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ABSTRACT 
 
An observation-based study is presented that utilizes aircraft data from the 2003 Wakasa Bay 

AMSR Precipitation Validation Campaign to assess recent advances in the modeling of 

microwave scattering properties of realistic ice particles in the atmosphere.  Previous work 

has suggested that a triple-frequency reflectivity framework appears to have utility for 

identifying key microphysical properties of snow, potentially providing much-needed 

constraints on significant sources of uncertainty in current active microwave snowfall 

retrieval algorithms. However, these results were based solely on a modeling framework.  In 

contrast, this study considers the triple-frequency approach from an observational perspective 

using airborne radar observations from the Wakasa Bay field campaign.  After accounting for 

several challenges with the observational dataset, such as beam mismatching and attenuation, 

observed dual wavelength ratio (DWR) results are presented that confirm both the utility of a 

multi-frequency approach to snowfall retrieval and the validity of the unique signatures 

predicted by complex aggregate ice particle scattering models. This analysis provides 

valuable insight into the microphysics of frozen precipitation that can in turn be applied to 

more readily available single and dual-frequency systems, providing guidance for future 

precipitation retrieval algorithms.
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1. INTRODUCTION 

The ability to accurately quantify snowfall is critical for various reasons. A 

significant portion of precipitation at middle and high latitudes falls as snow (Liu 2008a, 

Hiley et al. 2011), and thus high-resolution knowledge of the temporal and spatial variability 

of snowfall is crucial for water cycle considerations, as well as quantifying the impacts of 

climate change at high latitudes where changes are already particularly evident (Hinzman et 

al. 2005, Luckman et al. 2006, Choi et al. 2010). The most promising method for achieving 

the desired resolution is via remote sensing methods, particularly space-borne active and 

passive microwave sensors. Much work has been accomplished in the field of microwave 

remote sensing of ice clouds and frozen precipitation; however, large retrieval uncertainties 

remain (Hiley et al. 2011). These uncertainties arise from the inability to directly measure 

various critical microphysical parameters, such as snow size distribution (SSD), mass-size 

relationships of frozen hydrometeors, particle fall speeds, and ice particle shape.  

Compared to liquid cloud and rain drops, ice clouds and snowflakes are difficult to 

study due to their complex geometry. Ice crystal habits can vary from simple pristine needles 

and hexagonal plates to complex dendrites, as well as aggregates of multiple snowflakes. 

These different ice habits can have significantly different microwave scattering properties, 

and no reliable method to explicitly determine ice habit from active or passive microwave 

sensors currently exists. Therefore assumptions about ice habit and corresponding scattering 

properties must be made which result in large uncertainties in key derived parameters such as 

ice water content (IWC) and liquid equivalent snowfall rate. 
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In quantifying these scattering properties of ice, investigators have often used 

spherical particles consisting of a mixture of air and ice with a specified overall density (e.g., 

Bennartz and Petty 2001; Liu 2004). This methodology was useful because it allowed for the 

explicit calculation of scattering properties from Mie theory. Intuitively, this seems an over-

simplified approach to the modeling of complex ice habits and recent studies have confirmed 

these spherical models are unable to accurately quantify ice scattering properties over a wide 

range of microwave frequencies (Petty and Huang 2010, Kulie et al. 2010). Accordingly, 

much work has been accomplished in recent years in characterizing the scattering properties 

of more realistic ice crystal shapes. As a result, many “scattering databases” are now 

available which provide key scattering parameters such as backscatter cross-section and 

extinction coefficient as a function of particle size for various ice habits (Hong 2007; Kim et 

al. 2007; Liu 2008b; Petty and Huang 2010). Of particular note are the results of Petty and 

Huang (2010), which is one of the first attempts to model the scattering properties of 

complex aggregate ice particles. 

