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Abstract 

 For the foreseeable future, numerical weather prediction models will require 

parameterizations in order to represent sub-grid scale processes. There are many classes of 

parameterization (cumulus, microphysics, etc.), and for each class of parameterization a number 

of options are available which are generally differentiated by their complexity or formulation. 

Although in a broad sense, different options within a class of parameterizations perform 

similarly, their differences do have significant forecast implications.  A considerable amount of 

research has been performed analyzing the impacts of varying parameterizations. However, the 

vast majority of this research has been of the short-term forecast (48 hours or less) and case-

study variety. This dissertation discusses the importance of varying parameterizations on longer 

forecasting timescales (up to 5-50 days) over a wide variety of geographical regions and 

conditions. Additionally, care is taken to create sufficiently large amounts of data such that 

statistically significant conclusions can be reached. Since it is not feasible to examine all 

available parameterizations within this dissertation, the Grell-Dévényi cumulus parameterization 

will be a particular focus. This is in part due to its novel formulation as well as its increasing 

popularity for use in both short-term forecasting as well as climate scale forecasting. It is shown 

that the current construction of this parameterization causes deficiencies in the depiction of 

tropical convection, which has important implications for phenomena ranging from the Hadley 

Cell to tropical cyclones. Various statistical methods of optimizing this parameterization as well 

as other parameterizations are also discussed.   
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Chapter 1: Introduction 

Historical Overview 

One of the great scientific achievements of the 20th century was the development of 

numerical weather prediction (NWP) models. Given the fundamental governing equations and 

well-defined initial and boundary conditions, credible estimates of future atmospheric states are 

achieved through the numerical integration of these complex models forward-in-time. The 

models represent monuments to our current understanding (and lack of understanding) of the 

fundamental physical processes which govern the atmospheric circulation, and also represent 

useful tools to enhance the protection of lives, property, and commerce through skillful 

prediction of relevant weather factors.  

Despite the great achievements in the development of NWP models, it is recognized that 

output from these models is deficient due to errors in the model input (initial condition errors), 

errors in the boundary conditions (lower, upper, and lateral for limited area models), errors in the 

model formulation (numerical), and errors in the model governing equations attributable to lack 

of understanding of fundamental physical processes, or how to best represent those processes.  

Given that there are no known solutions to the prognostic equation set governing the 

atmosphere, approximate numerical solutions are sought. The governing equations are then 

approximated in a discrete form (e.g., grid point, spectral representation, finite element) and 

solved in a discrete fashion. As a consequence, there are a number of processes not well-

represented in the discrete versions of the model equations. These phenomena, while not 

explicitly representable at the resolved scale of the model, can be important implicitly through 

scale interactions. They include moist convection as well as boundary layer moisture and 
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momentum fluxes. The representations of the collective effects of subgrid-scale processes in 

terms of the prognostic variables on the grid scale are known as parameterizations.  

For each process not representable at grid scale in a model, there may be numerous 

schemes to parameterize those processes. For a given process, the variety of schemes reflects 

both the varying complexity of the possible representations and the lack of consensus on how to 

“properly” represent the process. Some schemes are simple because of convenience in 

implementation (for use in idealized or conceptual models), while others are necessarily 

“simple” because they must be used in operational prediction requiring reliably fast computation. 

Despite differences in formulation, for processes that are reasonably well understood, these 

seemingly different parameterizations will often produce very similar results. Over time, 

however, the differences in formulation can have clear, unambiguous impacts on the model state 

as the parameterized interactions influence larger-scale, grid resolvable phenomena. Below is a 

brief discussion of important classifications of parameterizations relevant to this dissertation as 

well as additional supplementary information. 

CUMULUS PARAMETERIZATION 

Cumulus parameterization in numerical modeling is the problem of formulating the 

collective effects of subgrid-scale clouds in terms of the prognostic variables of grid scale 

(Arakawa, 1993). Given the interactions of moist convective clouds with their larger-scale 

environment (a scale interaction), cumulus parameterization is needed in any formulation of 

scale interactions in a moist atmosphere regardless of whether such interactions are being studied 

in numerical, theoretical, or conceptual models (Arakawa, 1993). To motivate an understanding 

of the interactions of convection with the larger-scale environment, we briefly consider the 

impacts of convection on the heat and moisture budgets of the atmosphere. 
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We begin by considering the Reynolds averaged thermodynamic, water vapor budget, 

and mass continuity equations: 
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where the overbar denotes the horizontal Reynolds average over an NWP model grid box, L is 

the latent heat of vaporization, C the Reynolds averaged net rate of condensation, QR is the 

Reynolds averaged radiation heating, q the water vapor mixing ratio, s is the dry static energy, 

cpT + gz, and all other variables have their standard meteorological meanings. Typically, the 

horizontal transports associated with subgrid-scale processes are neglected and the equations 

governing the area-averaged potential temperature and water vapor as defined by Yanai (1973) 

are: 
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The terms Q1 and Q2, are the apparent heat source and the apparent moisture sink, respectively. 

Arakawa (1993) notes that Q1 and Q2 differ from the actual heat source and moisture sink due to 

the Reynolds averaging. Defining 

   

Q1C = Q1 - QR = LC -
¶ ¢ w ¢ s 

¶p
, Q1C is that part of the apparent 

heating due exclusively to condensation and convective transport of sensible heat. The difference 

of Q2 from the net rate of condensation is the convective transport of latent heat. Removing the 

net rate of condensation between equations 1 and 2, and defining the moist static energy, h = s + 

Lq, yields: 

   

Q1C - Q2 = -
¶ ¢ w ¢ h 

¶p
, 

 Given measurements of the horizontal wind field, water vapor mixing ratio, and 

temperature over a large area (possibly encompassing convection) and over time, Q1 and Q2 may 

be calculated as residuals. If we separate the local tendency of the area-averaged temperature and 

moisture from the contributions to the tendency by large-scale advective processes, we may 

rewrite 1 and 2 as: 
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The parameterization problem may readily be seen from these four equations where, unlike in 

the diagnostic studies, the large-scale (area-averaged) temperature (

   

T ) and mixing ratio (

   

q ) are 
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now unknowns. In short, there are four unknowns (we assume we know the large-scale wind and 

vertical velocity) and just two equations. In order to close this system, (at least) two additional 

relationships are needed. These are known as closure assumptions.  

Arawaka and Chen (1987) identified three basic types of closure assumptions: those that   

use a constraint on the (time tendency) of large-scale states 
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) and moist-convective processes (Q1 and Q2) (Type IV). From the preceding 

discussion, it is clear that cumulus parameterization requires the creation of subgrid-scale 

implicit clouds, which transport heat, water vapor, and other quantities vertically, generally in 

the absence of grid-scale saturation. Closure assumptions are required to define the relationship 

between these implicit clouds and the resolvable (i.e., grid-scale) variables. Given the complexity 

of the problem, it is perhaps not surprising that many different forms of cumulus 

parameterization exist. However, all cumulus parameterizations use the inherent assumption that 

the effects of cumulus convection can be approximated through the use of resolved variables 

within the model (Emanuel 1994). Briefly, a review of the history of cumulus parameterization 

schemes are described. While not discussed explicitly, many of these schemes can be derived 

from the basic closure type describe above. 

Early attempts to tackle the cumulus parameterization problem largely revolved around 

simulating tropical cyclones.  Charney and Eliassen (1964) estimated cumulus heating using 

column moisture convergence, while Ooyama (1964) used boundary layer convergence to 

estimate cumulus heating. Arakawa (2004) deems this class of parameterization part of the 
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“convergence school” in that both rely on larger, synoptic scale atmospheric control to aid in 

determining the atmospheric feedback, in this case in the form of latent heat release. Subsequent 

work by Ooyama (1969) related cumulus heating to the strength of boundary layer convergence 

and cloud entrainment (which was allowed to be a variable parameter). Using this 

parameterization, Ooyama was able to successfully simulate an intensifying tropical cyclone 

using an axisymmetric model. The work of Charney and Eliassen as well as Ooyama in 

understanding tropical cyclone development led to the concept of conditional instability of the 

second kind (commonly known as CISK), which is a theory linking cumulus heating and 

frictionally induced boundary layer convergence. 

Conversely, Arakawa (2004) lists convective parameterizations such as those used by 

Manabe (1964) as part of the “adjustment” school of thought. Manabe’s (1964) parameterization 

assumed convection existed when relative humidity exceeded 100% and the stratification was 

conditionally unstable. Afterward, the parameterization adjusts profiles of temperature and 

moisture until a neutral atmospheric profile is created; which typically involved moistening and 

cooling of the atmosphere. In this class of cumulus parameterization, stabilization of the 

atmosphere is effectively the feedback to the model. Manabe (1964) was focused on simulating 

the larger tropical atmosphere (not specifically tropical cyclones), and it has been shown that his 

scheme performed reasonably. One criticism of this scheme is that it requires grid-scale 

saturation (which effectively never occurs in real conditions for grid spacings of the scale 1 km 

or greater) to represent subgrid scale convection (Cho, 1975). 

Arakawa and Schubert (1974) produced a more sophisticated cumulus parameterization 

in that it allows for a variety of cumulus cloud sizes within a given grid cell, rather than a 

prescribed cloud type as in earlier models such as Ooyama (1969). This scheme uses a cloud 
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work function which relates the creation of buoyancy to the production of convection.  

Furthermore, rising vertical motion within a cloud is balanced by compensating subsidence 

surrounding the cloud, which warms and dries the atmosphere. The Arakawa-Schubert cumulus 

parameterization (1974) generally performs well in relation to earlier cumulus parameterizations, 

in part owing to its complexity. In its most advanced implementation, this cumulus 

parameterization allows for a variety of entrainment rates. In its current implementation in 

NCEP’s Global Forecast System (GFS) model, it only assumes a single cloud type in order to be 

more computationally efficient (Stensrud, 2007). 

The Kain-Fritsch cumulus parameterization (Kain and Fritsch, 1990 and 1993) is another 

similarly complex parameterization which produces convection when the following conditions 

are met: sufficient upward vertical motion at the lifted condensation level exists, CAPE exists in 

the updraft source layer, and the resultant cloud exceeds a given threshold. Afterward, the 

parameterization works to remove CAPE based upon a determined convective timescale. This 

scheme also incorporates variable entrainment and detrainment parameters along with an 

inclusion of convective downdrafts originating within the cloud. Parameterizations such as these 

are frequently described as “mass-flux” schemes, owing to their dependence on upward vertical 

motion to trigger the parameterization as well as their active nature in the rearrangement of mass 

in the vertical. Unlike the Arakawa-Schubert parameterization, cloud types are not allowed to 

vary within a grid box for the Kain-Fritsch scheme.  

A newer version of adjustment type schemes is the Betts-Miller-Janjic cumulus 

parameterization (Betts and Miller (1986, 1993), Janjic (1994)). The concept behind the 

development of this parameterization was the observation noted by Betts (1985) that atmospheric 

soundings post-convection often exhibited similar structures. As with earlier adjustment 
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schemes, this scheme relaxes a conditionally unstable atmosphere to an atmosphere 

representative of the post-convective atmosphere, which is characterized by a convectively 

neutral environment. The Betts-Miller-Janjic cumulus parameterization uses a more advanced 

system than earlier adjustment schemes, in this case based upon optimal mixing lines calculated 

after the cloud base and cloud top are determined. This scheme allows for both shallow, non-

precipitating convection as well as deep, precipitating convection. Due to the relative simplicity 

of the model and its favorable precipitation forecasts, it is a commonly used parameterization in 

operation models However, it is known to produce unrealistic atmospheric structures, perhaps 

due to its simplicity (for example the effects of convective downdrafts are not explicitly 

included) as shown by Baldwin et al. (2002).  

The Grell-Dévényi (Grell and Dévényi, 2002) cumulus parameterization is relatively new 

compared with the aforementioned parameterizations, and seeks to leverage the varying 

approaches described above in order to produce a superior parameterization. Grell and Dévényi 

recognized that in certain situations, some forms of convective parameterization perform well, 

while different parameterizations perform well in other situations. This scheme uses an ensemble 

of 144 different specific simplified cumulus parameterizations at each individual grid point, with 

the averaged result being the feedback to the model. These different members are comprised of 

differing closures such as a cloud-work function similar to that used in the Arakawa-Schubert 

scheme, moisture convergence schemes, CAPE relaxation schemes similar to the Kain-Fritsch, 

and others. Additionally, a number of parameters such as precipitation efficiency and 

entrainment rate are varied across all closures to produce the 144 total members. Theoretically 

this parameterization is optimizable such that for different grid points the ensemble member 

weighting can be adjusted based upon prior observations, although in practice this is not done.  
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MICROPHYSICS PARAMETERIZATIONS 

 As touched upon at the beginning of the above section, accurately predicting clouds is 

supremely important for NWP models. Aside from the direct effect they have on the atmosphere 

through redistributions of heat and moisture, and the occasional production of precipitation, 

clouds have other indirect effects such as radiation-cloud interactions which alter the energy 

budget for places not directly impacted by the presence of clouds or precipitation. Generally 

speaking, microphysics parameterizations act to model cloud processes (including water phase 

conversions and droplet formation and growth) when the relative humidity nears 100% for a 

given location. This is different from most cumulus parameterizations in two primary ways – 

many cumulus parameterizations do not require grid scale saturation in order to form clouds and 

microphysics parameterizations are needed for atmospheric locations in which convection is not 

occurring, such as stratiform rain regions associated with extratropical cyclones. Certainly 

microphysics parameterizations are important for many aspects of NWP, but their importance 

increases as the horizontal grid spacing decreases which allows for more explicit resolution of 

convective features without using a cumulus parameterization (i.e. at grid scales where the model 

is able to successfully predict mesoscale processes as described by Weisman et al., 1997). 

