
redistributed among stepwise increasing wave number
components (or smaller and smaller whirls and eddies),
until the action of viscosity becomes competitive.



KOLMOGOROV CASCADE

Although this process has come to be known as the
“Kolmogorov cascade”, the cascade metaphor was not
used by Kolmogorov. Its first use in this context is
apparently due to Onsager (1945), who also highlights
another assumption underlying the —5/3law: that
the modulation of a given Fourier component of the
velocity field is mostly due to those others that belong
to wave numbers of comparable magnitude.

So Kolmogorov’s energy distribution says that ¢ is
the only relevant parameter for turbulence in the inertial
scale range. Can this really be true? Does the notorious
“problem of turbulence” really boil down to such a
simple relation for intermediate wavenumbers? (The
fabled Problem of Turbulence was well summed up by
Horace Lamb in 1932: “When I die and go to Heaven
there are two matters on which I hope enlightenment.
One is quantum electro-dynamics and the other is
turbulence of fluids. About the former, I am really
rather optimistic.”) Understandably, for a turbulence
result that seems so simple and universal, so flimsily
derived yet so powerful, much effort has gone into
verifying the wave number spectrum, Equation (1). It
is difficult to create extremely high Reynolds number
flows in the laboratory, but they exist naturally in the
ocean. The first and still the most exciting verification of
Equation (1) was carried out by Grant et al. (1962), who
made a remarkable series of measurements of turbulent
velocities from a ship in the Seymour Narrows, part of
the Discovery Passage on the west coast of Canada,
where the Reynolds number is ~10% (see Figure 2).
A spectral exponent close to —5/3 has since been
measured many times in materially different flows with
high Reynolds number (e.g., Zocchi et al. (1994) in
helium).

All this would seem to wrap up the problem of
turbulence in the inertial scale range. Or does it?
There must surely be a catch somewhere! As usual,
the devil is in the details. Kolmogorov himself made a
“refinement”, as he delicately put it, of his hypotheses
(Kolmogorov, 1962). It relates to the problem of small-
scale intermittency, or the uneven distribution in space
of the small scales. Clearly, intermittency is inherited
from initial and boundary conditions, and the side-
effects on ¢, the assumed-constant rate of energy
transfer, are not insignificant.

In fact, there is now quite a log of complaints about
the —5/3 law, despite its all-pervasive influence on
turbulence theoretical and experimental research:

e The hypothesis of local isotropy refers to infinite
Reynolds number so is not applicable to a real fluid.

e No-one has ever extracted the —5/3 law from the
Navier—Stokes equation, or vice versa.

e [s it not a circular argument that to define an inertial
subrange one has to assume a cascade process, and to
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Figure 2. Data re-plotted from Grant et al. (1962), show-
ing a Kolmogorov cascade over nearly three decades.
¢(k) is the measured one-dimensional spectrum func-
tion, related to the three-dimensional spectrum function as

E(k) =k202¢ (k)/0k? — ko (k)/dk.

postulate a cascade one has to assume that an inertial
subrange exists?

e What about stochastic backscatter?

e Direct interaction between large and small scales can
short-circuit the cascade.

o Katul etal. (2003) found that the effects of boundary
conditions were evident in the inertial subrange of
an atmospheric surface layer.

e The —5/3law is demonstrably invalid in two
dimensions. And so on.

What is the verdict on the Kolmogorov cascade?
Chorin (1994, pp. 55-57) has a bet each way; in the
light of experimental verifications of the —5/3 law
he considers that it may be correct despite flaws in
the arguments supporting it. The scenario proposed as
being entirely consistent with Kolmogorov’s theory is
that energy can and does slosh back and forth across the
spectrum, once the inertial range has been set up, with
the energy dissipation ¢ being the (presumably average)
difference between energy flows in both wave number
directions.

The Kolmogorov cascade is starting to sound less
and less like a waterfall, which is one-way, and more
and more like an energy exchange network.

ROWENA BALL

See also Chaos vs. turbulence; Navier—Stokes
Equation; Turbulence ‘

Further Reading

Chorin, A.J. 1994. Vorticity and Turbulence, New York: Springer

Frisch, U. 1995. Turbulence: The Legacy of A. N. Kolmogorov,
Cambridge and New York: Cambridge University Press

Grant, H.L., Stewart, R'W. & Moilliet, A. 1962. Turbulence
spectra from a tidal channel. Journal of Fluid Mechanics,
12: 241-268



Katul, G.G., Angelini, C., De Canditiis, D., Amato, U,
Vidakovic, B. & Albertson, J.D. 2003. Are the ef-
fects of large scale flow conditions really lost through
the turbulent cascade? Geophysical Research Letters,
30(4), 1164,doi:10.1029/2002GL015284

Kolmogorov, A.N. 1941a. Local structure of turbulence in
an incompressible fluid for very large Reynolds numbers.
Comptes rendus (Doklady) de [’Academie des Sciences de
I'UR.S.S., 31: 301-305 Reprinted in: S.K. Friedlander &
L. Topper (editors). 1961. Turbulence: Classic Papers on
Statistical Theory, New York: Interscience Publishers

Kolmogorov, ANN. 19415. On degeneration of isotropic
turbulence in an incompressible viscous liquid. Comptes
Rendus (Doklady) de I’Academie des Sciences de ['U.R.S.S.,
31: 538-540, ibidem.

Kolmogorov, A.N. 1962. A refinement of previous hypotheses
concerning the local structure of turbulence in a viscous
incompressible fluid at high Reynolds number. Journal of
Fluid Mechanics, 13: 82-85

KOLMOGOROV CASCADE

Monin, A. S. & Yaglom,A.M. 1971. Statistical Fluid Mechanics.
Mechanics of Turbulence, Vol. 2, Cambridge, MA: MIT Press

Onsager, L. 1945. The distribution of energy in turbulence.
Physical Review, 68: 286

Richardson, L.F. 1922. Weather Prediction by Numerical
Process, Cambridge: Cambridge University Press

Sreenivasan, K.R. 1995. On the universality of the Kolmogorov
constant. Physics of Fluids, 7(11), 2778-2784

Tennekes, H. & Lumley, J.A. 1972. 4 First Course in Turbulence,
Cambridge, MA: MIT Press

Vallis, G. 1999. Geostrophic turbulence: The macrotur-
bulence of the atmosphere and ocean. Lecture notes,
www.gfdl.gov/~gkv/geoturb/

Zocchi, G., Tabeling, P., Maurer, J. & Willaime, H. 1994.
Measurement of the scaling of the dissipation at high
Reynolds numbers. Physical Review E, 50(5): 3693-3700



	Kolmogorov1
	Kolmogorov2
	Kolmogorov3

