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ABSTRACT

The relationship between water vapor path W and surface precipitation rate P over tropical oceanic regions
is analyzed using 4 yr of gridded daily SSM/I satellite microwave radiometer data. A tight monthly mean
relationship P (mm day21) 5 exp[11.4(r 2 0.522)] for all tropical ocean regions and seasons is found between
P and a column-relative humidity r obtained by dividing W by the corresponding saturation water vapor path.
A similar relation, albeit with more scatter, also holds at daily time scales, and can be interpreted as a moisture
adjustment time scale of 12 h for convective rainfall to affect humidity anomalies on 300-km space scales.
Cross-spectral analysis shows statistically significant covariability of actual and r-predicted precipitation at all
frequencies, with negligible phase lag. The correlation of actual and r-predicted precipitation exceeds 0.5 on
intraseasonal and longer time scales.

The SSM/I retrievals of W and P are found to be skillful even at daily time scales when compared with in
situ radiosonde and radar-derived area-averaged precipitation data from Kwajalein Island, but the microwave
estimates of daily P scatter considerably about the radar estimates (which are considered to be more reliable).
Using the radar-derived precipitation in combination with microwave-derived W yields a daily r–P relationship
at Kwajalein similar to that derived solely from microwave measurements, but with somewhat less P associated
with the highest values of r. This emphasizes that the absolute calibration of the r–P relationship is somewhat
dependent on the datasets used to derive r and especially P. Nevertheless, the results provide a useful constraint
on conceptual models and parameterizations of tropical deep convection.

1. Introduction

As known to scientists and nonscientists alike, it tends
to be humid when and where there is sustained deep
convective rainfall. Raymond (2000) even investigated
the large-scale dynamical consequences of a bulk pa-
rameterization of tropical rainfall rate P in terms of a
vertically integrated moisture deficit from saturation.
However, there has been comparatively little quantita-
tive investigation of the relation of P to humidity and
its vertical structure, and how this relationship depends
on the time and space scales under consideration.

Analyses of radiosonde data from various tropical
locations have shown that episodes of deep convection
are followed by increases in mid- to upper-tropospheric
relative humidity, while a relatively moist low- to mid-

Corresponding author address: Christopher S. Bretherton, De-
partment of Atmospheric Sciences, University of Washington, Box
351640, Seattle, WA 98195-1640.
E-mail: breth@atmos.washington.edu

troposphere helps initiate tropical deep convection (e.g.,
Numaguti et al. 1995; Ushiyama et al. 1995; Yoneyama
and Fujitani 1995; Johnson and Lin 1997; Brown and
Zhang 1997; Sherwood 1999; Sherwood and Wahrlich
1999; Sobel et al. 2004). Zeng (1999) showed how sup-
plementary use of satellite-derived column water vapor
path W could be used to improve predictions of tropical
rainfall from infrared brightness temperature.

The data analyzed by these authors did not permit
them to attempt a comprehensive observational assess-
ment of relationships between P and humidity on dif-
ferent time scales. In this study, we use 4 years of daily
microwave retrievals of P and W over the entire tropical
ocean to examine this issue—enough samples in time
and space to clearly identify any correlation between
these variables. At daily time scales, P (and to a lesser
extent W) are undersampled at any location and subject
to potentially serious retrieval biases; to test their ro-
bustness we use a dataset including several months of
radiosonde and ground-based radar-derived area-aver-



1518 VOLUME 17J O U R N A L O F C L I M A T E

FIG. 1. The four tropical ocean analysis regions (labeled and separated by land or solid black lines) and tropical radiosonde sites used in
this paper (squares). Light shading indicates regions where SSM/I-derived 1998–2001 average precipitation exceeded 8 mm day 21. Dark
shading indicates land grid points.

aged precipitation measurements centered on Kwajalein
Island in the central Pacific ITCZ.