Stensrud (2007) lists two primary challenges specific to microphysics parameterizations. The 

first is the challenge in properly simulating the conversion between different water phases (all six 

combinations between solid, liquid, and vapor) and the second is correctly modeling the 

interaction of cloud and aerosol particles which have various sizes and shapes. As is to be 

expected, significant assumptions and approximations are necessary; for example, the use of 

something similar to the Marshall-Palmer droplet size distribution.  
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 There are two classes of microphysics parameterizations, “bulk” and “bin.” Bulk 

approaches use a predefined function to predict size distributions, while bin approaches divide 

predicted hydrometeors into discrete bins, as its name suggests (Stensrud, 2007). Due to the 

computational expense of the latter approach, bulk microphysics schemes tend to be the most 

common form of microphysics parameterizations. An early parameterization was that of Kessler 

(1969) which simplified the process by only allowing for rain, cloud water, and water vapor 

(thus it did not allow for frozen hydrometeors). The WRF Single Moment 3-class (WSM3) is a 

fairly simple bulk scheme which allows three arrays consisting of water vapor, rain/snow, and 

cloud water/ice (Hong et al., 2004). Frozen hydrometeors are allowed to exist in the event the 

temperature is below freezing, although cloud water/ice is considered to be a single quantity 

internally (as is rain/snow). More advanced versions of this parameterization include the WSM5 

(and WSM6) which adds additional arrays such that supercooled water is allowed to exist 

internally, as is snow as it falls past the freezing level (the WSM6 adds graupel as well as to its 

associated processes).  

As is likely intuitive, as the microphysics parameterization chosen increases in 

complexity, model performance often improves, although the trade-off frequently is in the form 

of slower computational time. One parameterization which seeks to maximize computational 

efficiency while maintaining a reasonable level of complexity is that of the Eta-Ferrier 

parameterization (Ferrier, 2005). This parameterization only uses two arrays – water vapor and 

total condensate, which represents the various species of hydrometeors including cloud water, 

cloud ice, snow, and graupel. The Eta-Ferrier uses prescribed look-up tables which allow the 

parameterization to partition the total condensate into various forms depending upon atmospheric 

variables such as temperature. A version of this scheme is currently used in many operational 
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models such as NCEP’s GFS and North American Mesoscale Model (NAM) (Ferrier et al., 

2001). 

ENSEMBLE FORECASTING 

 Thompson (1977) described the theoretical justification for using an ensemble of forecast 

models rather than a single model. Thompson showed while using a simple idealized situation 

that an optimal combination of two independent models produced more accurate forecasts on 

average over many forecasts than either forecast on its own. This is the concept behind ensemble 

approaches – the notion that several reasonably independent models, when combined in some 

manner for a given forecast event, should produce superior results on average than a single 

model forecast. Ensembles can also be used to form an understanding of the various potential 

outcomes for a given meteorological event. Implicit in the notion of ensemble forecasting is the 

necessity for many forecasts simulating the same event. This fact made early practical ensemble 

applications toward real-time NWP modeling quite restricted, as computational resources were 

limited.  

Murphy (1998) notes that given imperfect representations of the observed atmospheric 

state at time of model initiation (combined with model limitations such as large grid spacing, 

etc.), individual forecasts are prone to significant error. He suggests that an ensemble of forecasts 

ideally represents a probability distribution function of the likely possible outcomes. Murphy 

relates this probability distribution function idea to the above noted imperfect observations of the 

atmospheric state at model initialization, and suggests using different initial conditions to 

initialize a model, wherein these differing initial conditions would theoretically represent a 

probability distribution function of the observed atmosphere at model initialization. Using a 

simple 5-layer general circulation model, Murphy demonstrates that a combination of eight 
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forecasts using different initial conditions gives a statistically significant increase in forecast skill 

of the mean winter atmosphere than does a single forecast. 

 As available computational resources increased, real-time ensemble use became more 

feasible. By 1992, the United States National Meteorological Center implemented real-time 

ensemble forecasting using fourteen members with differing initial conditions (Tracton and 

Kalnay, 1993). The European Centre for Medium-Range Weather Forecasts (ECMWF) also 

implemented ensemble modeling around this time, with noticeable improvements to forecasts 

(Buizza, 1997). One obvious application of ensemble forecasting was toward tropical cyclones, 

in part because of the importance of their societal impact, but also because tropical cyclones 

offer very discrete variables that are reasonably easily validated (such as track and maximum 

wind speed). Zhang and Krishnamurti (1997) studied tropical cyclone forecasting and used 

various techniques to create a fifteen member ensemble wherein the initial conditions were 

varied across members (including the location of the tropical cyclone). While their work wasn’t 

in real-time, they demonstrated that a combination of the ensemble members improved tropical 

cyclone forecasts over several cases. They also discussed the usefulness of ensemble spread in 

understanding uncertainty – for example, if a given ensemble of tropical cyclone tracks were 

widely variable, one would expect to have less confidence in the correctness of a mean forecast 

track in that scenario than one would if that ensemble contained very tightly clustered storm 

tracks.  

All of the above studies used an individual model with differing initial conditions, but a 

“poor man’s ensemble” is another method to create computationally efficient ensembles. A poor 

man’s ensemble is an ensemble combining the single forecasts of different operational centers. 

One benefit to this approach is that both the initial conditions and models are varied. In 2001, 
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Ebert demonstrated that such an ensemble allowed for increased skill in precipitation forecasting 

over 48 hour time periods for Australia. However, unlike with tropical cyclone track, Ebert 

points out that a simple average of precipitation forecasts is not necessarily optimal, as this 

frequently produces a forecast wherein many areas receive light precipitation, which is an 

unrealistic distribution. Therefore, for precipitation forecasting, often more advanced techniques 

are required.  

 Generally speaking, ensemble modeling has continued to advance along the above 

trajectory, albeit with greater computational resources allowing for more ensemble members 

with greater resolution. Advancements in data assimilation have also aided the creation of the 

initial conditions used in these ensembles. Currently, the Global Ensemble Forecasting System 

(GEFS) is comprised of 20 members with varying initial conditions. Additionally, endeavors 

such as the Hurricane Forecast Improvement Project (Gall et al., 2013) incorporate many 

independent high-resolution forecasts performed across a number of sites with differing models 

to improve tropical cyclone forecasting. As mentioned earlier, ideally an ensemble of forecasts 

contains the range of potential outcomes for a given forecast (for example, that the verified 

position of a tropical cyclone falls within the spread of forecasts outlined by the ensemble used). 

In practice, this is not always the case. Intuitively, if several ensemble members are better than a 

single forecast, it is reasonable that continuing to increase the size of the ensemble should aid in 

this problem. Several studies have attempted to quantify the impact of increasing ensemble size 

on the ensemble’s effectiveness. Buizza and Palmer (1998) examined the effectiveness of the 

ECMWF ensemble over a 45 day period using ensembles of size 2, 4, 8, 16, and 32. They 

demonstrated that forecast improvements were found with each successive increase in ensemble 

size, implying that 32 members are insufficient. For example, the outlier percentage (i.e. the 
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likelihood that verification will be outside the ensemble spread) fell from 66% to 41% to 26% as 

ensemble size increased from 2 to 4 to 32.  

 The above ensemble summary generally consists of situations in which ensembles are 

generated primarily though varying initial conditions. However, several studies have suggested 

the usefulness of forecasting using an ensemble comprised of members using different 

parameterizations. Using differing parameterizations to comprise an ensemble is a comparatively 

new development. Upon finding considerable sensitivity to varying the cumulus 

parameterization while studying precipitation forecasting, Gallus Jr. (1999) suggested that many 

low resolution simulations could provide forecasters with more information than one or few high 

resolution simulations. Jankov et al. (2005) attempted this approach for forecasting warm-season 

rainfall with an eighteen member ensemble comprised of members using different 

parameterizations. They found that no single combination of parameterizations consistently 

outperformed the others, but rather that certain members performed best depending on rainfall 

intensity or time since initialization.  

Jankov et al. (2007) expanded upon this study by using two sets of initial conditions (for 

a total of 36 members). They again concluded that no single member significantly outperformed 

another, while a combination of the members performed best. Both Jankov et al. (2005) and 

Jankov et al. (2007) found that this approach was effective at increasing model diversity. A 

separate study of cold-season precipitation using different parameterizations (Jankov et al. 2007) 

found that different microphysics parameterizations produced statistically significant differences, 

implying that a well-chosen ensemble could produce a superior forecast compared to a single 

high-resolution control simulation. The operational Short-Range Ensemble Forecasting (SREF) 

system has attempted to incorporate the above observations that added physics diversity within 
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an ensemble aids ensemble forecasting. Currently the SREF uses several different dynamical 

cores (including WRF) as well as different parameterizations to comprise its ensemble. The 

earlier mentioned Hurricane Forecast Improvement Project also seeks to incorporate an 

understanding of parameterization variation as a component of its ensemble. 

Motivation 

The work presented in this dissertation will focus both on understanding the impacts and 

potential deficiencies of particular parameterization schemes and will also explore how the 

differences in parameterization formulation might be exploited to create effective ensemble 

members for ensemble prediction. It is demonstrated that such parameterization ensembles can 

produce forecasts with enhanced skill than the individual ensemble members and comparable 

skill to initial condition ensembles. While there are numerous extant published case studies of 

forecasts wherein parameterizations are varied and the authors discuss what differences arise in 

their forecasts it is often difficult to generalize conclusions from these studies and apply them 

broadly to other cases in large part due to how these studies were conducted, rather than the lack 

of potential attainable universal conclusions. To motivate the work to follow in this dissertation, 

the general characteristics of existing studies are described and the common weakness in the 

approach taken is identified.  

To achieve this goal, more than 200 peer-reviewed articles
1
 published between the year 

2000 and 2012 which in some manner compared the effect of varying parameterizations across a 

number of journals were studied. This time frame was chosen for two reasons. First, during this 

period several community models became widely accessible (such as the MM5 model and its 

                                                 
1 The method used here consists of using two search terms – “Kain” and “Betts,” after two commonly used cumulus 

parameterizations. In articles in which both of these terms were found, characteristics of the study were noted if any 

parameterizations were compared, regardless of whether or not the parameterizations were these cumulus 

parameterizations.  
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successor, the WRF model). Second, computing resources greatly expanded during this period, 

which made sophisticated desktop modeling much more feasible. While this is in no means an 

exhaustive list of every peer-reviewed article on the subject, it should be of sufficient size to 

develop some general conclusions. One of the characteristics noted was the absolute maximum 

forecast length in which any two parameterizations was compared.  

Figure 1.1 depicts a histogram of maximum comparison length (in hours) as well as the 

total number of studies for all studies which were not climate studies. It is immediately clear that 

the vast majority of parameterization studies use approximately a 24-72 hour forecasting 

timeframe. The mean forecast length examined within these articles is 48 hours. (It should be 

noted that 33 climate studies were not included on this graph. These studies ranged from 10 day 

comparisons to 29 years. Several of these studies will be discussed in greater detail later). Of the 

studies which compared parameterizations over forecasting length beyond 72 hours, the vast 

majority were tropical cyclone case studies. In fact, the vast majority of all of these studies were 

of the case study variety in which only a few particular cases were examined. Of the different 

forms of case study, tropical cyclones, convection, and intense extratropical cyclones were the 

overwhelming majority of cases. Of those few instances of parameterization studies which were 

not limited to particular case studies, the vast majority were model evaluation or ensemble 

verification studies, commonly using precipitation or surface variables as forms of verification. 

Of all non climate-scale studies, only three focused on oceanic domains which were not related 

to tropical cyclones. Two of these three examined tropical convection while the third studied a 

polar low case. All studies (including climate scale studies) used a limited area model (meaning 

lateral boundaries were prescribed in some manner).  
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Figure 1.1 A histogram of the maximum length (h) of model simulation in which any 

parameterizations were compared. 
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Collectively, these studies indicate that the most common form of parameterization study 

follows a familiar pattern – most are short term case studies using a limited area model over land 

(with the addition of several tropical cyclone case studies) of high-impact weather events. 

However, these studies largely leave many meteorological areas unstudied. For instance, most 

daily weather is not of the “case study” variety. Second, land only comprises approximately one-

third of the Earth’s total surface area. Third, many operational forecast centers issue forecasts for 

much longer than the 24-72 hour forecast period most of these studies examine. For example, 

national agencies like the National Weather Service as well as private companies such as The 

Weather Channel routinely forecast up to 10 days in advance (Bickel et al., 2011). Additionally, 

more focused forecast activities such as the Hurricane Forecast Improvement Project, have a goal 

of improving tropical cyclone track, intensity, and structure forecasts out to a lead time of seven 

days (Gall et al., 2013). Extended range forecasts (between three and ten days) often greatly 

depend on global models such as the GFS and the ECMWF models. This means that the only 

method in which conclusions learned from the aforementioned studies can be transferred to long-

term day-to-day forecasts is to make the following assumptions: 

(1) Parameterizations behave in a similar manner across multiple environments (e.g. 

 winter/summer, land/ocean) 

(2) Parameterizations behave in a similar manner across varying forecast durations (e.g. 

 their performance at hour 24 is effectively equivalent to later forecast hours) 

(3) Parameterizations perform similarly for day-to-day weather as they perform in case 

 studies (typically conducted for “high-impact” weather events).  

If any of these assumptions were invalid – and often at least one is, then conclusions 

derived from most parameterization studies are not necessarily applicable to many daily 
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forecasts. Even one of the most organized programs of model testing and evaluation performed 

by the Developmental Testbed Center (Bernardet (2008), Wolff (2012)) implicitly incorporates 

the above assumptions. The Developmental Testbed focuses primarily on model verification and 

parameterization testing (mostly with the WRF model). While the robustness of their endeavors 

is admirable, they suffer from many of the same potential problems associated with other studies. 

Their forecasts used for comparison are generally 36-48 hour forecasts of continental events, 

which is the same pattern noted for many other studies.   

Warner (2011) provides a brief overview of current practices in general modeling studies 

while also providing suggestions for the improvement of such studies. While Warner does not 

specifically address the type of modeling studies performed (as above), he does note that the 

proliferation of easily accessible NWP models (like MM5 and WRF), along with users with 

limited meteorological or NWP backgrounds, in addition to little time invested in verification 

lends itself to poor practices. While Warner provides an extensive list for ways to improve 

generic modeling studies (not parameterization specific), those that are most pertinent to 

parameterization studies include: 

(1) Identifying clearly the proposed purpose and goals of the study in advance; 

(2) Determining what forms of model evaluation and verification will take place in 

advance, with the knowledge that using multiple forms of evaluation/verification is best; 

(3) Performing sensitivity tests for studies conducted in a limited domain to determine the 

optimal size and location for the domain; and  

(4) Testing the model for many different types of meteorological phenomena if the model 

is to be used for operational NWP. 
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Many of the parameterization studies alluded to above follow these best practices, while 

many do not. Certainly, studies of the form “Tropical cyclone X was modeled which 

demonstrated that parameterizations A, B, and C produced differing forecasts” do not satisfy the 

best practices suggested by Warner. Ideally, parameterization studies should seek to either 

provide some sort of generally applicable conclusion regarding a parameterization or class of 

parameterizations, or advance the community’s knowledge of atmospheric processes through 

parameterization studies (or both). Given this goal, and taking into account the types of 

parameterization studies currently lacking in the literature, broadly speaking this dissertation will 

seek generalizable conclusions regarding several parameterizations while also furthering the 

collective meteorological knowledge where possible through a series of WRF-ARW simulations 

examining various features of tropical and subtropical regions using both limited area and global 

domains covering topics ranging from tropical rainfall to tropical cyclones to the global 

circulation.  