While these databases are an important step forward in realistically modeling ice 

particle properties and continue to be improved, if useful snowfall and ice parameters are to 

be derived one must still either (1) arbitrarily choose a single ice model to be representative 

of the population of ice particles under consideration or (2) average multiple ice models 

together to statistically account for the possible range of scattering properties. However, 

recent modeling work (Kneifel et al. 2011) has shown that by combining multiple radar 

frequencies it may be possible to obtain some ability to determine ice habit from radar 

reflectivity alone. 
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To date, little work has been accomplished considering a triple frequency approach 

and its potential benefits for snowfall retrievals. Yoshida et al. (2006) utilized a triple 

frequency approach to discriminate between different ice habits but considered only simple 

spherical and hexagonal ice particle models, required the accuracy of dual wavelength ratio 

(DWR) measurements to be better than 0.1 dB for the results to be useful, and only 

considered cirrus clouds. A triple frequency approach needs to be reconsidered in light of the 

more realistic ice particle models available today and with an emphasis on precipitation 

applications. Modeling results from Kneifel et al. (2011) show that the combination of Ku, 

Ka, and W-band frequencies could be key to gaining some ability to discriminate between ice 

habits, potentially providing a much-needed constraint on precipitation retrievals and thereby 

reducing their uncertainty. 

However, these results have only been considered in the modeling realm and their 

implications have not yet been explored in observed data.  The goal of this study is to explore 

observed triple-frequency signatures of snowfall and compare them to expectations from 

modeling, and consider the implications for snowfall rate retrieval techniques for current and 

future observation platforms.   

Section 2 describes the triple-frequency radar data used in this study, and section 3 

details the methodology used to calculate DWR from observed radar reflectivities.  An 

analysis of the results in the triple-frequency framework is presented in section 4, and 

concluding remarks are given in section 5. 
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2. DATA 

2.1 Scattering Databases 

 Kneifel et al. (2011) utilized pre-computed ice scattering model databases to calculate 

theoretical DWR results for a variety of ice habits assuming a simple exponential size 

distribution with a varying slope parameter.  Interesting behavior was found when three 

common radar bands (Ku, Ka, and W) were considered.  In particular, complex aggregate 

models were found to occupy a distinct region of this “triple-frequency” space compared to 

pristine particles and simple spherical models.  Fig.	
  1 is an adaptation of this same approach, 

using scattering properties from two pre-computed databases. 

The first database is Petty and Huang (2010), which consists of four models of 

aggregate snowflakes (DA1, DA2, DA3, NA).  For the dendrite aggregate (DA1-DA3) 

models, a photograph of a single dendrite was digitized into a format suitable for Discrete 

Dipole Approximation (DDA) calculations.  The single dendrite was then assembled 

stochastically with three different levels of complexity.  The simplest model is DA1 and 

consists of only a few dendrites while the most complex is DA3 and consists of roughly ten.  

In addition, the needle aggregate (NA) model consists of multiple pristine needle particles 

assembled stochastically. 

 Second, scattering models of pristine crystals from Liu (2008b) were used.  

Specifically, various bullet rosette models (3BR-6BR), a sector snowflake (SEC), and a 

simple dendrite model (DEN) were included.  Note, the behavior of these particles in triple 

frequency space is different from that of Kneifel et al. (2011) due to recent corrections made 

to the database (see Liu 2008b for information on obtaining this database).  Using the 
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updated database, the Liu (2008b) particles now converge at low DWR.  This is consistent 

with our expectations for the limit of Rayleigh scattering, indicating they are indeed more 

physically realistic. 

 Also, scattering properties for Mie spheres of various densities (MIE30-MIE200) and 

T-Matrix spheroids of various aspect ratios (T-MAT_0.5 – T-MAT_0.7) were computed as in 

Knefel et al. (2011). 

 Finally, an important difference in Fig.	
  1 compared to Kneifel et al. (2011) is in the 

choice of maximum particle sizes for the truncation of the SSD.  The choice of maximum 

size is arbitrary but can have a significant impact.  This choice is particularly important for 

the Liu (2008b) database because scattering calculations for unrealistic particle sizes are 

included in the database.  For example, scattering properties for the bullet rosettes were 

calculated up to a maximum diameter of 10 mm, a size that would not be found in nature for 

this particle type.  Though the final choice of a cutoff value is ad-hoc, a reasonable truncation 

value for Liu (2008b) particles was set at 5 mm.  As a result, the Liu (2008b) particles exhibit 

a smaller maximum Ku-Ka DWR in Fig. 1 than in Kneifel et al. (2011).   

On the other hand, aggregate snowflakes can grow to a centimeter or larger in nature, 

so sizes up to the maximum allowed by the Petty and Huang (2010) database were included 

in this study.  The DA3 particle, for example, has a highest “effective” radius reff of 10 mm.  