2. Data description

We obtained retrievals of P and W (retrieval algorithm
version 5) from Remote Sensing Systems Inc. (more
information available online at http://www.remss.com)
for all available Special Sensor Microwave Imager
[(SSM/I) on Defense Meteorological Satellite Program
(DMSP) satellites F10, F11, F12, and F14, 1400-km-
wide swaths] and Tropical Rainfall Measurement Mis-
sion (TRMM) Microwave Imager (TMI; 700-km-wide
swaths) overpasses in the years 1998–2001. Details of
the imager and the retrieval algorithms are given by
Wentz and Spencer (1998). The W, P, near-surface
winds and column-integrated liquid water are simulta-
neously estimated using the brightness temperature ob-
served at four frequencies (19.35, 22.235, 37, and 85.5
GHz). The retrieval algorithm is suitable for use only
over ocean areas. The data were provided on a 0.258 3
0.258 grid. For analysis purposes, we first calculated a
daily average at each ocean grid point based on all over-
passes with valid data (typically 2–6), then averaged
this daily data onto a 2.58 3 2.58 grid, retaining latitudes
between 208S and 208N. We did not attempt to correct
for possible sampling biases associated with the diurnal
cycle.

As we discuss in the next section, we also found the
daily averaged saturation water vapor path W* to be a
useful field. To compute W*, we obtained twice-daily
European Centre for Medium-Range Weather Forecasts
(ECMWF) operational global temperature analyses at
standard pressure levels from the Data Support Section
of the National Center for Atmospheric Research
(NCAR), from which we computed saturation specific
humidity at each pressure level and grid point. We ver-
tically integrated the saturation specific humidity and
averaged over the two analyses each day to compute a
daily average W* at each grid point point. Because tem-
perature above the boundary layer varies by only 1–2
K over the tropical oceans, and this variation occurs on

broad space and time scales adequately sampled by the
global atmospheric observation system, we assume this
provides a fairly accurate determination of W*.

3. SSM/I-derived relationships between P and W

a. Daily mean relationships

We first looked at the relation between daily averaged
SSM/I P and W for all 2.58 3 2.58 ocean-covered grid
boxes between 208S and 208N. A motivation for con-
sidering a daily time scale is that tropical oceanic con-
vective precipitation averaged over a 2.58 3 2.58 area
has an autocorrelation time scale on the order of a day.
With some hindsight, this suggests that any universal
nonlinear relationships between P and water vapor
might emerge most clearly on this time scale. On longer
time scales such relationships can get convolved with
geographical or seasonal differences in the level of day-
to-day humidity variability.

We compared four different tropical ocean regions
shown in Fig. 1: the Indian Ocean, the west Pacific, the
east Pacific, and the Atlantic Ocean. All include areas
with 48-month-average rain rates exceeding 8 mm
day21, as well as lightly precipitating areas.

For each region, all days in 1998–2001 at all locations
were stratified into 1-mm water vapor path bins. Figure
2a compares the bin-averaged P for the four ocean re-
gions. In all four regions, P increases rapidly with W.
However, the west Pacific and Indian Ocean regions tend
to have a smaller P for a given W (by up to 50% for
W between 50 and 55 mm). Figure 2b shows the number
of gridpoint months in each region for each W bin. Each
region is well-represented in all W bins between 30 and
55 mm. Above W 5 55 mm, the number of daily samples
rapidly fall toward zero, especially in the Atlantic re-
gion.

The west Pacific/Indian Ocean region has a slightly
higher mean tropospheric temperature than other parts
of the tropical oceans. Following Raymond (2000), one
might conjecture that a given intensity of convection
will produce a universal relative humidity profile. This
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FIG. 2. (a) Mean daily averaged precipitation P in 1-mm-wide bins of water vapor path W, for the four tropical
ocean regions in Fig. 1 for all months in 1998–2001. (b) Number of observations in each bin in the four regions.

would naturally lead to higher W for a given precipi-
tation rate in the west Pacific and Indian Ocean com-
pared to other ocean basins. With this conjecture in
mind, we computed daily values of column-averaged
relative humidity r 5 W/W*, and sorted the data into
bins of width 0.01 in r. Figure 3 shows bin-averaged P
versus r. All four tropical ocean basins now more close-
ly follow the same roughly exponential curve. In ad-
dition, all regions are now adequately represented in the
humid tail of the distribution.