 Due to the sheer volume of available parameterizations, an all-inclusive parameterization 

study would be impossible to complete due to the number of different configurations possible, as 

well as the rapidly growing number of available parameterizations. For example, in the latest 

release of the WRF-ARW (Skamarock et al., 2005), there are no fewer than 70 changeable 

parameterizations of different types (cumulus, microphysics, radiation, etc.). If the changeable 

constants (such as friction and dispersion coefficients) are included, there are a minimum of two 

trillion potential WRF-ARW model configurations. Given these obvious limitations, this 

research will focus on several commonly used cumulus parameterizations, and will incorporate 

two parameterizations of other processes (microphysical and boundary layer processes) for the 

purposes of ensemble generation. Furthermore, this research will begin with a detailed analysis 
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of one particular parameterization (the Grell-Dévényi cumulus parameterization) and will end 

with a slightly broader analysis of two physics ensembles. To the greatest extent possible, this 

research will follow the best practices as outlined above by Warner (2011).  

Before a detailed description of the upcoming research is given, some general 

descriptions are warranted. For a given comparison of parameterizations, all other 

parameterizations, grid spacings, and coefficients will be held constant in order to isolate the 

impacts of the changeable parameterizations under study. In order to study parameterizations and 

their effects in a statistically meaningful way, a significant amount of data is required. 

Furthermore, it is important to limit the amount of degrees of freedom as much as possible, 

therefore this research will frequently employ a similar approach: for a given parameterization 

comparison, a meteorological forecast or simulation (for example, a tropical cyclone forecast) 

will be conducted repeatedly using the same initial conditions and WRF-ARW model 

configuration, except for the changeable parameterizations. All forecasts will be medium to long 

term forecasts in the 5 to 54 day range. Afterward, additional forecasts will be made in this same 

manner for different cases, until enough data is generated such that, where possible, statistically 

significant conclusions can be drawn. This strategy has an added benefit in that in some studies 

every forecast is essentially an ensemble of forecasts, with the different parameterization 

combinations being the different members of that ensemble.  The approach taken allows this 

research on differing parameterizations to occasionally serve also as research involving the 

utility of parameterization ensembles versus more traditional ensembles such as NCEP’s Global 

Ensemble Forecast System (GEFS), or a conventional multi-model ensemble. The cases chosen 

for this research will generally be geared towards forecasting tropical cyclones and their larger-

scale tropical environment.  
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Dissertation Synopsis 

This dissertation is organized into five subsequent chapters. The work contained within 

these chapters will seek to follow the best practices as outlined by Warner (2011). Additionally, 

they seek to begin addressing some deficiencies in current parameterization research. For 

instance, Chapter 2 deliberately eschews short-term land-based case studies in favor of many 

oceanic and global simulations. Chapter 2 examines the impact of the current WRF 

implementation of the Grell-Dévényi CP on the large-scale environment and the precipitation 

fields relative to the implementations of other cumulus schemes. Using the Grell- Dévényi CP as 

an example, it is demonstrated that (1) this parameterization performs very differently at 

different times as forecasts progress, and that (2) it performs quite differently over land versus 

over water, particularly when compared with other cumulus parameterizations. This example 

raises significant concerns regarding the universal applicability of many of the results of 

parameterization studies described earlier. Chapter 3 answers the question “do different cumulus 

and microphysics parameterizations exhibit systemic biases when used in tropical cyclone track, 

intensity, structure, or genesis  forecasts at time scales up to 180 hours?” It is shown in Chapter 

3 that there are indeed systematic biases in using particular (combinations of) parameterization 

schemes. Chapter 4 exploits the existence of the biases found in Chapters 2 and 3 and addresses 

two questions directly pertaining to ensembles. First, “given the deficiencies present in the Grell-

Dévényi CP, are there statistical applications that can ameliorate these deficiencies?” and 

second, “can a low-resolution physics-based ensemble produce comparable five day forecasts 

when compared with an initial condition ensemble of higher resolution?” The former addresses 

an ensemble within a parameterization while the latter address an ensemble of different 
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parameterizations. Chapter 5 contains a summary of the key results and lessons form Chapters 2 

through 4 and directions for further research. 
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Chapter 2: The Grell-Dévényi Cumulus Parameterization 

Introduction 

The Weather Research and Forecasting model using the Advanced Research Core (WRF-

ARW) (Skamarock et al., 2008) currently provides eight distinct cumulus parameterization (CP) 

options, not including additional tunable parameters within each option. While the diversity of 

options is partially due to varying degrees of complexity, it is also due to a variety of 

uncertainties regarding how to properly address the cumulus parameterization problem 

(Arakawa, 2004). Many previous studies have aimed to understand which CPs perform best in 

certain situations using case studies of a variety of meteorological phenomena including severe 

thunderstorm outbreaks, midlatitude cyclones, and tropical cyclones. However, there is little 

agreement concerning the “best” choice of CP because this determination is (1) highly case-

dependent, (2) somewhat subjective, and (3) the vast majority of existing studies employ 

examinations of short-term forecasts for continental regions (less than 48 hours, as described in 

Chapter 1), therefore the conclusions therein may not be representative of other environments or 

forecast lengths.  

Certain CPs may perform better in certain situations than others depending on terrain, 

season, meteorological event, length of model integration, grid spacing, and other factors. 

However, given enough data, robust conclusions can be reached regarding the performance of 

different CPs. The work presented in this chapter will demonstrate that there are certain 

meteorological regimes in which the Grell-Dévényi CP creates deficient forecasts relative to two 

other commonly used CPs – the Kain Fritsch (KF) CP and the Betts-Miller-Janjic (BMJ) CP, 

when considering either realism of forecast precipitation or large-scale atmospheric variables. 

This will be shown using a series of five-day limited area WRF-ARW forecasts as well as a 
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comparison between different WRF-ARW global simulations. The limited area model 

simulations are used to generate a significant amount of data valid at a given forecast hour, 

which makes parameterization comparison more legitimate and less prone to a single extreme 

event. The global simulations are useful for comparing the cumulative effects that varying 

parameterizations have on the atmosphere over extended forecast periods. In either case, the use 

of extended forecasts times, as well as forecast domains not restricted to continental areas, allow 

the results presented herein to be applied more generally.  

The results obtained in this paper appear to explain several unexplained results from 

other studies. One such study by Wehner (2011) examined the incidence of extreme precipitation 

over a number of North American Regional Climate Change Assessment Program (NARCCAP) 

ensemble members over North America for all seasons. Wehner found that, with respect to mean 

precipitation, the NARCCAP member using the Grell-Dévényi CP performed approximately 

equivalently as all other members, yet an examination of extreme precipitation events found that 

the ensemble member using Grell-Dévényi CP was a significant outlier that produced return 

rates for extreme precipitation which were far too long compared with reality (i.e. that the 

member using the Grell-Dévényi CP had greater difficulty producing heavy precipitation). 

Similarly, Kawazoe and Gutowski (publication pending) analyzed intense precipitation 

characteristics within the NARCCAP models and found that the member using the Grell-

Dévényi CP produced infrequent consecutive heavy rainfall days relative to either other models 

or observations. 

Another study by Mukhopadhyay et al. (2010) examined forecasts of the Indian monsoon 

using the Grell-Dévényi CP, the KF CP, and the BMJ CP. In a result similar to Wehner (2011), 

Mukhopadhyay et al. found that the Grell-Dévényi CP produced significantly more light 
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precipitation (rather than heavy precipitation) relative to either of the other CPs examined. 

Associated with an underproduction of intense rainfall with the Grell-Dévényi CP was less 

intense upward vertical motion when compared with other CPs. Several other studies such as 

Crétat and Pohl (2012) and Gilliland and Rowe (2007) found similar results when examining 

African convection and supercell development, respectively (i.e. the Grell-Dévényi CP 

underproduced intense precipitation). The commonality amongst these studies is that all of them 

were examining extreme rain events. Collectively, use of the Grell-Dévényi CP has been gaining 

popularity, and to date has been used in well over one hundred peer-reviewed articles. 

Model Description And Methodology 

All results shown in this chapter were obtained using the WRF-ARW model (Skamarock 

et al., 2008). Some of the data shown were obtained from a series of 76 “real-time” WRF-ARW 

version 3.0 physics ensembles initialized using the 0000 UTC Global Forecast System (GFS) 

forecasts
2
 for both initial and boundary conditions. One ensemble was constructed every other 

day between early June and late October 2009. These 76 ensembles employ ten different 

combinations of physics options, although for the purposes of this chapter only three will be 

discussed – those using the KF, and BMJ, and G3 CPs, with all other parameters being held 

constant. Additionally, four forecasts were created for each ensemble representing a unique sub-

ensemble of the G3 CP (to be explained in greater detail below). Each simulation is run 120 

hours using the domains shown in Figure 2.1. The outer (inner) domain uses a 90 km (30 km) 

horizontal grid spacing and both domains use 28 vertical levels and a Mercator projection. The 

outer (inner) domain has a lower-left location of 4.98° S, 134.17° W (4.98° N, 100.83° W) and 

an upper-right location of 56.02° N, 4.17° E (36.51° N, 15.15° W). The notable 

parameterizations which remain constant are the WSM3 microphysics, the Yonsei University 

                                                 
2 Details can be found at: http://www.emc.ncep.noaa.gov/GFS/impl.php 

http://www.emc.ncep.noaa.gov/GFS/impl.php


 

Figure 2.1 The area covered by the 90 km outer domain is shown, as well as the 30 km inner 

domain (denoted by the rectangular box). 
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boundary layer parameterization, the 5-layer thermal diffusion land surface model, the Rapid 

Radiative Transfer Model longwave parameterization, and the Dudhia shortwave 

parameterization (descriptions of these can be found in Skamarock et al., 2008). For the purposes 

of this study, only inner domain data will be used. 

Other data is generated using global WRF-ARW, version 3.3.1. The global simulations 

have a .73° x .73° grid spacing, which at the equator is equal to a horizontal grid spacing of 80 

km. All global simulations have 28 vertical levels. The global simulations are run from a period 

of 0000 UTC 1 January through 19 0000 UTC February and 0000 UTC 1 July through 0000 

UTC 24 August, 2005. These simulations are initialized with the appropriate GFS Final 

Analysis, and are updated once daily with observed sea surface temperatures. The 1 January - 19 

February (1 July – 24 August) simulation will be referred to as the winter (summer) simulation.  

The Grell-Dévényi (GD) CP and its updated version (G3) use a sophisticated ensembling 

approach employing multiple closure assumptions (moisture convergence, CAPE removal, 

vertical velocity, and a cloud work function) combined with differing changeable parameters 

(such as precipitation efficiencies and detrainment rates among others) as described in Grell and 

Dévényi (2002). For a given grid point, 144 separate ensemble members are run, with the 

averaged result being the feedback to the model. One of the philosophies behind this approach is 

the above-mentioned notion that different CP types perform well in some situations and not in 

others. By combining different forms of CPs, ideally a superior result would be obtained. The 

four additional G3 CP simulations referred to above use an individual closure variety (moisture 

convergence, CAPE removal, vertical velocity, and a cloud work function) while still allowing 

for other variations in constants such as precipitation efficiency. For each of these simulations, 

the effective ensemble size is nine members. 
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The KF CP employs a sophisticated cloud model that seeks to remove CAPE over a 

given convective time-scale. The CP is activated when low-level vertical motion exceeds the 

threshold such that any existing convective “cap” can be broken, CAPE exists for the parcel 

source layer, and the resulting cloud exceeds a prescribed depth. Both the G3 CP and the KF CP 

are mass-flux schemes. The BMJ CP is an adjustment scheme that seeks to adjust profiles of 

temperature and moisture toward reference profiles characteristic of post-convective 

atmospheres (i.e. moist neutral). The CP is activated if CAPE exists and the convective cloud 

depth is sufficiently large. While the KF and the BMJ CPs are not the focus of this chapter, they 

serve as useful points of comparison when discussing the G3 CP. The KF and BMJ CPs are 

chosen due to their extensive use in many studies examining parameterizations as well as their 

use in several operational models. 

All model output is converted into GEMPAK format using the program wrf2gem
3
. 

Afterward, all statistical analysis is performed using MATLAB. Trajectory analysis is performed 

using GEMPAK. 

RESULTS 

Description Of Precipitation Patterns 

Figure 2.2 shows the mean rain rate for both the KF (Fig. 2.2c,d) and G3 CPs (Fig. 2.2e,f) for 

the winter and summer simulations as well as their difference (Fig. 2.2g,h) and the estimated 

rainfall
4
 for this same period (Fig. 2.2a,b). While it is probably unwise to compare exact values 

of model generated precipitation to satellite estimated precipitation (due to the fact estimated 

rainfall is an imperfect representation of actual rainfall while model precipitation is a perfect 

representation of model rainfall), the estimated precipitation does serve as a helpful point of 

                                                 
3 Downloadable from http://envsci.rutgers.edu/~decker/wrf2gem/ 
4 Data provided by the NOAA/ESRL Physical Sciences Division, Boulder Colorado from their Web site at 

http://www.esrl.noaa.gov/psd/ 

http://envsci.rutgers.edu/~decker/wrf2gem/


 

 

Figure 2.2 (a) Daily satellite estimate of mean rain rate (mm/day) for the period 7 January – 19 

February 2005, (c) forecast daily rain rates for the KF CP, (e) G3 CP, and (g) the difference 

between (c) and (e). (b), (d), (f), and (h) are as for (a), (c), (e), and (g) except for the period 7 

July – 23 August 2005. 
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comparison for relative magnitudes and locations. Upon first glance, the different simulations 

seem fairly similar for a given season, in that precipitation amounts and patterns (ITCZ, 

extratropical storm tracks, etc.) are approximately equal. However, upon closer examination, 

several subtle differences are observed. 