In the case of a homogenous sphere, reff would equal the actual radius of the particle (Petty 

and Huang 2010).   

Mie spheres were truncated at 5 mm and spheroids at 10 mm, though in these cases 

the choice of maximum size does not have a significant effect on triple-frequency behavior.  

For further discussion of the effects of truncation size, see Kneifel et al. (2011). 
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2.2 Wakasa Bay Observations 

This work uses data from the 2003 Wakasa Bay AMSR Precipitation Validation 

Campaign (Lobl et al. 2007).  The Wakasa Bay dataset is uniquely applicable to this study 

because it not only provides aircraft radar observations at the three frequencies considered by 

Kneifel et al. (2011) but also includes data from a variety of snowfall events, ranging from 

“widespread snow” to “light snow showers” (Lobl et al. 2007).  Two radars were flown on 

the NASA P-3 research aircraft: the scanning Airborne Precipitation Radar (APR) which 

operates at 13.4 GHz (Ku-band) and 35.6 GHz (Ka-band) with a vertical resolution of 60 m, 

and the nadir-only Airborne Cloud Radar (ACR) which operates at 94-GHz (W-band) with a 

120 m vertical resolution (Table 1).  Both radars also provide HH and HV polarization 

information. 

 While the Wakasa Bay dataset is publicly available online from the National Snow 

and Ice Data Center (NSIDC), this study utilizes a “beta” version of the radar observational 

dataset that includes several calibration refinements and quality control improvements, 

particularly to the APR observations.  The beta dataset was created and provided by Dr. 

Simone Tanelli of NASA’s Jet Propulsion Laboratory (JPL). 

 A thorough exploration of the dataset was conducted to identify portions that would 

be most amenable to analysis.  A predominant mode of observed precipitation throughout the 

Wakasa Bay campaign was stratiform rainfall was a readily identifiable bright band around 

2-3 km.  These cases are still useful for ice microphysical studies, however, because the 

bright band can be identified (see section 3.4) and observations from within the bright band 

or below can be discarded.  Three days worth of these stratiform rainfall observations were 

chosen for analysis:  January 19 consisted of stratiform rainfall with some embedded 
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convection (see the top two panels of Fig.	
  2 for example W-band and Ku-band cross sections 

that are representative of this day’s precipitation).  January 23 consisted of lighter stratiform 

rainfall (Fig.	
  3).  Finally, January 27 was notable for the particularly uniform appearance of 

the radar reflectivity structures (Fig.	
  4).  As a result, this case became a focal point for 

analysis due to the expectation of well-behaved microphysical processes. 

 Two excellent oceanic snowfall cases were also observed during the Wakasa Bay 

campaign.  The first was January 28 and consisted of shallow (2-3 km) snow showers (Fig.	
  5).  

The second was January 29 and consisted of deeper cloud top heights (4-5 km), higher 

reflectivities, and significantly more W-band attenuation (Fig.	
  6).  Though coincident 

temperature information is unavailable, nearby soundings and 1000-500 hPa thickness charts 

were inspected to confirm that temperatures in the precipitating layers were below freezing.  

Of course, this does not discount the possibility of supercooled water and rimed particles, the 

effect of which will be discussed in later sections. 

 For each day considered, certain flight legs were discarded due to obvious quality 

control issues.  In addition, only over-ocean data were considered due to difficulties with 

radar collocation over land (see section 3.1).  The exact time ranges considered for each case 

are shown in Table 2. 
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3. METHODS 

3.1 Collocation 

Due to the differing resolutions and scanning characteristics of the two radars, 

collocation had to be performed to facilitate calculation of Ka-W DWR.  A straightforward 

algorithm was used to accomplish this: for each ACR profile, find the near-nadir APR profile 

closest in time.  Then for each ACR height bin, find the APR height bin from the time-

collocated profile with the closest height, using the radar-based altitude (as opposed to 

aircraft pressure altitude) for both radars.  Hence, the native ACR observations are used and 

the APR is collocated such that the collocated APR is on the same “grid” as the ACR.  Also, 

note that the cross-track scanning APR observations have been discarded.  