To quantify the r–P dependence, we compute the pre-
cipitation averaged over all grid points in all regions
and days in each r bin with more than 2500 data points
(this eliminates only the extreme ends). The crosses in
Fig. 4 show the bin-mean precipitation. For every 5%
increase in r, mean P more than doubles. We use a
nonlinear least squares method to fit this with an ex-
ponential relationship of the form

P (r) 5 exp[a (r 2 r )], a 5 15.6, r 5 0.603,d d d d d

(1)

shown as the solid curve. This fit and all the results in
Fig. 4 are of course dependent on the datasets used for
r and particularly P. For instance, the 18-month-average
of the Kwajalein radar-derived precipitation discussed

in section 4 is about 30% less than the corresponding
SSM/I-derived precipitation.

There is considerable variability about the mean r–P
relationship. The 25th, 50th, and 75th percentiles of the
daily P data for each r bin are plotted in Fig. 4 as dotted
lines. The daily P has a skewed distribution in each bin
(hence the mean substantially exceeds the median, lying
roughly on the 65th percentile). The interquartile var-
iability of P is roughtly a factor of 4 for the moist,
heavily precipitating bins, and an even larger factor for
the lightly precipitating bins. Some of this variability is
real, but some may also reflect SSM/I sampling uncer-
tainty. We will explore this issue using the Kwajalein
radar dataset in section 4.

Another compelling demonstration of how daily pre-
cipitation is better related to r than to W is shown in
Fig. 5. Figure 3 showed that using r in place of W
removed regional differences in the water vapor path
versus precipitation relationship. Figure 5 complements
this by examining temporal variations in the water vapor
path versus precipitation relationship in a persistently
convecting location subject to substantial intraseasonal
oscillations in tropospheric temperature and hence W*.
It compares daily time series of W and 0.8W* for July–
October 2001 from a grid point in the east Pacific ITCZ
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FIG. 3. (a) Mean daily averaged precipitation P in 1% bins of column-relative humidity t, for the four tropical
ocean regions in Fig. 1 for all months in 1998–2001. (b) Number of observations in each bin in the four regions.

FIG. 4. Distribution of daily precipitation P in 1% bins of column-relative humidity r for all tropical ocean grid points in all months of
1998–2001. Dots show the 25th, 50th, and 75th percentiles of precipitation in each bin. The Xs show the bin-mean precipitation. The solid
curve is the exponential fit (2).
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FIG. 5. Daily time series of SSM/I-derived W and ECMWF-derived 0.8W
*

for Jul–Oct 2001 from a grid point in the east Pacific ITCZ
(108N, 1258W). SSM/I-derived W is only plotted on heavily precipitating days (P . 8 mm day21).

(108N, 1258W). The W is only plotted on ‘‘heavily pre-
cipitating’’ days with P exceeding 8 mm day21. Ac-
cording to Fig. 4, these days should typically have 0.75
, W/W* , 0.8. In fact, their Ws predominantly lie just
below the W 5 0.8W* curve, and generally rise and fall
in proportion to the intraseasonal variations in W*. At
this location, the low-frequency swings in W are slightly
larger than those in 0.8W*. This suggests that the r–P
relationship may have some slight but interesting spa-
tiotemporal dependence, perhaps due to different ther-
modynamic conditions, wind shear and convective or-
ganization, stratiform/convective precipitation ratio,
surface fluxes, etc.

b. Monthly mean relationships

The daily mean analysis can be repeated with monthly
mean binning. As before, normalizing W into column-
mean relative humidity r reduces systematic interbasin
differences at high precipitation rates. The binned data,
shown in Fig. 6, again can be fit by an exponential:

P (r) 5 exp[a (r 2 r )], a 5 11.4, r 5 0.522.m m m m m

(2)

The monthly mean fit Pd(r) (solid curve) rises slightly
less abruptly with monthly r than its daily counterpart
(dashed curve). As one might expect, the monthly P
has a less skewed distribution with a narrower spread
between the 25th and 75th percentiles (630% at high
precipitation rates).

The monthly relation (2) between P and r can actually
be derived from the corresponding daily relationship (1)
as follows. For each day of a given month and every
grid point, we can use the daily r to predict the daily
P. We can then average the r and daily predicted P over
the month. The bin average of the latter versus monthly
average r almost exactly reproduces our monthly mean
r–P relationship. In different regions, we find that the

monthly r–P relationship varies slightly due to different
levels of typical daily variability in r within individual
months. To the extent that the r within a given fluid
column only evolves ‘‘slowly’’ from day to day, so will
its propensity to precipitate, that is, r may induce a weak
day-to-day thermodynamic ‘‘memory’’ in P. However,
P is sensitive to changes in r as small as a few hun-
dredths, so precipitation, evaporation, and differential
advection keep this memory quite short.