For the winter simulations, the G3 CP produces smaller rain rates than the KF CP over 

south central Africa, most of South America, and the western Pacific Ocean maritime continent 

region. Conversely, the G3 CP produces slightly heavier precipitation along the eastern edge of 

the Pacific Ocean and western North America, the subtropical regions of the Pacific Ocean north 

of the equator, as well as the majority of the tropical and subtropical Atlantic Ocean south of the 

equator. Generally speaking, the summer simulations reproduce the above pattern, with the 

primary difference being a northward progression for regions in which the KF CP produces 

heavier precipitation over land.  The KF CP produces significantly heavier precipitation over 

northern South America, southern North America, southeastern Asia, and most of the maritime 

continent region of the western Pacific Ocean. A general conclusion is that the KF CP produces 

greater precipitation in areas in which there is already heavy precipitation (such as over the 

maritime continent) while the G3 CP produces heavier precipitation over areas in which 

precipitation is light (such as over the subtropical oceans). 

Figure 2.3 shows the zonally averaged totals of precipitation, CP generated precipitation, 

as well as the ratio with which all precipitation is generated by the CP for the winter and summer 

simulations. This indicates two things: (1) most CP generated precipitation falls between 

approximately -20° S and 10° N (-10° S and 15° N) for the winter (summer) simulation, and (2) 

this region also corresponds to the region where the largest fractions of rainfall are generated by 

CPs, with both CPs accounting for approximately 80% of total rainfall in this region. Although
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Figure 2.3 (a) shows zonally totaled forecast precipitation for the KF CP (Green), G3 CP (Blue), 

and difference (Black) for the period 7 January – 19 February 2005, (b) same as (a) except only 

convectively parameterized precipitation, (c) as (a) except for the percentage of precipitation 

which is parameterized. (d), (e), and (f) same as (a), (b), and (c) except for the period 7 July – 23 

August 2005. 
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the exact values are somewhat different for the above rainfall totals and convectively generated 

fraction of precipitation, both CPs demonstrate quite similar characteristics for a given latitude 

for either season, particularly in regions far from the equator, which indicates their relative 

inactivity for these regions. 

Regarding the limited domain simulations, an initial examination of mean total rainfall 

patterns for the duration of the 120 hours forecasts yields similar patterns among the different 

CPs (not shown) – a primary maximum exists in the eastern Pacific Ocean, a secondary 

maximum exists along the ITCZ in the Atlantic Ocean, and a third maximum exists along the 

Gulf Stream off the coast of the southeastern United States, with decreasing amounts throughout 

the remainder of the domain. These patterns are similar to observed rainfall distributions during 

the summer and fall of 2009. Additionally, the mean domain-averaged precipitation is fairly 

similar for each CP (31.71 mm, 28.62 mm, and 28.34 mm for the KF CP, BMJ CP, and G3 CP 

respectively), as is the standard deviation for domain-averaged precipitation for all cases (4.57 

mm, 4.57 mm, and 4.43 mm for the KF CP, BMJ CP, and G3 CP respectively). This indicates 

that for this time span (120 hours) the different CPs behave similarly in terms of total aggregate 

precipitation. However, an analysis of a shorter timescale – three hour precipitation ending at 

time 120, demonstrates a more substantial difference between the three CPs. The mean over all 

76 cases of standard deviation of three hour precipitation within the domain gives values of .11 

mm, .11 mm, and 0.06 mm for the KF CP, BMJ CP, and G3 CP, respectively. This indicates that 

over a long duration (120 hours) these three CPs produce a similar total amount of rainfall, albeit 

through differing intensities of rainfall. The smaller standard deviation found with the G3 CP is a 

statistically significance difference when compared with either the KF CP or BMJ CP over all 

cases.  
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Description Of Related Atmospheric Variables 

As described above, an examination of the global simulations as well as a collection of 

real-time simulations suggests that the G3 CP is more disposed to produce light precipitation 

relative to the KF CP (and BMJ CP in the case of the real-time simulations), and perhaps less 

able to produce very intense precipitation. Intuitively, differing distributions of rainfall 

intensities should affect the larger global circulation over longer timescales given the attendant 

differences in latent heat release. The global simulations provide an opportunity to examine this. 

Figure 2.4 shows the observed sea level pressure (Fig. 2.4a,b) as well as the simulated sea level 

pressure (Fig. 2.4c,d,e,f) and the difference (Fig. 2.4g,h,i,j) between the two for each simulation 

and season. Although it isn’t realistic to expect seven week forecasts to accurately reproduce the 

observed atmosphere, a comparison with reality serves as a useful benchmark for understanding 

the observed differences between the G3 CP and KF CPs. For both CPs, the greatest departures 

from observed generally occur in the winter hemisphere of the simulations. For instance, during 

northern winter, both CPs under represent the intensity of the Siberian high. However, the 

remainder of this description will focus on locations where only one of the CPs differ 

significantly from reality. This is for two reasons – (1) the focus of this paper is on what makes 

the G3 CP simulations different from other CPs, and (2) many of the shared differences between 

the simulations is due to other factors (such as surface parameterization deficiencies which lead 

to overly warm or cold continental regions over extended forecasts) which are not the focus of 

this paper. The G3 CP shows anomalously low pressure over the northeastern Pacific Ocean and 

northwestern North America during the northern winter (Fig. 2.4i) as well as an enhanced wave 

pattern over the southern hemisphere winter (Fig. 2.4j). Both of these are consistent with an 
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Figure 2.4 (a) Final Analysis mean sea level pressure for the period 7 January – 19 February 

2005, (c) mean forecast sea level pressure for the KF CP, (e) the G3 CP, (g) the difference 

between (a) and (c), (i) the difference between (a) and (e). (b), (d), (f), (h), and (j) are as for (a), 

(c), (e), (g) and (i) except for the period 7 July – 23 August 2005. 
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increase in precipitation for these regions when compared with the KF CP as seen in Figure 2.2, 

which does not possess these sea level pressure differences.  

Figure 2.5 shows the observed 250 hPa zonal wind (Fig. 2.5a,b) as well as the simulated 

250 hPa zonal wind (Fig. 2.5c,d,e,f) and the difference (Fig. 2.5g,h,i,j) between the two for each 

simulation and season. Again, the largest departures from reality are seen in the winter 

hemisphere. The primary feature is an equatorward shift in the mean zonal jet in the winter 

hemisphere for the G3 CP simulations – which is most notable over the northeastern Pacific for 

the winter simulation as well as over Africa and Australia in the summer simulation. Although 

the latter pattern is also observed in the KF CP summer simulation, its magnitude is significantly 

muted. The KF CP summer simulation does have an anomalous jet structure near Japan, although 

a closer examination of the simulation reveals that this is due to the presence of two slow-

moving tropical cyclones in this area (not shown) which did not exist in reality.  

Figure 2.6 shows a meridional cross-section of the zonal and time average of meridional 

winds (Fig. 2.6a,b,c,d) as well as the difference (Fig. 2.6e,f) between the two for each 

simulation and season. The latitudes of maximum precipitation for each season (as seen by 

Figure 2.3) serve as a proxy for the location of the mean ITCZ (roughly -8° and 8° for the winter 

and summer simulations, respectively). The mean inflow to the latitude of the ITCZ can be easily 

seen as well as the mean outflow at upper levels. However, the difference plots indicate fairly 

substantial differences in these regions. In both seasons, the G3 CP has a weaker inflow/outflow 

couplet than the KF CP of approximately 1.5 m/s. Although this value is not particularly large in 

an absolute sense, it represents approximately 33% of the maximum value for these regions.  

These differences are located predominantly in the winter hemisphere. Due to mass continuity 
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Figure 2.5 As in Figure 2.4, except for 250 hPa zonal wind (m/s). 
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Figure 2.6 Zonally and temporally averaged cross-section of forecasted meridional wind (m/s) 

for the (a) KF CP during the period 7 January – 19 February 2005, (c) as for the G3 CP, (e) the 

difference between (a) and (c). (b), (d), and (f) are as for (a), (c), and (e) and except for the 

period 7 July – 23 August 2005. 
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considerations, one would then expect the G3 CP to exhibit less mean upward vertical motion in 

the ITCZ region when compared with the KF CP, and this is what is seen (not shown).  

A detailed description of atmospheric variables is not provided for the real-time 

simulations due to its redundancy with the above descriptions of the global simulation (although 

obviously on a smaller scale). Weaker inflow (outflow) at low levels (upper levels) is seen as 

well as weaker ascent (descent) in the ascending (descending) branch of the Hadley Cell is 

observed with the G3 CP in comparison to either the KF CP or BMJ CP. 

Potential Causes Of Observed Differences 

 The effect of the ensembling technique used in the G3 CP can be observed when 

comparing outgoing longwave radiation (OLR) between the G3 CP and KF CP simulations. 

Figure 2.7 shows the observed mean OLR (Fig. 2.7a,b), mean smoothed OLR for both CP 

simulations (Fig. 2.7c,d,e,f), and the difference between both simulations for both seasons (Fig. 

2.7g,h). In both seasons, it can be seen that the value of mean OLR is generally greater for the 

KF CP than the G3 CP in tropical and subtropical regions with the exception of land locations. 

Intuitively, smaller values of OLR may seem to indicate that the G3 CP has more intense 

convection over these regions, because stronger convection generally attains a greater height in 

the troposphere, and thus its cloud tops emit radiation at a lower effective temperature.  

However, as shown by Figure 2.8, this is misleading. Figure 2.8 shows the smoothed 

standard deviation of OLR for both simulations (Fig 2.8a,b,c,d) for both seasons as well as the 

difference between the G3 and KF CPs (Fig 2.8e,f). Examining the standard deviation of OLR is 

an effective proxy for judging the variability of convective intensity. By this metric, the G3 CP 

has significantly less variability over a 40° latitude x 120° longitude box centered approximately 

over the maritime continent for both seasons. Conversely, for most other oceanic locations in the 
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Figure 2.7 As in Figure 2.2, except for outgoing longwave radiation (W/m
2
).
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Figure 2.8 As in Figure 2.6, except for the standard deviation of outgoing longwave radiation 

(W/m
2
) across the globe. 
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tropical and subtropical regions, the G3 CP has more variability in convective intensity than the 

KF CP. Taken together, Figure 2.7 and Figure 2.8 indicate that over the maritime continent the 

G3 produces more convection but convection which is less variable in its intensity in both 

seasons. Alternatively, for the majority of the remaining tropical and subtropical oceanic regions, 

the G3 again produces more convection and convection which is more variable in its intensity in 

both seasons, which is particularly obvious when comparing the subtropical eastern Pacific 

Ocean and subtropical Atlantic Ocean for either season, although this effect is most pronounced 

for the winter simulations. This phenomenon corroborates the differences in precipitation 

described earlier. For global regions in which the G3 CP produced higher (lower) rain rates than 

the KF CP, the variability in OLR is generally greater (lower) than that of the KF CP. Likewise, 

this corroborates the observed decreased variability observed in three hour rainfall seen with the 

G3 CP in the limited area domain simulations when compared with the KF CP.  

An analysis of vertical motion profiles using the limited domain data is performed below 

using a dataset comprised of all profiles of vertical motion for a given parameterization at hour 

120 for all cases over an ITCZ region (defined as all points between 6.8° N and 15° N). An 

effective way to do this is to analyze the dominant modes of vertical motion variability 

associated with precipitation. An empirical orthogonal function (EOF) analysis is performed on 

these vertical motion profiles. Figure 2.9 shows, for each parameterization, the first EOF 

regressed onto the first principal component as well as the mean vertical motion profile. Only the 

first EOF is shown because (1) the first EOF explains at least 59% of the variance for all three 

CPs, and (2) it is the only EOF to be strongly correlated with rainfall. (This was determined by 

correlating the principal components with three hour rainfall ending at the time the vertical 

motion profile was produced. As a check, this same analysis was performed on vertical motion 
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Figure 2.9 The leading EOF regressed onto the first principal component for each CP (red), as 

well as the mean vertical motion (black) for the (a) KF CP, (b) BMJ CP, (c) and G3 CP. The 

number shown is the percent of variance the first EOF explains. 
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profiles at forecast hour 117 using the following three hour rainfall amounts. This analysis 

produced similar results). In the case of the KF CP (Fig. 2.9a) and BMJ CP (Fig. 2.9b), the 

leading EOF depicts a type of vertical motion profile associated with deep convection, with a 

maximum in upward vertical motion at middle to upper levels of the atmosphere. Noticeably, the 

G3 CP (Fig. 2.9c) produces a vertical motion profile which is significantly muted relative to the 

other CPs, which is consistent with weaker convection and smaller precipitation rates. 

 Several observations are consistent across multiple analyses at this point. First, relative to 

other CPs, the G3 CP generally produces less intense precipitation in regions where intense 

precipitation would be expected, and slightly more precipitation in regions where weak 

precipitation would be expected. Second, the weaker and less variable convection produced with 

the G3 CP is associated with weaker upward vertical motion, as would be expected. This 

corroborates other studies such as Mukhopadhyay et al. (2010). This was observed both in the 

mean global circulation (as can be inferred from mass conservation arguments in Figure 2.5) as 

well as a regional analysis at a constant forecast time (as seen in Figure 2.9). Finally, as shown 

above, these differences in the handling of convection are observed in conjunction with non-

trivial differences in the mean global circulation. Figure 2.5 demonstrated the fact that the G3 

CP produced a dramatically weaker Hadley Cell circulation (about 33% weaker when comparing 

ITCZ low-level inflow or upper level outflow, particularly for the winter hemisphere) while 

Figure 2.8 showed that the G3 CP produced much less variability in convection than the KF CP 

over a region centered on the maritime continent.  

In order to relate the differences in convection to the differences in the mean global 

circulation, an isentropic trajectory is performed over an area approximately centered on the 

maritime continent. The 348 K surface is chosen, as that is a level which roughly corresponds to 
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an upper-tropospheric level associated with convection outflow (and one which is firmly 

centered in the largest ITCZ outflow differences seen in Figure 2.5). Figure 2.10 shows forward 

trajectories for both seasons over the first 168 hours for the global simulations beginning at 

locations within the highlighted box. However, rather than standard model trajectories, the 

trajectories shown are created using the difference in observed wind between the KF CP and the 

G3 CP, and therefore are not actually an “observable” wind. This is done to more easily highlight 

the difference between these two schemes as it relates to upper level outflow from convection. 