 

3.2 Attenuation Correction 

 As noted in, e.g., Hiley et al. (2011) and Kneifel et al. (2011), attenuation by liquid 

water and snowfall at cloud radar wavelengths is a significant issue, particularly at shorter 

(W-band) wavelengths.  Given the nature of the precipitation events under consideration here, 

the impact of attenuation on DWR calculations clearly must be considered.  This is more 

straightforward in the case of snow particles than for supercooled liquid water, because 

attenuation due to snow can be modeled and corrected for explicitly, though with some 

uncertainty.  However, our lack of knowledge about amount and vertical distribution of 

supercooled liquid water means we are left to hypothesize about its effect. 

 Modeling results show that attenuation due to snow should be negligible at Ku and 

Ka band, but is potentially significant at W-band.  Thus, we consider Ku-band “integrated 
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reflectivity” Zint,Ku, simply the sum of reflectivity above a given height bin, increasing 

downward from the aircraft: 

Zint,Ku (i) = Zlinear ,Ku ( j)
j= i

j=aircraft

!  

Integrated reflectivity (for the remainder of this paper, it is assumed that “integrated 

reflectivity” refers to Ku-band) is plotted in Fig.	
  2 through Fig.	
  6 to give the reader an idea of 

its behavior in a variety of situations.  Note, the term “integrated reflectivity” is not 

completely accurate due to the lack a factor dz accounting for vertical bin size; however, the 

attenuation correction scheme presented in this section accounted for this properly and thus 

produces physically consistent results. 

Zint,Ku can be quantitatively related to W-band attenuation via the extinction 

coefficients provided by the same scattering models used to calculate DWR.  We chose to 

consider only the more realistic pristine Liu (2008b) particles and Petty and Huang (2010) 

aggregates.  The exclusion of spheroid models is arbitrary but sensitivity tests showed their 

inclusion did not have a significant impact on the analysis.  An additional assumption must 

be made for the SSD slope-intercept parameter No; however, this assumption was found to 

have a minimal impact on calculations compared to choice of scattering model.  Thus, No 

was fixed at 10e7.  

The results are shown in Fig.	
  7.  The dense Liu (2008b) particles attenuate at W-band 

more severely than the less dense Petty and Huang (2010) aggregates, illustrating the 

inherent uncertainty in any attenuation correction scheme, with the spread in modeled W-

band attenuation increasing with increasing Ku-band integrated reflectivity.  Thus, the exact 

relationship used to correct W-band observations for attenuation is somewhat arbitrary.  As a 
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result, we chose to simply use the average relationship for all models considered (the blue 

line in Fig.	
  7).    The effect of this attenuation correction scheme is shown in Fig.	
  8 for the 

Jan. 27 case (bottom).  All valid DWR points were overlaid on the triple frequency modeling 

results and colored by integrated reflectivity, such that the warmer colored points are subject 

to greater W-band attenuation correction.  As expected, attenuation correction results in data 

points being shifted to the left on the triple frequency plot, due to inflated W-band 

reflectivities (and correspondingly reduced Ka-W DWR values).   

 A significant issue is that no direct information is available about the presence or 

quantity of supercooled water.  Though passive microwave instruments were present on the 

aircraft that would have made liquid water content retrievals possible, unreliable 

instrumentation during the field campaign have made this infeasible (Simone Tanelli, 

personal communication, October 2011).  So despite the potentially significant impact on 

these results, the effect of supercooled water must be inferred and considered a source of 

uncertainty in all the results presented here. 

 

3.3 Smoothing 

For optimal accuracy of DWR calculations, one would have radar reflectivity 

observations at every frequency looking at the exact same volume of air; i.e., the 

observations would have perfectly matched horizontal and vertical resolutions, and scan 

simultaneously.  This is clearly not the case with the Wakasa Bay dataset due to mismatched 

beamwidths and vertical resolutions (Table 1), as well as mismatches in the timestamps of 

scans. 
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As a result, we experimented with a simple boxcar-average smoothing strategy in an 

attempt to provide a first-order correction for the effects of these resolution issues.  The 

details are complicated slightly by the preprocessing applied to the ACR product: “Vertical 

profiles were recorded every 0.3 seconds and then averaged in post-processing to one profile 

every 3 seconds” (from the ACR documentation available online at 

http://nsidc.org/data/docs/daac/nsidc0212_rainfall_wakasa_acr.gd.html).  So based on the 

vertical resolution differences between the APR and ACR, and manual inspection of the time 

resolution characteristics of each radar, smoothing was applied to the APR observations 

(before collocation), with a smoothing width of 3 temporally and 6 in the vertical. 