From our r–P relationships, we can define a convec-
tive moisture adjustment time scale tc for use in moist
adjustment parameterizations of cumulus convection in
simple models. A time scale derived from the monthly
r–P relationship is appropriate for models of the quasi-
steady seasonal tropical mean circulation such as the
Quasi-equilibrium Tropical Circulation Model (QTCM)
of Neelin and Zeng (2000) and simplifications thereof
(e.g., Sobel 2003; Sobel and Gildor 2004). This is be-
cause these models typically do not explicitly simulate
the large daily transients in convection. Instead they are
tuned to produce a nearly steady-state solution that re-
sembles a seasonal-mean climate and circulation. To
derive such a time scale, suppose that r is increased
from a typical reference value rref by a small amount
dr, while column temperature changes insignificantly,
so W* remains constant. The increased r raises the pre-
cipitation rate by dP 5 dr dP/dr(rref). We define tc as
the time scale over which the precipitation increase
would remove the excess water vapor dW 5 W*dr from
the column. Assuming reference values of saturation
water vapor path 5 72 mm and rref 5 0.72 typicalrefW*
of regions of active tropical convection (the latter is the
modal value of monthly mean r in the frequency plot
in Fig. 6b), we obtain

refdW W*
mt 5 5 ø 16 h. (3)c dP dP /dr(r )m ref

An analogous and slightly shorter convective moisture
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FIG. 6. (a) Distribution of monthly precipitation P in 1% bins of column-relative humidity r for all tropical ocean
grid points in all months of 1998–2001. Dots show the 25th, 50th, and 75th percentiles of precipitation in each bin.
The Xs show the bin-mean precipitation. The solid curve is the exponential fit (2) to the monthly data. For comparison,
the dashed curve is the daily mean exponential fit (1). (b) Number of observations in each bin in the four regions.

adjustment time scale ø 12 h based on the daily r–dt c

P fit would be more appropriate if such a model were
used to simulate convective variability on time scales
of a few days. The time scale depends on rref and is
shorter (longer) in a more (less) humid atmosphere.

c. Cross-spectral analysis

So far, we have established nonlinear relationships
between r and simultaneous P on daily and monthly
time scales. We performed a cross-spectral analysis to
systematically examine how the relationship between P
and r depends on the time scale, and to see if phase
lags between r and P are apparent at any time scale.
Cross-spectral analysis is a powerful tool, but unlike the
binning analysis, cross-spectral analysis 1) requires fill-
ing in of missing data, and 2) detects only a linear fit,
even if the underlying relationship is nonlinear.

Only ocean grid points with data for at least 98% of
the days during the entire 4-yr period, including both
the first or last day of the 4-yr period were used; this
requirement only eliminated 3 of about 2000 grid points.
At each grid point used, any days without data were
filled in by linear interpolation in time.

Cross-spectral analysis is best used to compare var-
iables whose anticipated relationship is roughly linear.
We also wished to weight regions and seasons of per-
sistent precipitation. Our approach was to construct a
daily ‘‘r-predicted’’ precipitation time series Pd(t) from
the daily time series r(t) at each grid point using (1).
The anticipated relationship, which is linear, is that at
each grid point

P(t) 5 P (t) 1 N(t),d (4)

where N(t) is temporally uncorrelated white noise (with
a noise amplitude that may depend on the signal am-
plitude Pd due to retrieval uncertainties and the physical
dependence of precipitation on physical variables other
than r). While a multiplicative noise model might be
more physically plausible, the additive noise model has
the advantage of de-emphasizing low-precipitation re-
gimes where both our physical model and the satellite
retrieval are suspect.