The first 168 hours of the simulation are chosen because (1) the two CPs begin with identical 

initial conditions, and it is therefore a clean comparison, and (2) generally the simulations are 

otherwise similar across the global extratropics, so changes observed over this time can be easily 

related to local differences, rather than imposed circulation differences. Red (blue) trajectories 

indicate initial points north (south) of the equator.  

An analysis of Figure 2.10 indicates that nearly all trajectories diverge from their starting 

points, with most trajectories moving poleward, or in some cases spreading out along the 

equator. As these trajectories are created using the difference of two winds, this indicates that in 

virtually all locations the KF CP winds are more strongly divergent from their point of origin 

than the G3 CP winds. Put another way, the zonal and meridional components of the observed 

KF CP winds are greater in magnitude than the G3 CP winds on this level. This can be seen by 

virtue of the fact that the red trajectories generally move toward the north pole while the blue 

trajectories generally move toward the south pole, especially notable for the winter simulation 

(Fig. 2.10a). While this is approximately true of the summer simulation as well, a significant 

zonal movement is seen, with the trajectories originating at points at the eastern (western) edge 

of the box generally continuing further east (west). 
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Figure 2.10 Forward trajectories created by using the difference of the wind between the KF and 

G3 CP (KF-G3) on the 348 K level, where red (blue) depicts trajectories initiating north (south) 

of the equator. (a) Shows trajectories for the period 1 January – 7 January and (b) 1 July – 7 July. 
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Cumulatively, the above analyses suggest a relationship between the manner in which a 

CP produces tropical rainfall and the resultant global circulation produced by that CP. As shown 

above, the G3 CP produces less convection variability (particularly over the maritime continent) 

than the KF CP, as seen in an examination of the differences in the standard deviation of either 

three hour rainfall or OLR in this region (or an examination of vertical motion profiles ). More 

specifically, the G3 CP is less able to produce intense convection spanning the depth of the 

troposphere. It is also observed that the G3 CP produces a weaker Hadley Cell when compared 

with the KF CP when examining upward vertical motion, low-level inflow, or upper-level 

outflow. A trajectory analysis indicates that upper tropospheric convective outflow generally 

expands to cover a greater area with the KF CP than with the G3 CP, and it is also seen that the 

G3 CP generally produces mean zonal jets which are generally too close to the equator. 

Collectively, these observations suggest that weaker convection, as produced by the G3 CP, 

leads to less intense upper tropospheric outflow, which causes an equatorward displacement in 

the mean zonal jet as the largest meridional potential vorticity gradient occurs nearer to the 

equator (not shown). 

DISCUSSION 

Examination Of Parameterization Characteristics 

Thus far, the focus of this paper has been mostly on the differences in rainfall 

distributions and atmospheric variables between the G3 CP and other CPs in medium to long 

term forecasts (5+ days). However, given that it has been well established that (1) the G3 CP 

does seem to possess certain deficiencies in its handling of tropical rainfall and (2) these 

deficiencies appear to affect the large-scale circulation, it is appropriate to inspect this 

parameterization in greater detail.  
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Using the limited domain simulations, a comparison of three hour rainfall cumulative 

distribution functions (CDFs) for the KF CP, BMJ CP, and G3 CP at different forecast times is 

performed. This is accomplished by accumulating all grid points for all cases at a given time 

before determining the CDFs. Figure 2.11 shows CDFs for these parameterizations at forecast 

hours 12, 24, 48, 72, 96, and 120. At forecast hour 12, an analysis of the three CDFs indicates 

that the G3 CP produces slightly more light precipitation and more heavy precipitation than the 

other CPs. This result is different from prior rainfall analyses conducted above, which indicated 

that the G3 generally produced less intense rainfall than either the KF CP or BMJ CP. However, 

at forecast hour 24 the G3 CP produces an equivalent amount of light precipitation as the other 

CPs and less heavy precipitation than the KF CP. By forecast hour 48, the G3 CP produces less 

heavy precipitation than both the KF CP and BMJ CP. At forecast hour 72, this disparity has 

increased, and the disparity remains relatively constant between forecast hours 72 and 120. 

These CDFs indicate that the evolution of rainfall with forecast time is different for the G3 CP 

compared with other CPs.  

This can be seen more easily in Figure 2.12, which shows rainfall CDFs through forecast 

times binned according to CP. Figure 2.12 makes it clear that as forecast time increases, the 

ability of the G3 CP to generate heavy precipitation decreases, eventually becoming roughly 

constant after forecast hour 72. To a lesser extent, both the KF CP and BMJ CP also change their 

rainfall CDF evolution, although in their case it is to increase the likelihood of heavy 

precipitation, with a steadiness of rainfall CDFs at forecast hour 48 and 72 for the BMJ CP and 

KF CP respectively. This may be related to a greater propensity for the KF and BMJ CPs to 

produce tropical cyclones in their forecasts relative to the G3 CP (not shown, but discussed in 

Chapter 3). The changing rainfall CDFs track very well with the change in mid-level relative 
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Figure 2.11 Cumulative Distribution Functions are shown for the KF CP (black), BMJ CP 

(blue), and G3 CP (red). Forecast hour 12, 24, 48, 72, 96, and 120 are shown in panels (a), (b), 

(c), (d), (e), and (f) respectively. 
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Figure 2.12 Cumulative Distribution Functions are shown for the KF CP (a), BMJ CP (b), and 

G3 CP (c). Forecast hour 12, 24, 48, 72, 96, and 120 are shown in black, blue, red, green, 

magenta, and cyan respectively. 
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humidity, as shown in Figure 2.13, which shows the mean difference in relative humidity for 

these three CPs between forecast hour 6 and forecast hour 72 at 600 hPa. The KF CP (Fig. 

2.13a) and BMJ CP (Fig. 2.13b) are very similar and show little relative humidity change over 

this timeframe. However, the G3 CP (Fig. 2.13c) produces increasing mid-level dryness as 

indicated by relative humidity decreases by as much as 50%. Furthermore, the areas with the 

greatest decrease in relative humidity correspond to the locations which produce the most 

convectively generated precipitation (not shown) which further demonstrates that the CP is the 

reason for these differences, as excessive atmospheric drying is often a symptom of an 

overactive CP.  

Relative humidity differences are observable with the global simulations as well as 

shown by Figure 2.14, which shows observed mean 600 hPa relative humidity (Fig. 2.14a,b), 

the mean 600 hPa relative humidity for the KF CP (Fig. 2.14c,d) and G3 CP (Fig. 2.14e,f), and 

the difference between simulated and observed for both seasons (Fig. 2.14g,h,i,j). The KF CP 

exhibits relatively small differences and no obvious systemic errors, with most values close to 

observed for either season. However, the G3 CP exhibits significant differences in tropical 

regions for both seasons, with the G3 CP underestimating relative humidity by as much as 60% 

for some areas over the western Pacific Ocean and maritime continent. A comparison of the 

pattern of these relative humidity differences to rain rates as shown in Figure 2.2 indicate a 

significant correlation between the two for the G3 CP, which was also observed with the limited 

area simulations above. This indicates that the G3 CP is overactive in these regions – when the 

CP is active, compensating drying is produced at adjacent grid points. This drying is enhanced 

by the nature of the two CP schemes – the G3 CP assumes detrainment occurs at cloud top, while 

the KF CP allows detrainment to occur throughout the depth of the cloud. Figure 2.3 indicates 
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Figure 2.13 The mean relative humidity (%) difference between forecast hour 6 and forecast 

hour 72 is shown for the KF CP (a), BMJ CP (b) and G3 CP (c). 
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Figure 2.14 As in Figure 2.4, except for 600 hPa relative humidity (%). 
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that the latitudinal bands which encompass the most significant mid-level relative humidity 

differences in the G3 CP global simulations are also the same areas in which the 

parameterization produces the majority of the rainfall. Areas in which the parameterization 

produces little rainfall are generally not characterized by excessive drying, which further 

indicates that the parameterization is the cause of this extreme drying in tropical locations. Given 

that the G3 CP produces all cloud detrainment at cloud top, one would perhaps expect 

anomalously large values of relative humidity at the cloud top height over the same areas which 

exhibited anomalously low relative humidity at mid-levels. This is seen when comparing mean 

relative humidity values between 200-300 hPa (not shown), which again indicates that the nature 

of the G3 CP is the cause of these differences. 

An additional consequence of the fact that the G3 CP produces all cloud detrainment at 

cloud top is that cloud heating and moistening is maximized at the cloud top, which means that 

locations which produce significant amounts of convective activity (as outlined easily by the 

mid-level relative humidity differences seen in the G3 CP in Figure 2.14) also produce 

significant warming at cloud top height relative to the KF CP or reality. Figure 2.15 gives an 

indication of this phenomenon by showing the mean surface to 200 hPa lapse rate for reality 

(Fig. 2.15a,b), the KF CP (Fig. 2.15c,d) and G3 CP (Fig. 2.15e,f), and the difference between 

simulated and observed for both seasons (Fig. 2.15g,h,i,j). Both CPs greatly over-forecast mean 

lapse rates over northeastern Asia in the winter simulation due the surface parameterization 

scheme, which keeps this location too warm in the mean.  Over tropical and subtropical regions 

the KF CP is very similar to observed for either season – exhibiting a mean lapse rate that is 

approximately the same as reality. However, over these same regions, the G3 CP produces a 

lapse rate that is approximately .5 K/km too small. This is a function of upper tropospheric 
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Figure 2.15 As in Figure 2.4, except for mean lapse rate between the surface and 200 hPa 

(K/km). 
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warming in these locations due to the aforementioned nature of the G3 CP cloud detrainment 

rather than any significant differences regarding surface temperatures.  

Grell-3 CP Sensitivity Tests 

As described earlier, the G3 CP employs a sophisticated ensembling technique which 

seeks to make use of multiple closure assumptions as well as other constant variations to create a 

variety of members, which are then averaged to provide the model with one outcome. However, 

this appears to be problematic for certain weather regimes. Consider this simplification – if half 

of the ensemble members predict a thunderstorm, and half predict no thunderstorm, what is the 

result? The answer is something approximating half of a thunderstorm. However, there are a 

number of weather regimes in which this result may be unsatisfactory, in particular regions 

which are characterized by a moderately unstable atmosphere with little external synoptic scale 

forcing for ascent. Much of the tropical and subtropical oceans exhibit a significant amount of 

low-level moisture, moderate amounts of conditional instability, and weak ascent (due to the 

Hadley circulation), although not necessarily all occurring in significant amounts simultaneously. 

Another way to state this is that low-level moisture, conditional instability, and ascent are 

directly or indirectly analogs to three of the closure assumptions used in the G3 scheme – 

moisture convergence, CAPE relaxation, and low-level omega thresholds. Given sufficient 

quantities of moisture convergence, CAPE, or upward vertical motion, at least several of the G3 

ensemble members will produce convection. However, in order to produce convection that is 

instantaneously of the magnitude of other single closure schemes (such as the KF CP or BMJ 

CP), a significant fraction of the G3 members must produce convection, which will not happen if 

all of the above conditions are not sufficiently met. This appears to be the phenomenon described 

above for ITCZ locations and some other similar tropical locations. It should be noted that in 
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certain rare instances, such as the development of an intense tropical cyclone in either the global 

or limited area G3 CP simulations, intense rain rates and deep convection comparable to other 

CPs are produced. However, in these cases the CP contributes very little to the rainfall produced 

due to the strong dynamical forcing for upward vertical motion. 

In order to test the hypothesis that the ensemble technique used in the G3 CP is producing 

the unusual rainfall intensity distributions, the limited domain simulations were rerun with two 

modified versions of the G3 CP – one employing only moisture convergence closures (G3-5 CP 

henceforth) and one employing only omega closures (G3-8 CP henceforth). For more 

information on these closures, refer to Grell and Dévényi (2002). This greatly reduces the 

number of ensemble members for each modified CP relative to the original G3 CP and creates a 

much less diverse ensemble within the CP.  

Figure 2.16a shows mean three hour precipitation (calculated by totaling precipitation 

across all grid points and all cases and then dividing by the total number of grid points and cases) 

over the forecast period, as well as the standard deviation of mean three hour precipitation for the 

KF CP, BMJ CP, and all variations of the G3 CP (Fig. 2.16b). Forecast hour 00 (and therefore 

24, 48, 72, 96, and 120) represents 0000 UTC.  Figure 2.16 shows that after an initial adjustment 

period (on the order of 24-36 hours) the KF CP and BMJ CP are fairly steady through time when 

comparing either parameter, although the KF CP does show a slight increase with time of the 

standard deviation of three hour precipitation with time. This appears to be due to an increase in 

the number of intense tropical cyclones developed by this CP compared with other CPs. All three 

G3 CPs exhibit a marked diurnal cycle in mean three hour precipitation and to a lesser extent the 

standard deviation of three hour precipitation – with a peak near 1200 UTC and a minimum near 

0000 UTC, although the exact maximum and minimum may fall at a slightly different time. It is 



 58 

 

Figure 2.16 (a) mean and (b) standard deviation 3 hour rainfall properties with forecast time for 

the KF CP (black), BMJ CP (blue), G3 CP (red), omega G3 CP (green), and moisture 

convergence G3 CP (magenta). 
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extremely apparent that the overall trend with the three G3 CPs is for lower mean precipitation 

with time. This is consistent with figures 2.11 and 2.12.  

However, the three G3 CPs do not behave similarly when examining the standard 

deviation of three hour precipitation. While the standard G3 CP produces less variability, with a 

decreasing trend with forecast time, the G3-5 CP and G3-8 CP produce significantly more 

variable precipitation and end with similar values as either the KF CP or the BMJ CP. This 

seems to confirm the hypothesis that it is the ensembling technique used in the G3 CP that causes 

a decrease in the variability of rainfall intensity. However, since all three G3 CPs produce similar 

patterns regarding mean precipitation, something different must cause this phenomenon. A brief 

examination of mid-level relative humidity indicates that the G3-5 CP and G3-8 CP produce 

similar drying as seen with the G3 CP (although not of the same magnitude), so this is a potential 

cause. Figure 2.17 depicts the results of an EOF analysis performed on profiles of vertical 

motion in the same manner as shown in Figure 2.9, except using the G3-5 CP (Fig. 2.17a) and 

G3-8 CP (Fig. 2.17b), with the original G3 CP (Fig. 2.17c) shown for comparison. As would be 

suggested by the greater variability in rainfall observed in Figure 2.16, Figure 2.17 indicates 

vertical motion profiles associated with rainfall in the G3-5 CP and G3-8 CP are more 

characteristic to those observed earlier with the KF CP and BMJ CP. It should be noted that the 

greater realism in precipitation forecasts when using a modified G3 CP are similar to other 

studies such as Gianotti et al. (2012) which found that using the GD CP with only one closure 

improved precipitation forecasting over the maritime continent.  