Though admittedly simplistic, this smoothing algorithm has produced encouraging results, 

as shown in Fig.	
  8 (middle) for the Jan. 27 case.  From Rayleigh scattering theory, both Ku-

Ka and Ka-W DWR should go to zero for hydrometeors that are small compared to the radar 

wavelength.  The scattering models shown in Fig.	
  1 agree with this prediction, generally 

converging at a DWR of zero for small size distribution slope parameters.  This provides a 

useful constraint for analyzing whether our DWR calculations are physically realistic, 

because for small Ku-Ka DWR, the Ka-W DWR should approach zero.  Since Fig.	
  8 shows 

an improvement in the amount of spread at small DWR, it appears that our smoothing 

algorithm is beneficial to the goal of reducing the amount of error due to beam mismatching 

that is inherent in this dataset.  Thus, for the remainder of the paper the results will include 

smoothing.  

 

3.4 Bright Band Identification 
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 For the stratiform cases with clear bright bands, it was necessary identify the top of 

the bright band in order to only consider observations above the freezing level.  An algorithm 

similar to Liao (2010) was used: starting at the bin nearest the aircraft and moving downward, 

the first occurrence of Ku-band Linear Depolarization Ratio (LDR) greater than -25 dB was 

considered to be the top of the bright band, and all data points at and below this level were 

discarded.  For cases where the algorithm did not identify a bright band, the entire profile 

was discarded.  Given the relatively small amount of data under consideration, it was 

possible to confirm that the algorithm produced reasonable results by visual inspection of 

cross sections of all the stratiform flight legs. 
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4. RESULTS 

4.1 Jan. 27: Stratiform precipitation with obvious bright band 

 The results for the particularly uniform Jan. 27 stratiform case will be presented first.  

They are shown in Fig.	
  9 by overlaying all DWR data points on the triple frequency 

modeling results and coloring each point by it’s Ku-band integrated reflectivity in order to 

illustrate both the amount of attenuation correction applied and to serve as a proxy for the 

distance of each data point from cloud top.  Also shown in Fig.	
  9 is the corresponding 

normalized data density plot. 

 Initially, a striking feature of Fig.	
  9 is the peak in data density (bins containing more 

than 5% of all data points each) at low DWR.  In terms of scattering models, this seems 

reasonable because it is in an area where several particles overlap each other, so one would 

expect a large number of points to fall in this DWR range.  More simply, in the Rayleigh 

limit, DWR values should go to zero.  Thus, for observations of primarily small particles we 

would expect a significant data density peak at small DWR. 

Perhaps more interesting, however, are the multiple peaks into higher (greater than 5 

dB) Ku-Ka DWR space.  Though a relatively small number of data points comprise this 

feature, it is particularly interesting because only the Petty and Huang (2010) aggregate 

models overlap with these clouds of points.  In addition, the data tends to be in agreement 

with the behavior of the scattering models at high Ka-W / low Ku-Ka DWR; i.e., the particle 

models under consideration successfully describe a bound on DWR values for the lower right 

portion of the triple frequency plot. 
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 Also of note is the fairly smooth trend in integrated reflectivity with increasing DWR.  

Most points with an integrated reflectivity greater than 30 lie in an area of Ka-W DWR 

greater than about 8 dB and thus are better explained by the aggregate models.  This is in 

agreement with a simple mental model of stratiform precipitation where pristine particles are 

formed at cloud top, with aggregation increasingly likely as particles fall deeper into the 

cloud (and therefore reach higher integrated reflectivities). 

Likely the most notable triple-frequency feature of the Petty and Huang (2010) 

aggregate models is their distinctive “hook” shape at high values of Ku-Ka DWR.  An 

important motivator of this study was to determine whether this hook feature can be found in 

observations.  In this particular case, the scatter plot in Fig.	
  9 provides two hints of this hook 

shape, particularly for the needle and DA1/DA2 aggregates.  However, the number of data 

points in these regions is relatively small, so it is difficult to draw conclusions based on this 

case alone; further analysis will be withheld until section 4.2. 