We computed a cross spectrum of Pd versus. P at each
grid point as follows. The 4-yr means of P and Pd at
each grid point were removed, then a cross-spectral es-
timate for that grid point was produced using a Ham-
ming window of 365 days, overlapping successive win-
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FIG. 7. Power spectra (mm2) for precipitation P (thick black) and constructed precipitation Pd (thin black), averaged over all tropical
ocean grid points.

dows by 182 days. These individual estimates were then
averaged over all tropical ocean grid points into a single
cross spectrum, from which the coherence, phase, and
transfer function were obtained. This geographic aver-
aging (justified by the apparent universality of the r–P
relationship) greatly decreases the sampling noise in the
spectral estimates. For an average over N statistically
indistinguishable and independent grid points, the spec-
tral estimate at each frequency is based on 4N inde-
pendent data windows, because the 4-yr dataset has four
fully distinct 365-day windows. Each of these windows
contributes 2 degrees of freedom (dof ). Even adjacent
grid points have a low correlation between their daily
precipitation rates (not shown here), so treating them as
independent is not unreasonable. However, the effective
dof will be somewhat reduced because the grid points
are not statistically identical, and the spectral estimates
will be weighted toward higher-variability, higher-pre-
cipitation regions. To roughly account for this, we es-
timated N 5 697 based on the number of grid points
with 4-yr precipitation greater than the tropical ocean
mean of 4.83 mm day21.

The power spectra of P and particularly Pd (Fig. 7)
are dominated by monthly and longer time scales, with
the spectrum of precipitation rate P flattening toward
white noise at higher frequencies. Figure 8a shows the
coherence of P with Pd. At all sampled frequencies, this
far exceeds the minimum coherence of 0.033 that is
statistically significant at the 95% level based on 8N 5
5776 dof. As one might anticipate, the coherence in-
creases at low frequencies, at which the effects of both
retrieval uncertainties and other governing physical fac-
tors on daily P are averaged out.

The phase (Fig. 8b) is only barely distinguishable
from zero statistically [simultaneous correlation of P
with Pd(r)]. The slight hints of phase lags are region
dependent.

Figure 8c shows that the real part of the transfer func-

tion S /S is near 1 for all frequencies [SAB( f ) de-P P P Pd d d

notes an estimated cross-spectral density between the
time series A(t) and B(t) as a function of frequency f ].
This is what we would expect from our statistical model
(4), which would imply that the residual N(t) 5 P(t) 2
Pd(t) is on average uncorrelated with Pd(t), thus S 5P Pd

S 1 S 5 S . This supports our earlier contentionP P P N P Pd d d d d

that using daily r to predict daily Pd(r) produces a pre-
cipitation time series that encompasses the SSM/I-ob-
served relationship between r and P at all time scales.

d. Vertical structure of monthly and geographical r–
P covariability

To understand the vertical structure of the monthly
and geographical covariability of water vapor with pre-
cipitation, we obtained from J. Hack of NCAR a set of
mean January, April, July, and October soundings from
24 tropical (208N–208S) sites that have long, high-qual-
ity data records (black squares in Fig. 1). These sound-
ings were stratified by monthly mean precipitation, de-
rived from the Xie and Arkin (1997) satellite-based cli-
matology. We found r 5 W/W* is better correlated with
P than is water vapor path W. Here, we try to identify
the vertical moisture variations that lead r 5 W/W* to
be correlated with P. To do this, we introduce a nor-
malized specific humidity

ref refq 5 (W /W )q, W 5 72 mm.n * * *
The mass-weighted vertical integral of qn is proportional
to column-relative humidity r. Using qn in place of q
corrects for small geographical and seasonal variations
in tropospheric temperature that induce corresponding
variations in W*.

Figure 9 compares the profiles of qn and relative hu-
midity averaged over those mean soundings correspond-
ing to 2–4, 4–8, and more than 8 mm day21. The higher-
precipitation categories correspond to nearly uniform
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FIG. 8. Cross spectra of daily SSM/I P and Pd(r): (a) coherence (dashed line demarcates the 95%-significance
threshold), (b) phase, (c) real part of transfer function.

moistening between the surface and 500 mb; above this
level the relative humidity perturbations remain large,
but the qn perturbations rapidly decrease. Even without
normalizing by W*, very similar results would be ob-
tained. As expected from (2), a unit increase in monthly
precipitation is associated with a much smaller increase
in qn(p) in atmospheric columns that are already more
moist and rainy than in drier columns.