 As the model sensitivity experiments described above suggest, the ensembling nature of 

the G3 CP causes the CP to become overactive in tropical and subtropical regions. As Figure 

2.16 indicates, as the number of closures (and therefore ensemble members are decreased) the 
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Figure 2.17 As in Figure 2.9, except for omega G3 CP (a), and moisture convergence G3 CP (b) 

rather than KF CP and BMJ CP. (c) is identical to (c) in Figure 2.9. 
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G3 CP produces more intense convection (as seen by the standard deviation of three hour 

precipitation), but the same amount of total precipitation as the conventional G3 CP. The only 

way both of these statements can be true is if the modified G3 CPs produce fewer total locations 

with rainfall than the standard G3 CP. This further suggests that the G3 CP is overactive in its 

conventional form for many tropical and subtropical locations. As described above, when the G3 

CP is overactive, substantial mid-level drying and upper-level warming occurs.  

Collectively, the G3 CP’s handling of the distribution of moisture and heat in the 

atmosphere appears related to both its difficulty in producing intense convection and its observed 

decrease in total precipitation with model forecast hour. As the model forecasts integrate 

forward, an overactive G3 CP in these regions produces compensating drying at mid-levels of 

the atmosphere, which makes further intense precipitation more difficult as there is less total 

atmospheric moisture in a given column. Similarly, as the model forecast integrates forward the 

lapse rate decreases, meaning that the atmosphere becomes more stable and less prone to 

convection. Additionally, the anomalous heating and drying are out of phase in a way which 

further suppresses convection. At upper levels, the G3 CP produces anomalously large values of 

relative humidity (which would be favorable for more intense precipitation), yet these are the 

same locations which exhibit a substantial decrease in the atmospheric lapse rate, which acts to 

stabilize this level. Conversely, at mid-levels of the atmosphere over regions with an overactive 

CP, the G3 CP actually possesses a greater lapse rate than is observed in reality (which would be 

favorable for convection), yet the extreme compensating dryness in these regions depresses the 

likelihood of convection. In these ways, the G3 CP itself is a break on intense convection with 

time, as can be seen in the downward trend in both the mean and standard deviation of three hour 

rainfall shown in Figure 2.16.  
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CONCLUSION 

 Several caveats apply to this research. Primarily, no high resolution modeling (the highest 

resolution used in this study is 30 km) was performed in this study. It is possible that the 

differences observed within this study would be lessened at higher resolutions. However, since it 

was the goal of this study to analyze medium and long term forecasts, medium resolution 

forecasts were considered appropriate as the resolutions chosen here are similar to current 

effective resolutions seen in global models and climate models. Additionally, the simulations 

Grell and Dévényi (2002) used to test their parameterization used a 27 km horizontal grid 

spacing, which is comparable to the 30 km grid spacing used in many of the simulations 

presented here. Second, with the exception of the modified G3 CP simulations described above, 

in all other details the G3 CP was used as it comes “out of the box” with the WRF-ARW model. 

In addition to closure choice, it is also possible that other modifications would change the 

observed patterns seen here. Changing parameters such as the entrainment rate and drying rate, 

among others, would almost certainly alter the results discussed here, potentially giving an 

improvement in forecasts. However, it was the goal of this research to test the impacts of the 

ensemble nature of the G3 CP, and therefore changing these parameters was not relevant to this 

study.  

 While this study describes the GD/G3 CP as being inadequate in tropical locations 

(particularly for longer forecasts), the existing framework of the GD/G3 CP actually lends itself 

to significant improvement (potentially) without a considerable investment. As originally 

presented, this CP was given the capability for different ensemble members to be trained using a 

Bayesian framework in such as way as to improve the resultant forecast of precipitation and 

associated redistribution of heat and moisture in the atmosphere. While no study is known to the 
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author attempting to accomplish this, it is a worthwhile endeavor which would presumably 

greatly improve forecasts using the GD/G3 CP (Grell, personal communication, 2013). 

 This paper also raises potential caveats with other parameterization research. When 

comparing all three CPs studied herein, relative CP characteristics changed throughout time. For 

example, at forecast hour 6, the G3 CP was more likely to produce intense precipitation than 

either the KF CP or BMJ CP, while the opposite was true by forecast hour 48. A state of 

effective steadiness was not reached for time scales as long as 72 hours. However, the vast 

majority of current parameterization-based studies incorporate a forecasting timeframe of 24-48 

hours. This suggests that results demonstrated in studies within this timeframe are not necessarily 

valid for all cases as might otherwise be implicitly inferred. For instance, Grell and Dévényi 

(2002) used a series of 12 hour model simulations to test their parameterization, whereas the 

results demonstrated here reveals that this is likely an insufficient time period for 

parameterization testing.  

One other potential caveat with current parameterization research is that most of the cases 

involved take place over land, as did the test simulations for Grell and Dévényi (2002). However, 

as with model forecast time, conclusions developed from land-based simulations do not 

necessarily hold true for tropical ocean simulations. In the case of the G3 CP, the ensembling 

nature of the G3 CP led to an overestimation of light precipitation over tropical and subtropical 

oceans in a way that would not be observed in short-term studies over the central United States. 

One final caveat is that when comparing parameterizations, it is important to examine the 

variability in those parameterizations rather than simply examining the mean state. The ability 

for a parameterization to produce reasonable extremes in atmospheric variables is of obvious 

importance. Figure 2.18 shows the mean and standard deviation of cumulus heating for three 
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Figure 2.18 Profiles of mean (a,c,e) and standard deviation (b,d,f) cumulus heating for the KF 

CP (black) and G3 CP (red) for the period 7 July – 23 August 2005 for the central United States 

(a,b), Western Pacific (c,d), and Southeastern Pacific (e,f). 
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very different geographic regions for the northern summer global WRF simulation for the KF CP 

and the G3 CP. Notice that the mean traits for these three regions are remarkably similar. For 

example, both produce significant heating over the western Pacific Ocean (Fig. 2.18a). However, 

an examination of the standard deviations demonstrates that in strongly convecting regions, such 

as the central United States (Fig. 2.18b) and the western Pacific Ocean (Fig. 2.18c) the KF CP is 

significantly more variable, which is consistent with the greater rain rate variability observed 

with the KF CP compared with the G3 CP. Conversely, in weakly convecting regions, such as 

the southeastern Pacific Ocean (Fig. 2.18e,f), the G3 CP is more variable. If one were looking 

only at mean parameterization traits (whether that variable is cumulus heating, precipitation, etc.) 

little difference would be observed in this study. 

Finally, the comparisons of global WRF simulations imply an important relationship 

between the characteristic of tropical convection and downstream midlatitude effects. The 

importance of tropical convection has been noted before – for example, Simmons et al. (1983) 

demonstrated the importance of tropical forcing on downstream development. However, this 

study suggests the character of that tropical forcing is as important as its location. While a 

detailed examination of the relationship between tropical convection and extratropical circulation 

patterns is outside the scope of this study, based on results presented herein, this topic warrants 

further study with a specific focus on the role cumulus parameterization plays in this interaction.  
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Chapter 3: Parameterizations And Tropical Cyclones 

Introduction 

Research presented in a prior Master’s thesis titled Tropical Cyclone Forecast Track and 

Intensity Sensitivities To Various Parameterizations Using The WRF-ARW Model (Bassill, 2009 

(B09 hereafter)) examined forecasts of several notable tropical cyclones across three basins in an 

attempt to determine whether certain cumulus or microphysics parameterizations exhibited 

systemic biases in tropical cyclone track, intensity, or structure. Although it is well known that 

changing model parameterizations impacts tropical cyclone forecasts (recent studies include Tao 

et al. (2011), Bao et al. (2012), Nasrollahi et al. (2012), Osuri et al. (2012), and Xiang (2012)), 

this work demonstrated that certain parameterization biases were reproducible across many 

disparate scenarios. However, while serious attempts were made to explain the cause of the 

observed parameterization behavior, detailed explanations were occasionally deficient. Where 

possible, this chapter will provide a more rigorous exploration of the parameterization biases 

identified, while also expanding upon that research where appropriate using additional research 

and data previously unavailable. Although a complete explanation of B09 will not be provided 

here, an overview of the significant findings are provided below.  

 Three cumulus parameterizations (CPs) and three microphysics parameterizations (MPs) 

representing a range of complexity were examined in B09 using the WRF-ARW version 2.2 

(Skamarock et al. 2005). Every possible combination was performed using the Kain-Fritsch (KF) 

CP, Betts Miller-Janjic (BMJ) CP, and the Grell-Devenyi (GD) CP in conjunction with the 

Kessler MP, Eta-Ferrier (EF) MP, WSM6 MP, and an updated version of the Eta-Ferrier (nEF) 

MP after it was found to have an error in its original release (this results in a total of twelve 

possible combinations). Three notable tropical cyclones were studied which exhibited significant 
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track and intensity forecasting challenges – Typhoon Cimaron (2006), a western Pacific cyclone 

which impacted the Philippines, Hurricane Ernesto (2006), which was a North Atlantic cyclone, 

Hurricane Lenny (1999), which was a North Atlantic cyclone notable for an unusually extreme 

November intensity and very long-lived eastward motion throughout the duration of its lifetime. 

Hurricane Ioke (2006), which was a very long-lived powerful hurricane traversing the central 

and western Pacific, was also studied due to its relative real-time ease of track and intensity 

prediction. Cumulatively, the above combinations of parameterizations were used in conjunction 

with these four storms over the course of fourteen different forecasts consisting of different 

initialization times and initial conditions. Each simulation used equally sized domains with a 30 

km horizontal grid spacing and 31 vertical levels. Generally speaking, two broad conclusions 

were found: 

(1) The GD CP and the Kessler MP exhibited significantly more poleward tracks than the 

other CPs and MPs respectively, with the split occurring at approximately 48 hours 

into a given forecast. 

(2) The EF MP, and to a slightly lesser extent the nEF MP, predicted much weaker 

cyclones than either of the other MPs while also possessing an unusual vertical 

potential vorticity structure. 

 

Each of these major conclusions as well as related smaller findings will be discussed 

using further analysis of the data created for B09. Additionally, some pertinent related research 

will be discussed and where possible additional data will be incorporated. Specifically, forecasts 

from the “real-time” ensemble simulations performed during the 2009 North Atlantic hurricane 

season discussed in Chapter 2 will be used. 



 68 

Poleward Track Differences 

Figure 3.1 reproduces a figure from B09 which shows a compilation of all westward 

moving cyclones (therefore excluding Hurricane Lenny simulations) normalized to an initial 

westward movement and binned according to parameterization combination. The number 

denoted in each panel represents a value of mean normalized 120 hour meridional position, 

where a value of 1 (-1) would mean that particular combination was always the most poleward 

(equatorward) cyclone among the forecasts for that particular set of initial conditions. As 

demonstrated both visually according to the color-coding as well as numerically, it is readily 

apparent that the Kessler MP (Fig. 3.1a-c) produces storm tracks with a greater poleward bias 

than the other MPs.  

While not explained in B09, subsequent research by Fovell, Corbosiero, and Kuo (2009, 

F09 hereafter) demonstrated a likely cause for this behavior. F09 used idealized simulations to 

examine the impact of varying MPs using the WRF-ARW model, which depicted an idealized 

simulation of Hurricane Rita (2005). Rita had significantly greater poleward movement when 

forecast using the Kessler MP compared with any other MP (representing more than twice the 

latitudinal gain of any other MP). A detailed examination of the various simulated storms 

showed that the Kessler MP cyclones were significantly larger (although not necessarily more 

intense) when examined by virtually any metric.  Further analysis led F09 to ascribe the 

significant poleward movement of the Kessler MP cyclone to a result shown in Fiorino and 

Elsberry (1989), which demonstrated that TC movement was impacted more strongly by 

changing Beta gyres related to the TC wind field far from the center (300-1000 km) compared 

with inner storm differences. A series of modifications to the Kessler MP allowed F09 to 
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Figure 3.1 Overlaid storm tracks for cyclones using the (a,b,c) Kessler MP, the (d,e,f) EF MP, 

the WSM6 MP (g,h,i), and the nEF MP (j,k,l). (a,d,g,j) use the KF CP, (b,e,h,k) use the BMJ CP, 

and (c,f,i,l) use the GD CP. The number value corresponds to each parameterization 

combination’s relative poleward displacement at forecast hour 120, where -1 (1) corresponds to a 

southerly (northerly) position. 
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conclusively demonstrate that its large storm size was responsible for an increase in poleward 

movement. 

Although it would be redundant to entirely reproduce F09’s analysis here, it should be 

noted that their results are entirely consistent with those observed in B09. However, a brief 

analysis of the mean TC circulation is informative. Figure 3.2 shows mean 850 wind speed (kt) 

composited at forecast hour 48 for all ten westward moving cyclones (centered in the lower right 

of the plot). The top row uses the Kessler MP (Fig. 3.2a-c), the second row uses the EF MP (Fig. 

3.2d-f), the third row uses the WSM6 MP (Fig. 3.2g-i), and the bottom row uses the nEF MP 

(Fig. 3.2j-l). Solid contours indicate statistical significance using a 95% threshold. Hour 48 is 

chosen because significant track splitting has not yet happened, although storm-scale changes 

have had time to occur. While not the focus of this particular section of the chapter, clear 

intensity differences can be seen amongst the various parameterization combinations when 

examining mean wind speed near the centers of circulation. Figure 3.3 shows the anomalies of 

850 hPa wind speed for each combination relative to a mean of all combinations. When 

comparing the Kessler MP (Fig. 3.3a-c) with any other MPs within a given CP, it is fairly clear 

that the Kessler MP has greater winds a significant distance from the center, as shown when used 

in conjunction with the KF CP (Fig. 3.3a,d,g) or GD CP (Fig. 3.3c,f,i). In the case of the BMJ 

CP (Fig. 3.3b,e,h), the Kessler MP has wind anomalies which are less weak than the other MPs.  

