Case Study 1
Due: 8 March 2005

- Information on data available is on the class web site.
- Guidelines:
 - 3 to 4 pages of text
 - All case studies are to be written in third person
 - The case studies should consist of an:
 1. Introduction
 2. Synoptic Overview
 3. Mesoscale Analysis
 4. Conclusion
 - Figures should only be used as needed. A case study is NOT a show and tell of pictures. If you include a figure you must reference the figure in your text, and reference a particular feature on that figure.
 - The bare minimum required for figures is as follows:
 - two cross sections
 - hand drawn
 - one cross section parallel to the lake effect band
 - one cross section perpendicular to the band
 - include both theta and theta-e on these cross sections
 - cross section should at a minimum go up to 500mb
 - shade in areas of saturation
 - lake location should be identified on the cross section
 - 850 mb analysis
 - hand drawn (temperature, dew point, pressure)
 - consistent with your cross section
 - Surface analysis
 - hand drawn
 - must be consistent with cross sections
 - should include temperature, streamlines, fronts, pressure
 - radar or satellite image
 - snowfall total analysis
 - hand drawn conceptual model of a lake effect snow storm
 - All figures should have a caption with them. These figures should be theme orientated.
• Questions to consider when writing your case study:
 • Synoptic Scale
 • What synoptic scale features allowed the lake effect to be maintained for several days?
 • What were the inversion heights like over the region?
 • Was there any synoptic scale forcing for ascent?
 • Mesoscale
 • How well do the radar derived storm total precipitation amounts coincide with the observed snowfall totals? If there are differences, why?
 • Was there evidence of a land breeze, if so what role did the land breeze play?
 • What caused the spatial variation in snowfall amounts?
 • What role, if any, did topography play in this event?
 • What were the cloud top temperatures like? What was the depth of the cloud? How far do you think a parcel had to travel across the lake before reaching a point of efficient snow production?