e. Vertical structure of daily r–P covariability

We used radiosonde data from the TRMM Kwajalein
Experiment (KWAJEX; 23 July–15 September 1999),
together with coincident area-averaged precipitation de-
rived from the TRMM C-band ground validation radar
at Kwajalein, to determine how the vertical moisture
profile varies with precipitation at a specific location at
daily time scales. During KWAJEX, frequent soundings
were taken at five sites within 150 km of Kwajalein
Island (8.78N, 167.78W). Four of these sites were on
very small islands; the other was a ship, so these sound-
ings may be considered representative of an actively
convecting region of the tropical ocean. As described
by Sobel et al. (2004), the KWAJEX soundings were
combined into a daily-mean all-site composite sounding,
which is what we use here.

The Kwajalein radar made a volume scan every 10
min. For each scan, Houze et al. (2003, manuscript sub-
mitted to J. Hydrometeor.) derived rain maps with 2-
km horizontal resolution out to 150-km radius around
Kwajalein over a 6-month period using a carefully cal-
ibrated rainfall–reflectivity relationship. Beyond the
150-km range, the lowest elevation (0.58) scans start
near the freezing level of 4.5 km, which prevents this
approach from being extended farther. These rain maps
were area-averaged and daily averaged to derive area-
averaged daily precipitation P(t).

We binned the daily mean KWAJEX soundings into
categories of P, and calculated average soundings of qn

for each category. We then subtracted the overall mean
KWAJEX qn sounding to get category-average pertur-
bation soundings. Figure 10 shows the profiles of qn and
relative humidity perturbations for each category.

The profiles show a strong increase of qn and relative
humidity with precipitation rate in the midtroposphere.
Below 900 mb, qn is insensitive to P, presumably due
to rapid turbulent interactions with a sea surface of near-
ly constant temperature. Again, almost identical results
are obtained without normalizing by W*.

The sensitivity of these vertical qn profiles is some-
what different than was seen in the climatological
soundings of Fig. 9, which included a range of locations
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FIG. 9. Radiosonde-derived profiles of normalized monthly mean
specific humidity ( /W

*
)q (left curves) and relative humidity (rightrefW

*curves), bin averaged by monthly mean Xie–Arkin precipitation (mm
day21). The profiles are derived from Jan, Apr, Jul, and Oct clima-
tologies at the 24 long-term radiosonde sites in 208S–208N shown in
Fig. 1.

FIG. 10. Daily mean KWAJEX radiosonde-derived perturbation (a)
normalized specific humidity and (b) relative humidity profiles bin
averaged by daily mean radar-derived precipitation rate (mm day21).

spanning a range of sea surface temperatures (SSTs). In
that case, there was a general correlation of SST with
both P and near-surface q, so qn shows a stronger near-
surface dependence on P. If we had more sonde sites,
or a reanalysis that had highly accurate humidity pro-
files, it would be interesting to stratify the climatological
dataset into narrow SST ranges, then separately bin qn

against P for each SST to see if this removes the de-
pendence of boundary layer qn on P, producing a ver-
tical profile more similar to the KWAJEX daily varia-
tions.

4. Validation using KWAJEX data

Passive microwave channels are well-suited to reli-
able determination of W (Staelin et al. 1976), except in
localized regions of intense precipitation (which are
probably anomalously moist, so could produce a small
systematic underestimate of W if masked out to avoid
contaminating the retrieval.) The retrieval of precipi-
tation from SSM/I is more uncertain. The algorithm used
by Remote Sensing Systems was designed to minimize
cross talk among the retrieved parameters, and in par-
ticular to remove the water vapor contribution from the
brightness temperature before computing the rain rate.
Wentz (1997) showed the error in retrieved W (when
compared against radiosonde soundings) is uncorrelated
with the retrieved P. This suggests that significant cor-

relations between W and P in our SSM/I dataset are
unlikely to be due purely to the retrieval algorithm.

One may ask whether the retrieved P can really be
used as a proxy for daily mean P on a 2.58 scale. There
are large random retrieval errors inherent in the empir-
ical algorithm to determine P for pixels in a given swath.
Furthermore, the daily mean is derived from only 2–6
instantaneous swaths per day, and convection evolves
rapidly. At a lesser level, the same concern also applies
to W.