Comparisons of other variables to F09 (not shown) such as cross-sections of relative 

humidity are likewise similar to those presented in F09. Ultimately, the authors traced the larger 

storm size when the Kessler MP was used to a slow fall speed for hydrometeors, which increased 

the areal coverage of cloud cover (particularly in the anvil region). This then created a greater 

deep-layer mean virtual temperature at large radii from the storm center, which acted to extend 
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Figure 3.2 Mean 48 hour 850 hPa wind (kt) for cyclones using the (a,b,c) Kessler MP, the (d,e,f) 

EF MP, the WSM6 MP (g,h,i), and the nEF MP (j,k,l). (a,d,g,j) use the KF CP, (b,e,h,k) use the 

BMJ CP, and (c,f,i,l) use the GD CP. 
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Figure 3.3 As in Figure 3.2, but for mean wind anomaly (kt) relative to a mean of all 

combinations.  
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the horizontal gradient of pressure to greater distances and therefore created increased winds at 

large radii from the center. F09 also demonstrated that this effect could be removed in the 

Kessler MP (or created in other MPs) by altering various microphysical parameters such as 

droplet fall speed. 

Further analysis of Figure 3.3 suggests the GD CP (Fig. 3.3c,f,i) cyclones’ excessive 

poleward movement is very similar to that of the Kessler MP cyclones. The large positive wind 

anomalies at roughly 5° from the storm center for the GD CP relative to any other CP indicates a 

much larger circulation which would induce a larger “beta drift” than storms produced by other 

CPs, all else being equal.  However, the mechanism by which a larger storm is generated is 

almost certainly different than that found in F09 given that the phenomenon is present across all 

MPs. Chapter 2 extensively documented problems relating to the GD and G3 CP’s depiction of 

tropical convection. Specifically, the GD CP overproduces light precipitation and underproduces 

intense precipitation. It was determined that this resulted from the ensembling nature of the 

parameterization – specifically due to the fact the GD CP employs 144 members which are run 

individually and averaged to provide feedback to the model. Given the variety of different 

ensemble members, it is uncommon for a significant fraction to produce intense precipitation 

(while being reasonably likely that several may produce intense precipitation). The nature of 

tropical cyclones provides additional challenges for this parameterization, given that TCs 

maintain themselves through the development and continuation of intense convection reasonably 

near the cyclone center, which leads to an increase in vorticity, a warming of the air column, and 

a decrease in surface pressure.  

Figure 3.4 shows mean three hour precipitation (mm), at the same time and format as 

Figure 3.2. A comparison of GD CP (Fig. 3.4c,f,i) mean rainfall to other CPs within a given MP  
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Figure 3.4 As in Figure 3.2, but for mean three hour precipitation (mm).  
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demonstrates that the GD produces as much or more precipitation coverage surrounding the 

cyclone center as any other CP, which would certainly corroborate Figure 3.3 indicating a larger 

mean cyclone. Generally speaking, TCs are characterized by warm, moderately unstable moist 

air converging towards a central circulation. Since the GD CP is comprised of members 

employing moisture convergence closures, CAPE removal closures, omega thresholds, etc., it is 

not unreasonable to conclude that the environment within the 300-1000 km radius of the storm 

center (as identified in Fiorino and Elsberry) would produce frequent precipitation as several of 

these closures are activated. Bister (2001) demonstrated that the effect of peripheral convection 

is to (1) increase a cyclone’s horizontal wind field, (2) decrease the likelihood of subsequent 

intense inner core convection, and (3) decrease the likelihood of rapid intensification.  

A further examination of Figure 3.4 indicates that the mean inner-core rain rates of the 

GD CP (Fig. 3.4c,f,i) cyclones are generally much less than either other CP, which is consistent 

with Bister (2001). In another study, Jiang (2012) used satellite estimates of rainfall to establish a 

statistically significant relationship between intense inner-core convection and intensifying TCs. 

Given the above, one might not expect the GD CP to produce cyclones as intense as the other 

CPs. While not a statistically significant relationship for all cases given the small sample size, 

the mean minimum sea level pressure for the GD CP at hour 48 is 999.02 hPa while for the KF 

CP and BMJ CP it is 998.13 hPa and 998.01 hPa respectively. Although they did not examine 

this discrepancy, Nasrollahi et al. (2012) showed that the precipitation biases within TCs using 

the GD CP extend to high-resolution models as well. Nasrollahi et al. (2012) forecast Hurricane 

Rita (2005) using 20 different combinations of MPs and CPs using the same WRF-ARW version 

as B09 and found that the GD CP consistently produced a smaller coverage of intense 

precipitation (> 10 mm/h) than other CPs, which is consistent with Figure 3.4. 
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Eta Ferrier Microphysics Properties 

 Among the nine original parameterization combinations examined in B09 (excluding the 

nEF simulations), the three weakest mean cyclones at forecast hour 48 were the three using the 

EF MP, with sea level pressure minima between 3 and 9 hPa weaker than either other MP 

depending on the choice of CP. The same is true when peak mean wind is examined, as shown in 

Figure 3.2 and Figure 3.3. If the minimum pressure attained at any point in the cyclone’s 

lifetime is considered, the EF MP also consistently produces weaker peak intensities. 

Additionally, B09 found that the EF MP created an unusual vertical distribution of potential 

vorticity in simulated TCs using that parameterization. A composite zonal cross-section of all 

times between forecast hour 24 and 168 for each MP (all using the KF CP for consistency) for 

Hurricane Ioke initialized 0000 UTC 26 August 26 is shown in Figure 3.5.  This particular set of 

forecasts was chosen for comparison purposes because it was one of the few situations in which 

the EF MP produced a cyclone of comparable intensity to that of the other MPs, which made 

comparisons between MPs more appropriate. Although there is no universally accepted standard 

vertical structure of potential vorticity within intense cyclones, a number of studies (Wu and 

Kurihara (1996), Molinari et al. (1998), Wu and Wang (2000), Wu and Wang (2001a), Wu and 

Wang (2001b), Hausman, Ooyama, and Schubert (2006), Kieu and Zhang (2010), Hill and 

Lackmann (2011)) depict a relatively uniform tower of potential vorticity with a maximum value 

roughly in the mid-levels of the atmosphere with perhaps a secondary maximum near the top of 

the boundary layer, similar to that depicted in Figure 3.5 with the WSM6 MP (Fig. 3.5b) or nEF 

MP (Fig. 3.5d). 

However, as shown in Figure 3.5, the EF MP (Fig. 3.5c) forms a potential vorticity 

structure characterized by a series of alternating maxima and minima. The contours denote 
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Figure 3.5 Ioke zonal mean potential vorticity (PVU) for forecast hours 24 through 168 for (a) 

Kessler MP, (b) WSM6 MP, (c) EF MP, and (d) nEF MP. Contour indicates locations of 

statistical significance at the 99.9% threshold computed relative to the WSM6 MP. ‘L’ and ‘H’ 

in panel (a) indicates regions with lower and higher values of potential vorticity relative to panel 

(b). 
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statistical significance using a 99.9% threshold when compared with the WSM6 MP. The EF MP 

minima are found to be statistically significant anomalies. This unusual structure seems to be 

significantly ameliorated (although not completely eliminated) when the nEF MP is used. 

Incidentally, Figure 3.5 also demonstrates that the Kessler MP (Fig. 3.5a) produces a cyclone 

which is statistically significantly larger than other MPs, as discussed above, and marked by the 

‘L’ and ‘H’ denoting locations where the potential vorticity is lower and greater, respectively, 

than the WSM6 MP. 

The reason the EF MP simulations were recreated with the nEF MP was due to a bug 

revealed with the original EF MP in which frozen hydrometeors were treated as liquid by 

radiation, which was corrected in the nEF MP (Haglund, 2007). Given that the mean freezing 

level sits immediately below the uppermost potential vorticity maximum (near 500 hPa, not 

shown), it is possible the minimum directly below that is related to a sudden transition from 

frozen to liquid hydrometeors, which therefore produced an incorrect profile of heating near this 

level. While this is possible, this theory does not explain the alternating maxima and minima 

below this level. Regardless of the exact cause of this phenomenon, closer examination reveals 

that this potential vorticity structure is a likely reason for the EF MP cyclones’ 

underintensification relative to the other MPs which do not produce such a structure.  

As mentioned earlier, these four cyclones were chosen for study specifically due to their 

inherent real-time forecasting difficulty, specifically where it concerned track forecasts. The one 

exception to this was Hurricane Ioke, which was very well predicted due in part to a deep 

easterly flow in which it was embedded. One particular commonality among the remaining three 

cyclones was variable steering winds with height or time. For instance, in the case of Hurricane 

Ernesto and Typhoon Cimaron, it was unclear whether a digging trough would accelerate the 
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cyclone to the northeast, or whether the cyclone would instead be steered westward by the low-

level easterly flow. Hurricane Ernesto was forecast to continue moving generally west-

northwestward, while Typhoon Cimaron was initially forecast to recurve ahead of a digging 

trough. In reality, the opposite happened for these respective cyclones. Hurricane Lenny posed 

similar problems, as it was being steered eastward by a deep trough despite low level easterly 

flow. The commonality with these storms (except Hurricane Ioke) is a reasonable amount of 

vertical wind shear. Since Hurricane Ioke is the one storm where the EF MP intensifies the 

cyclone a similar amount as the other MPs, the logical implication is that the potential vorticity 

structure produced by the EF MP leaves the cyclone more susceptible to vertical wind shear, and 

therefore leads to a weaker cyclone. 

The best way to test this phenomenon would be to examine a situation where the EF MP 

cyclone and the nEF MP cyclone are both affected by the same shearing environment while 

remaining in similar positions relative to one another during which the EF MP cyclone weakens 

while the nEF MP cyclone intensifies. Finding an ideal example is slightly problematic, as 

changes in cyclone structure impact the cyclone’s movement (or steering flow) which frequently 

leads to slowly growing track differences (and structures) with track splits that are difficult to 

pinpoint. However, the set of forecasts initialized for Typhoon Cimaron at 0000 UTC 30 October 

2006 provides a suitable EF/nEF MP pair of forecasts for comparison. The top row of Figure 3.6 

depicts the 12 hour 200-1000 hPa potential vorticity (PVU), 10 m wind speed (contoured above 

25 kt), 3 hour rainfall above 25 mm, and minimum sea level pressure associated with each MP. 

The two forecasts are broadly similar, although one might be inclined to believe the EF MP (Fig. 

3.6a) cyclone is slightly stronger based on stronger surface winds and more intense precipitation 

near the center of circulation. However, both have similar magnitudes and distributions of 
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Figure 3.6 (a) and (b) show 200-1000 hPa potential vorticity (PVU, fill), 10 m wind (kt, 

magnitude contoured above 25 kt), and 3 hour precipitation above 25 mm (heavy green dashed 

contour) for the EF MP and nEF MP, respectively. (c) and (d) depict a zonal cross-section of 

potential vorticity (PVU, fill) as well as the 0° C isotherm for the EF MP and nEF MP, 

respectively. 
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potential vorticity and the same minimum surface pressure. It should be noted that these 

simulations initialized Cimaron too weak, which is reflected in the relative high surface pressures 

shown in Figure 3.6a,b. Officially, Cimaron was a typhoon with maximum sustained winds of 

90 kt at this time.  

When a zonal cross-section is taken through each cyclone, as shown by the bottom row of 

Figure 3.6, a much different structure of potential vorticity emerges than one might presume 

based on the 200-1000 hPa distribution of potential vorticity seen in the top row of Figure 3.6. 

While the outline of the 0.5 PVU surface is effectively the same for each cyclone, the EF MP 

(Fig. 3.6c) is characterized by an alternating series of maxima and minima similar to that 

depicted with Hurricane Ioke in Figure 3.5 while the nEF MP (Fig. 3.6d) depicts a more 

uniform distribution with a maximum in the mid levels of the atmosphere and one at the top of 

the boundary layer. The freezing level is also plotted, which again shows a maximum-minimum 

couplet of potential vorticity straddling the freezing level in the EF MP (Fig. 3.6c) cyclone as 

with Ioke (and to a lesser extent in the nEF MP cyclone (Fig. 3.6d)). At this time, the cyclone 

was slowly moving westward and entering an area characterized by northeasterly flow at low 

levels (as seen by Fig. 3.6a,b) and southeasterly flow at upper levels (not shown). In reality, 

Cimaron moved slowly westward and intensified into a strong typhoon with surface winds 

exceeding 100 kt by 1 November before stalling near 18° N, 116° E and slowly weakening as it 

upwelled cooler water.  

Figure 3.7 follows the forecasted cyclones through time, showing low-level potential 

vorticity (800-900 hPa), mid- and upper-level potential vorticity (350-550 hPa), the difference in 

mean wind for these layers, 3 hour precipitation greater than 25 mm/3 h, and minimum sea level 

pressure at twelve hour intervals beginning at forecast hour 36 and ending at hour 72. In the EF 
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Figure 3.7 (continued on next page).
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Figure 3.7 All panels depict 350-550 hPa potential vorticity (PVU, fill), 800-900 hPa potential 

vorticity (solid contour, interval 1 PVU), difference in mean wind between 350-550 hPa and 

800-900 hPa (kt, barbs), and 3 hour precipitation above 25 mm (heavy green dashed contour for 

25 mm, light green dashed contour for 50 mm, bright green contour for 100 mm). Forecast time 

36, 48, 60, 72 shown in panels (a,b), (c,d), (e,f), (g,h) respectively. Panels (a,c,e,g) depict EF MP 

while panels (b,d,g,h) depict nEF MP. 
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MP simulation (Fig. 3.7a,c,e,g), the southerly vertical wind shear over the cyclone slowly 

displaces and advects the mid-level potential vorticity maxima northward away from the 

remaining low-level circulation, which conversely drifts southwestward. Although convection 

remains associated with the low-level circulation as shown by the green contours, the majority of 

precipitation follows the mid- and upper-level potential vorticity northward and northeastward 

with time. In contrast, the nEF MP (Fig. 3.7b,d,f,h) cyclone does become noticeably titled, with 

mid-upper level potential vorticity slanted north-northwestward relative to the low-level potential 

vorticity, yet the two never fully decouple as with the EF MP simulation. Similarly, the vast 

majority of the precipitation associated with the cyclone remains near the center (albeit displaced 

northward), with rain rates up to 100 mm/3 h. Given these two scenarios, it is not surprising that 

the EF MP cyclone slowly weakens while the nEF cyclone intensifies even while experiencing 

moderate wind shear (which as noted occurred in reality). The enhanced vertical coupling of the 

nEF MP cyclone causes a more westward motion for the surface cyclone relative to the EF MP, 

while also moving at a slower speed, which is more consistent with the observed motion of 

Cimaron. 

