Syllabus
AOS 718
Fall 2006

(I) Governing Equations for Deep Convection (4)
 a. Moist thermodynamics
 b. Nonhydrostatic flow, scale analysis

(II) Linear Theory of Unbalanced Flow (6)
 a. Stable flow, vertical structure equation
 b. Effect of latent heating
 c. Forced Unbalanced/Balanced flow (Wave CISK)
 d. Advective and propagating solution modes
 e. Geostrophic Adjustment

(III) Scale Interaction (2)
 a. Reynolds averaging, apparent heat source, sink (Yanai, Esbensen and Chu)
 b. Cumulus parameterization
 i. Kuo
 ii. Arakawa-Schubert
 iii. Betts
 iv. Kain-Fristch

(IV) Outflow Scale Interactions (2)
 a. C-S1 (1) (Emanuel, Seaman, Wolf)
 b. IAKE, anvil interaction
 c. Convection sorting

(V) Potential Vorticity of Deep Convection (2)
 a. Generation of PV
 b. Organization of PV
 c. PV sorting
 d. Interaction of Convection with upper level PV anomaly (1-2)

(VI) MCS dynamics (6)
 a. Unbalanced MCSs
 i. Resonant GWs
 ii. Density Current forcing
 iii. Houze models
 b. Hybrid MCSs
 i. Momentum forcing
 ii. Thermal Forcing
 1. Synoptically forced
 2. Orographic circulations
 3. Land/sea breeze circulations

(VII) Tropical cyclone dynamics (10)
 a. Steady state dynamics of mature system (Carnot Engine) (2)
 b. Role of convection versus Carnot energy sources (.5)
 c. Genesis of TC dynamics (8)
 i. Geostrophic adjustment
 ii. Outflow feedback
 iii. Microphysics
 iv. Hot towers
 v. PV sorting
 vi. Wind shear
 vii. Sea Spray
 viii. Rain Bands
ix. Eye wall maintenance
x. Eye wall replacement