 

4.2 Jan. 19 and Jan. 23:  More stratiform rainfall with bright band at 2-3 km 

 Results for Jan. 19 are shown in Fig.	
  10 and for Jan. 23 in Fig.	
  11.  While the results 

are quite similar for both cases, they are plotted in separate figures so that integrated 

reflectivity trends are not obscured.  The location of peak frequency in the data density plots 

are shifted to the right compared to Jan. 27 and tend to overlap with the Mie, T-matrix, NA, 

and DA1 models more than the pristine Liu (2008b) particles.  Given the increased 

reflectivities and embedded convection in these cases, it does seem plausible that pristine 

particles would be less predominant. 
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 Quite striking in these two figures, in addition, is their behavior at high values of Ku-

Ka DWR.  Both cases exhibit the distinct “hook to the left” that the Petty and Huang (2010) 

models suggest.  In particular, the observations follow NA and DA3 quite well.  Once again, 

the number of data points in this region of large Ku-Ka DWR is quite small compared to the 

total number of observations under consideration.  However, the presence of the hook feature 

in all stratiform cases considered is clear evidence for realistic nature of this particular 

feature of the Petty and Huang (2010) models.  

 

4.3 Jan. 28: 2-3 km deep snow showers 

 Fig.	
  12 shows the results for the shallow snow showers of Jan. 28.  Again quite 

striking is the location of the peak in data density.  Instead of occurring in the low DWR 

space occupied primarily by Liu (2008b) particles, for this case it occurs at relatively high 

DWR in an area occupied exclusively by the aggregate models.  Comparing this case to the 

results for Jan. 27, the observations suggest that the Jan. 27 stratiform case consists mostly of 

smaller ice particles that are more likely to be pristine, while the Jan. 28 case consists of 

larger particles that are more likely to be aggregated snowflakes.  The agreement in these 

observations with a simple mental picture of convective situations being dominated by 

aggregation while stratiform precipitation will consist of smaller, pristine particles is an 

exciting result of this work and will be discussed further in the conclusion. 

  

4.4 Jan. 29: 4-5 km deep snow 

	
   Finally,	
  Fig.	
  13	
  shows	
  the	
  results	
  for	
  the	
  deeper	
  Jan.	
  29	
  snowfall	
  case	
  with	
  cloud	
  

tops	
  as	
  high	
  as	
  5	
  km.	
  	
  Here,	
  the	
  location	
  of	
  peak	
  data	
  density	
  occupies	
  a	
  region	
  in	
  



16	
  
between	
  those	
  of	
  the	
  Jan.	
  27	
  stratiform	
  case	
  and	
  the	
  Jan.	
  28	
  light	
  snow	
  shower	
  cases.	
  	
  

However,	
  the	
  amount	
  of	
  spread	
  and	
  number	
  of	
  outliers	
  in	
  this	
  case	
  appears	
  to	
  be	
  an	
  

indication	
  that	
  deep,	
  heavy,	
  convective	
  snowfall	
  amplifies	
  almost	
  all	
  the	
  issues	
  and	
  

sources	
  of	
  uncertainty	
  associated	
  with	
  the	
  study.	
  	
  The	
  high	
  spatial	
  variability	
  of	
  intense,	
  

convective	
  snow	
  will	
  amplify	
  imperfect	
  beam-­‐matching	
  and	
  any	
  small	
  collocation	
  

problems.	
  	
  In	
  addition,	
  the	
  convective	
  updrafts	
  are	
  more	
  likely	
  to	
  contain	
  large	
  amounts	
  

of	
  supercooled	
  water,	
  causing	
  greater	
  attenuation	
  at	
  W-­‐band	
  than	
  would	
  be	
  accounted	
  

for	
  by	
  our	
  consideration	
  of	
  attenuation	
  by	
  snow	
  alone.	
  	