There is an extensive literature regarding errors in
microwave precipitation retrievals (e.g., Wentz 1997;
Kummerow and Giglio 1994) and undersampling biases
(e.g., Morrissey and Janowiak 1996). However, there
has been a dearth of long in situ radar datasets over the
tropical ocean for validation; this has been a major
TRMM motivation for maintaining the Kwajalein
ground validation radar since 1999. Thus, we compared
two area-averaged daily precipitation datasets derived
from the Kwajalein radar with the daily SSM/I data.
The first was the 150-km-radius dataset discussed in
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FIG. 11. Time series from 26 Jul to 14 Sep 1999 of Kwajalein radar-derived daily precipitation averaged over 150- and 240-km-radius
circles and daily averaged SSM/I P over a collocated rectangular region of intermediate size.

FIG. 12. Comparison of daily averaged KWAJEX all-site composite radiosonde and SSM/I water vapor path from 26 Jul to 14 Sep 1999.

section 3e, available for July–December 1999. The sec-
ond was an estimate of precipitation area averaged over
a larger 240-km-radius circle. This was derived using
a cruder method (as described below), but was available
for three Kwajalein rainy seasons (July–December,
1999–2001) instead of one, courtesy of Dr. S. Yuter.
Every 10 min, the radar made an 0.58 elevation scan
with a low pulse repetition frequency that extended its
maximum range to 240 km. For each such scan, we
estimated the area-averaged P (mm day21) over this
240-km circle as a constant multiple c 5 91 of the area
fraction A(t) of this scan covered by echo exceeding 20
dBZ. The multiplier c was obtained by regressing this
area fraction versus the simultaneous area-averaged pre-
cipitation derived by Houze et al. over the smaller 150-
km circle for July–December 1999.

For comparison with these radar-derived precipitation
datasets, the SSM/I data were averaged over the closest
two 2.58 3 2.58 grid boxes to Kwajalein, centered at
8.758N, 168.758W, and 8.758N, 166.258W. This region
contains most of the 150-km-radius circle centered on

Kwajalein, but lies mainly inside the 240-km-radius cir-
cle.

Figure 11 shows this comparison for the KWAJEX
period. The two radar datasets generally (though not
invariably) track each other very closely, with a cor-
relation coefficient exceeding 0.9 over July–December
1999, their overlap period. Hence, using exactly over-
lapping areas to compare area-averaged daily precipi-
tation in this region appears not to be crucial. This jus-
tifies comparing the 240-km radar dataset with the two
SSM/I grid boxes even though the two do not exactly
span the same area. Also, use of the area-fraction meth-
od for precipitation estimation (for which we have the
longer data record) appears adequately accurate for this
work.

Figure 11 shows that SSM/I captures most of the
heaviest daily rainfall events despite its temporal un-
dersampling. It tends to significantly overpredict the
large rain events (with considerable scatter) and under-
estimate the intervening light shower activity, with a
roughly 40% overestimate of the time-mean precipita-
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FIG. 13. (a) Daily 240-km radius area-averaged Kwajalein radar-
derived precipitation for Jul–Dec 1999–2001 vs SSM/I-derived r,
binned by r bins of width 0.02. Dots show the 25th, 50th, and 75th
percentiles of precipitation in each bin. The Xs show the bin-mean
precipitation. The dashed curve is the SSM/I-derived exponential fit
(1); (b) as in (a), but with SSM/I-derived Kwajalein-area precipita-
tion; (c) bin frequency.

tion compared to radar. Over the full 18-month com-
parison period, the correlation coefficient between the
daily 240-km radar and SSM/I precipitation is 0.69 and
a cross-spectral analysis shows coherence exceeding 0.5
(the 95% statistical significance level is 0.25) at all pe-
riods down to the Nyquist period of 2 days. At periods
longer than 4 days the coherence is higher, 0.7 or more.
This comparison gives us confidence that SSM/I-based
precipitation in individual grid boxes is meaningful even
down to periods of a few days.