  Thus,	
  it	
  is	
  difficult	
  to	
  draw	
  many	
  

conclusions	
  from	
  this	
  case	
  but	
  it	
  is	
  still	
  useful	
  in	
  that	
  it	
  illustrates	
  many	
  of	
  the	
  caveats	
  of	
  

this	
  study.	
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5. CONCLUSIONS 

 Despite the multitude of challenges associated with this dataset, such as attenuation at 

W-band, our lack of ability to quantify the effect of supercooled water, imperfect collocation, 

and beam-matching issues, several useful conclusions can be drawn.   

First, a large number of data points have a DWR signature that can only be explained 

by aggregate models.  For the Jan. 27 case in particular, the maximum frequency of 

occurrence occurs in the aggregate region of the triple frequency plots.  Perhaps more 

importantly, the stratiform cases consistently demonstrate the characteristic hook shape of the 

Petty and Huang (2010) aggregate models, with Ka-W DWR trending back toward the 

negative direction as Ku-Ka DWR becomes large.  This is significant because it provides a 

result that is insensitive to a potentially major issue with the current methodology: the results 

are quite sensitive to the calibration of the ACR relative to the APR.  Specifically, while the 

absolute location of maximum frequency in triple frequency space is sensitive to 

discrepancies in radar calibration, the hook back toward smaller Ka-W DWR will be 

preserved even if the ACR calibration is changed relative to the APR.  In other words, in 

triple frequency space, a hypothetical increase in W-band calibration would only serve to 

shift the observations to the left in triple frequency space; however, their shape would be 

preserved.  This is an important result because it shows that the unique triple-frequency 

behavior of the Petty and Huang (2010) scattering models can in fact be found in 

observations.  This is an indicator that the current trend toward the development of 

increasingly complex and realistic snowflakes is both useful and necessary. 

The finding that the Petty and Huang (2010) aggregates are crucial for explaining 

triple-frequency observations also has implications for current and near-future snowfall rate 
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retrieval algorithms.  Simple algorithms based on single and dual frequency radar reflectivity 

observations, such as those from CloudSat and the upcoming Global Precipitation 

Measurement (GPM) mission, should consider incorporating the latest aggregate models in 

the derivation of radar reflectivity-snowfall rate relationships.  Perhaps more important is in 

the realm of passive microwave radiative transfer calculations, where accurate scattering 

properties across a range of frequencies is particularly important.  This work serves as further 

evidence that simple Mie-scattering based calculations of microwave scattering properties are 

insufficient.  In addition, it appears that of currently available scattering models, the Petty 

and Huang (2010) aggregates may be the best “default” choice, due to (a) their realistic 

behavior across multiple frequencies compared to e.g., Mie spheres, and (b) their enhanced 

ability compared to Liu (2008b) particles to accurately represent larger particle size ranges 

that are more representative of snowfall found in nature. 

 Next, some interesting microphysical inferences can be made by comparison of the 

Jan. 27 and Jan. 28 cases.  The stratiform precipitation of Jan. 27 exhibits a large proportion 

of DWR observations in the region where several models overlap, particularly the pristine 

Liu (2008b) particles, suggesting that this snowfall event was comprised primarily by small, 

and likely pristine, ice particles.  By contrast, observations of the more convective snow 

showers of Jan. 28 have predominantly larger values of DWR and primarily occupy the 

region of triple frequency space covered by the Petty and Huang (2010) models.  This an 

apparent confirmation of our general expectation that convective snow showers would be 

comprised primarily of larger aggregated particles while light stratiform precipitation would 

have a larger quantity of smaller, pristine particles.  These broad distinctions hint at the 
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potential utility of a triple frequency approach to retrieving snowfall parameters like ice habit 

and some properties of the size distribution for future observation platforms. 

 This work also leads to several avenues of future research.  Ground-based multi- 

frequency radar observations, such as those from the Department of Energy’s Atmospheric 

Radiation Measurement (ARM) facilities, would be particularly useful.  Given the lesser 

impact of attenuation near the surface and lack of ground clutter issues, ground-based 

observations would allow for a clearer analysis of multi-frequency observations at the lowest 

1-2 km, where important processes such as near-surface aggregation are still poorly 

understood.  In addition, ground-based datasets have other potential benefits such as longer-

term seasonal and yearly datasets which would provide more robust statistics and a wider 

variety of snowfall cases.  Recent field campaigns such as the GPM Cold-Season 

Precipitation Experiment (GCPEx) should also be explored for potential multi-frequency 

studies, and future field campaigns should be aware of the utility of collocated multi-

frequency observations as they consider their instrumentation and scanning strategies. 

Various methodology details can also be explored, particularly the effect of more 

realistic particle size distributions.  Finally, as work on developing increasingly realistic and 

complex snowflake scattering models continues, the latest models can be incorporated into 

this triple frequency modeling framework, which will no doubt add further insights to this 

analysis.
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 TABLES 

 

Table 1 

Relevant instrument characteristics for APR2 and ACR radars. See Lobl et al. (2007) for 

more detailed specifications. 

 APR2 Ku-band APR2 Ka-band ACR W-band 

Frequency (GHz) 13.405 35.605 94 

3-dB beamwidth 

(˚) 

3.8 4.8 0.8 

Vertical resolution 

(m) 

60 60 120 
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Table 2 

Exact time ranges and number of DWR points for each case.   

Group Observation Time Ranges 

(UTC) 

Number of DWR points 

Jan 19 Stratiform with 

embedded convection 

03:45-05:18 
05:26-06:19  
07:35-09:20 

31,514 

Jan 23 Stratiform 06:41-10:51 44,239 

Jan 27 Light Stratiform 03:30-06:25 24,093 

Jan 28 Shallow snow 03:52-04:59 
05:05-05:25 
05:39-07:09 

12,417 

Jan 29 Deep snow 03:15-06:24 50,517 
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FIGURES 

 

Fig. 1 

Triple-frequency DWR calculations for various ice particle scattering models:  Needle 
Aggregate (NA) and Dendrite Aggregates (DA1-DA3) from Petty and Huang (2010); Bullet 
Rosettes (3BR-6BR), Sector (SEC), Dendrite (DEN) from Liu (2008b); T-matrix spheroids 
for aspect ratios of 0.5, 0.6, and 0.7 (T-MAT_0.5-T - MAT_0.7); Mie spheres with density 
varying from 30 kg m-3 to 200 kg m-3 (MIE_30 – MIE_200).  Adapted from Kneifel et al. 
(2011) (see section 2.1 for a summary of key differences). 
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Fig. 2 

Example cross sections from the January 19 case.  Note, this is only a subset of the January 
19 data and was chosen as representative of observations from that day.  Top: W-band 
reflectivity with no attenuation correction [dBZ].  Middle:  Ku-band reflectivity with no 
smoothing, collocated to W-band [dBZ].  Bottom:  Integrated Ku-band reflectivity [dBZint].  
Gray shading represents either missing data or observations that were rejected due to 
collocation issues; white indicates that the observations are either greater or less than the 
range of the color scale.  The horizontal green line represents the altitude of the aircraft. 
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Fig. 3 

As in Fig. 2, but for January 23 case.
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Fig. 4 

As in Fig. 2, but for January 27 case.
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Fig. 5 

As in Fig. 2, but for January 28 case.
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Fig. 6 

As in Fig. 2, but for January 29 case.
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Fig. 7 

Relationship between integrated Ku-band reflectivity and attenuation at W-band for Liu 
(2008b) particle models (black lines) and Petty and Huang (2010) aggregate models (green 
lines).  The blue line is the average of all models shown in this plot.  Model abbreviations are 
the same as Fig.	
  1. 
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Fig. 8 

Computed DWR values for January 27 case.  Scatter points are colored by integrated 
reflectivity.  Ice models are overlaid as in Fig. 1.  Top: no smoothing, no attenuation 
correction.  Middle: With smoothing, no attenuation correction.  Bottom: With smoothing, 
with attenuation correction.
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Fig. 9 

Results for January 27 case (light stratiform precipitation), with APR smoothing and W-band 
attenuation correction (see Table 2 for exact time ranges and number of points).  Top:  as in 
Fig. 8 bottom.  Bottom: Normalized frequency of occurrence in 1 dB x 1 dB bins.
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Fig. 10 

As in Fig. 9, but for January 19 case (stratiform precipitation).
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Fig. 11 

As in Fig.	
  9, but for January 23 case (stratiform precipitation).
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Fig. 12 

As in Fig. 9, but for January 28 case (shallow snow showers).
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Fig. 13 

As in Fig.	
  9, but for January 29 case (deep convective snowfall). 
	
  