Figure 12 shows a comparison over the same two
months of daily W from SSM/I with rawinsonde ob-
servations from KWAJEX. Each daily sonde-derived
water vapor path is an average of all sonde ascents
(typically 15–30) during the day at four small islands
and a ship, all scattered within 160 km of the Kwajalein
radar each day (Sobel et al. 2004). Based on simulta-
neous comparisons between sites, we estimate the ran-
dom sampling uncertainty in the daily average sonde
water vapor path to be 0.7 mm. The correlation of
SSM/I and sonde water vapor path over the KWAJEX
period, 25 July–14 September 1999, was 0.82. Together,
Figs. 11 and 12 lend credibility to SSM/I-derived re-
lationships between P and W or r.

We used the 18 months of 240-km radar data to con-
struct the distribution of daily radar-derived area-aver-
aged P after binning by SSM/I-derived r, shown in Fig.
13a. Because both of these are comparatively accurate
products, we hope this plot represents the true relation-
ship of P to r on daily time scales and 300-km space
scales better than if we used SSM/I-derived daily pre-
cipitation (Fig. 13b). The latter plot matches the global
ocean r–P fit (1) quite well, confirming that the r–P
relationship in the Kwajalein region is typical of the
warm tropical oceans.

Figure 13a shows a slower increase of bin-mean P
with r than Fig. 13b. This may reflect the SSM/I ten-
dency to overestimate strong precipitation events while
underestimating weak area-averaged precipitation rates
around Kwajalein. There is also much less scatter
(smaller 75th–25th percentile spread) of the radar-de-
rived P about its bin mean than with the SSM/I P. Large
random retrieval errors on the daily SSM/I P are likely
artificially broadening its distribution for a given r. Fig-
ure 13c shows that we have sampled the range 0.7 ,
r , 0.8 with at least 50 samples bin21. Signals at drier
r, such as the secondary maximum of P at r 5 0.67
seen in both Figs. 13a,b are uncertain due to inadequate
sampling.

Although we have not done this, a somewhat similar
analysis could be done over the global tropical ocean
using the TRMM Precipitation Radar (PR) and TMI-
derived r to build up a plot like Fig. 4. The TRMM
sampling is less frequent and the PR footprint is much
smaller than SSM/I, but the PR-derived rainfall is pre-
sumably more accurate than microwave estimates on
daily time scales and is always obtained in a region
simultaneously scanned by TMI.

5. Conclusions

Four years of daily SSM/I retrievals were used to look
for relationships between tropical oceanic rainfall P and
water vapor path W on daily to seasonal time scales.
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Relationships that hold across all tropical ocean regions
and seasons can be found if W is divided by the saturated
water vapor path (derived from the column temperature
profile) to obtain a column-relative humidity r 5 W/
W*. For monthly (‘‘m’’) and daily (‘‘d’’) data, these can
be fit to the form Pm,d 5 exp[am,d(r 2 rm,d)]; the choices
of constants are different for daily than for monthly data.
The scatter around these fits was characterized using
plots of quartiles of the distribution of P in bins of r.
The monthly fit can be obtained from the daily fit and
the observed distribution of daily r found in a given
month and location.

Cross-spectral analysis shows that at all periods from
2 to 180 days, P and the predicted daily Pd(r) are almost
exactly in phase, and are strongly correlated with almost
no phase lag, though with more scatter at short, partic-
ularly at low frequencies. Radiosonde composites show
the increased r at higher rainfall rates is due to a broad
specific humidity increase between 400 and 850 hPa on
daily time scales. The precipitation-related humidity
anomalies extend down to the surface for monthly time
scales.

That more convective rainfall should be associated
with a more humid atmosphere is no surprise, but when
quantified, this is an appealing test of convective pa-
rameterizations in weather and climate prediction mod-
els. In particular, it suggests that deep convective pa-
rameterizations that relax the humidity to a fixed ref-
erence profile [e.g., the Betts–Miller scheme (Betts
1986)] might perform better if the reference relative
humidity profile were adjusted to be precipitation de-
pendent. Alternatively, these schemes should use a
moisture adjustment time scale tc of roughly 12 h for
horizontal grid spacings on the order of 300 km, how-
ever, their temperature profile may be adjusted. This tc

is much larger than the time scale of 1–2 h that has
typically been used (Betts 1986).
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