To further analyze the relationship between vertical wind shear and the decoupling (or 

lack thereof) of the potential vorticity structure within the two cyclones, a series of cross-sections 

are taken for the times depicted in Figure 3.7. The cross-sections shown in Figure 3.8 are 

chosen such that the cross-section is roughly aligned so that both the low-level potential vorticity 

maxima and the mid-upper level potential vorticity maxima are included within the cross-section 

(e.g. the direction of the cross-section is roughly parallel to the wind shear vector). Every cross-

section is perfectly oriented south-southeast to north-northwest, with each end point representing 

a location 4° north and 2° west of the starting location. The approximate midpoint between the 
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Figure 3.8 (continued on next page). 
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Figure 3.8 All panels depict a cross-section of potential vorticity (PVU, fill) and smoothed 

tangential (to cross-section) wind (kt, barbs). Forecast time 36, 48, 60, 72 shown in panels (a,b), 

(c,d), (e,f), (g,h) respectively. Panels (a,c,e,g) depict EF MP while panels (b,d,g,h) depict nEF 

MP. 
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surface circulation and the mid-level circulation for each cyclone is the midpoint of each cross-

section. Finally, a heavily smoothed wind vector (to best eliminate the influence of the cyclone’s 

circulation) tangential to the cross-section is shown. Interpreting wind barbs on cross-sections 

can be challenging, although since these are just the winds tangential to the cross-section, the 

orientation of the wind barbs also is the orientation of the cross-section (e.g. parallel to the tilt of 

the cyclones).  

For both cyclones and for all times, it can be seen that the wind vectors switch direction 

at roughly 650 hPa, with approximately 20 kt of low level flow to the south-southeast and 

approximately 10 kt of upper level flow to the north-northwest, which represents a steady 30 kt 

of wind shear affecting either cyclone within a roughly 300-900 hPa layer. However, while the 

nEF MP (Fig. 3.8b,d,f,h) cyclone begins to tilt downshear slightly, the EF MP (Fig. 3.8a,c,e,g) 

cyclone quite clearly separates into a low- to mid-level potential vorticity tower extending 

upward to roughly 500 hPa and a separate maxima above which is slowly advected away from 

the low-level maxima. By forecast hour 72 (Fig. 3.8h,g), the circulations imposed by the lower 

and upper potential vorticity maxima in the EF MP cyclone would be destructively interfering 

with one another, which would also act to increase the likelihood of weakening. 

Considering both cyclones began to experience roughly equivalent wind shear while 

possessing an equal intensity (although with unique potential vorticity distributions), a 

compelling case can be made that the unusual potential vorticity structure produced by the EF 

MP creates a serious impediment to strengthening (or maintenance) in the presence of wind 

shear. One might conjecture that the differing potential vorticity structures are related to weaker 

convection associated with the EF MP. However, as shown by Figure 3.6, the EF MP cyclone 

actually possesses greater initial rainfall rates near the center of circulation. It isn’t until the 
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cyclones have begun to diverge in their intensity that significant precipitation differences become 

apparent.  

As mentioned earlier, the one set of forecasts in which the EF MP does not exhibit 

significant underintensification relative to other MPs are those involving Hurricane Ioke, which 

was situated in an environment of fairly uniform deep-layer easterly flow. Conversely, similar 

evolutions can be seen in virtually all Typhoon Cimaron, Hurricane Ernesto, and Hurricane 

Lenny simulations as are described in the specific Cimaron example above. In these cases, the 

low-level and upper-level circulations slowly decouple from one another in the EF MP. As the 

disparity grows, the destructive interference of the circulations adds a further deterrent to 

intensification, as low-level convergence decreases which makes additional intense convection 

less likely. While resulting in generally weaker storms relative to other MPs, it also appears to be 

a likely cause of the storms’ more equatorward position at forecast hour 120. By this forecast 

time, the shallower EF MP cyclones are generally steered by low-level easterly flow rather than 

being significantly influenced by upper-level flow. 

Additional Relevant Research: Tropical Cyclogenesis 

 Extending the GD CP conclusions discussed earlier to TC genesis and intensity can be 

achieved by studying the 2009 real-time ensembles described in the previous chapter, which 

allows for a more independent comparison between CPs. Only forecasts using the 30 km inner 

domain are used for this analysis. First, a subjective examination of all simulations was 

undertaken beginning at forecast hour 48 to determine location and intensity of all TCs within 

any forecast using the Yonsei University boundary layer parameterization and the WSM3 MP. 

This was done to allow clean comparisons, and leaves three ensemble members – those using the 
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KF CP, the BMJ CP, or the G3 CP. In order to determine the existence of a tropical cyclone, the 

following criteria were used: 

 (1) A closed surface and 850 hPa cyclonic circulation must be present for a minimum of 

six hours 

 (2) The cyclone must have a warm-core at 850 hPa 

 (3) 10 m winds must exceed 25 kt at some location within the circulation 

 (4) Precipitation must be associated with the circulation at time of declaration 

The decision to begin at forecast hour 48 is based on research described earlier which marked 

forecast hour 48 as a point of significant forecast divergence within a physics-based ensemble. 

This appears to be a rough threshold point at which a given parameterization has shaped the 

atmosphere in such a way that forecasts start significantly diverging from one another. In 

addition, as mentioned in the introduction, most current parameterization research examines 

forecast timescales less than 48 hours.  

 For all circulations conforming to the above criteria, the minimum sea level pressure, 

maximum 10 m wind, and latitude/longitude coordinates are noted at every six hour interval after 

hour 48 until the end of each forecast at hour 120. Once this is done, the accumulated cyclone 

energy (ACE) is calculated for each forecast. Traditionally, ACE is defined as the square of 

maximum surface wind (multiplied by 10
-4

) for each storm at tropical storm intensity or greater 

and at every synoptic time summed over a storm’s or season’s lifetime. Two slight modifications 

to this definition are made here. First, ACE will be calculated as the accumulated value of all 

storms within a given forecast after hour 48. Second, the minimum threshold is lowered from 

tropical storm intensity to tropical depression intensity in order to incorporate more data 

(because ACE is calculated as the square of the maximum wind speed, this affects very low 
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values of ACE much more than high values). Figure 3.9 shows the progression of ACE for each 

parameterization throughout the 2009 season. For reference, a weak tropical storm lasting for 

several synoptic times would create a value of ACE roughly equal to 1, while a weak short-lived 

tropical depression would generate an ACE value slightly above 0. Generally speaking, ACE is 

maximized for all parameterizations during August and September, which is intuitive 

considering that the 2009 season had nine systems of tropical depression strength or greater 

between mid-August and early October (one system in May and one system in November are 

outside of the time these forecasts were performed). The maximum in all three CPs is associated 

with Hurricane Bill in mid-August, and the secondary maximum in mid-September is associated 

with Hurricane Fred. 

 Earlier in this chapter, composite analysis of several targeted cyclones at forecast hour 48 

indicated that the GD CP cyclones were generally weaker (either when measured by minimum 

sea level pressure or maximum surface winds) than the cyclones modeled using the KF CP or 

BMJ CP. Figure 3.9 reaffirms that conclusion due to the G3 CP’s ACE generally being weaker 

than either other CP for virtually every forecast. Cumulatively, the mean ACE generated per 

forecast is 1.214, 0.733, and 0.255 for the KF, BMJ, and G3 CPs respectively. Additionally, the 

G3 CP seems much less likely to produce a TC when that TC was not already present in the 

initial conditions, as seen by the frequent 0 values associated with the G3 CP relative to the other 

CPs. In some respects, this is a good thing because the rate of false alarms is dramatically 

reduced (note all of the spurious values of ACE during June and July in the KF CP and BMJ CP 

when no storm existed). On the other hand, this dramatically reduces the ability of the G3 CP to 

provide valuable advance information about tropical cyclogenesis. No specific judgment is 

applied to this distinction, although potential causes will be described.  
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Figure 3.9 ACE is show for KF CP (black), BMJ CP (blue), and G3 CP (red) for the 2009 real-

time forecasts. 
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Tropical cyclogenesis is further examined by compositing the incipient disturbances at 

time of declaration, provided that declaration occurred after forecast hour 48. This allows for the 

disturbances to be entirely a product of each individual forecast, rather than being constrained to 

exist based upon their presence in the initial conditions used. A total of 12 cases occur with the 

G3 CP, while 60 and 54 occur with the KF CP and BMJ CP respectively. This partially 

illustrates the disparity between the likelihood of cyclogenesis between the CPs. Each composite 

is created by centering the minimum sea level pressure within a 31 x 31 grid point grid. This 

corresponds to a box roughly 10° of latitude or longitude on a side. 

 Figure 3.10 indicates the mean magnitude of 10 m wind (kt) at time of declaration as 

well as the anomaly for each CP computed relative to a mean of all three CPs. All three possess 

maximum winds north of the cyclone center, which is a fairly common location for westward 

moving cyclones. However, an examination of the anomalies show that the G3 CP (Fig. 3.10e,f) 

produces sprawling cyclones with much lighter winds near the center and greater winds at a 

distance from the center relative to the other CPs. This is very consistent with Figure 3.3, which 

showed larger circulations (and weaker near-center winds) associated with the GD CP. Figure 

3.11 shows mean 3 hour rainfall (mm) for each CP at time of genesis, which demonstrates that 

the G3 CP (Fig. 3.11e,f) exhibits significantly lower rain rates near the center of circulation 

relative to the KF CP (Fig. 3.11a,b) and BMJ CP (Fig. 3.11c,d), while possessing slightly 

greater rain rates far from the center which is similar to that shown in Figure 3.4.  

The lack of intense precipitation near the center is likely related to the G3 CP’s inability 

to develop cyclones (either to the stage of genesis or in terms of developing intense TCs after 

genesis), as there would be much less latent heating concentrated near the center, and thus a 

decreased ability to generate concentrated low surface pressure and related spin-up of vorticity. 
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Figure 3.10 Composite mean 10 m winds (kt) for (a) KF CP, (c) BMJ CP, (e) G3 CP, and 10 m 

wind anomalies relative to a mean of (a,b,c) for (b) KF CP, (d) BMJ CP, and (f) G3 CP. ‘N’ 

indicates number of events per CP. 
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Figure 3.11 As in Figure 3.10 but for three hour precipitation (mm). 
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Lunney (1988) examined developing and non-developing cloud clusters and found that the cases 

in which genesis occurred were characterized by deep convection within 2° of the center of 

circulation, while non-developing systems had deep convection occurring outside this radius. 

Other studies such as those by Tory, Montgomery, and Davidson (2006) demonstrated that TC 

genesis is aided primarily by an increase in vorticity accomplished through low-level 

convergence and intense updrafts within deep convection. The G3 CP exhibits weaker low-level 

convergence (to be discussed later) and substantially weaker upward vertical motion over the 

center, so it is therefore unsurprising that the G3 CP is less likely to produce TCs than other CPs. 

As mentioned previously, the inability of the G3 CP to produce deep convection is in part due to 

a preference for greater coverage of light rainfall rather than small areas of intense rainfall as 

well as excessive mid-level drying occurring due to an overactive parameterization. 

 Figure 3.12 notes the genesis points of all cyclones included within the composites for 

each parameterization. The distributions of KF CP (Fig. 3.12a) and BMJ CP (Fig. 3.12b) 

cyclones is generally similar, although the KF CP has significantly more cyclones develop just 

east of the Lesser Antilles, while the BMJ CP develops many more cyclones west of 

approximately 70 W. An exact cause of this disparity is unknown, although the KF CP does 

produce more cyclones in the eastern Pacific (not shown) which may lead to an increase in 

vertical wind shear across the western Caribbean and Gulf of Mexico, negatively affecting 

potential cyclones in the KF CP. This region is also characterized by lower values of upper-level 

potential vorticity in the BMJ CP (not shown), although it is not clear whether this is a result of, 

or aid to, tropical cyclone development. One noteworthy difference between the G3 CP (Fig. 

3.12c) and the other two CPs (besides the obvious difference in number of developing cyclones) 

is their latitudinal location. All the G3 CP cyclones develop north of 12.5° N. However, for the 
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Figure 3.12 Genesis locations for (a) KF CP, (b) BMJ CP, and (c) G3 CP. ‘N’ indicates number 

of events while ‘J’, ‘A’, ‘S’, ‘O’ indicate occurrence in June/July, August, September, and 

October, respectively. The green contour denotes the location of mean 5 day rainfall exceeding 

50 mm. 
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KF CP and BMJ CP cyclones, the majority developing east of the Lesser Antilles develop south 

of 12.5° N.  

An examination of mean total rainfall over the entire domain (as shown by the green 

contour, which denotes locations with rainfall greater than 50 mm over 5 days) for the three CPs 

yields a similar distribution, depicting an ITCZ located south of roughly 12° N. Mean rainfall 

quickly decreases for locations north of 12° N, with these areas receiving less than 50 mm over 5 

days. This suggests that the KF CP and BMJ CP are much more likely to develop TCs within the 

ITCZ than the G3 CP. Although not quantified, it was noted when doing an analysis of genesis 

locations that the KF CP and BMJ CP were able to produce (and destroy) circulations much 

more easily than the G3 CP. This is likely due to the more intense convective updrafts noted with 

these CPs (as shown in Chapter 2), which would be more conducive to enhancing low-level 

vorticity. Since these intense updrafts are characteristic of convection within the ITCZ, it is 

understandable that these two CPs would produce more cyclones within this region. 

Conversely, the G3 CP cyclones are characterized by large circulations which produce 

weak updrafts in the presence of weakly positive low-level vorticity rather than single intense 

updraft cores near or over the cyclone center characterized by large values of vorticity. This has 

the effect in the G3 CP cyclones of slower development. The combination of a slower 

development and larger circulation may be the cause of the northward shift in G3 CP 

development – the incipient circulation may form within the ITCZ, but with time the circulation 

drifts northward before developing, enhanced by a greater Beta drift due the size of the 

circulation. The mean vertical motion can be seen in Figure 3.13, which shows a zonal cross-

section of mean vertical motion at time of genesis for the three CPs as well as the vertical motion 

anomalies. The KF CP (Fig. 3.13a) and BMJ CP (Fig. 3.13c) cyclones have clear areas of 
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Figure 3.13 As in Figure 3.10, except depicting a zonal cross-section of vertical motion (cm/s).
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intense vertical motion over or near the cyclone center, with mean velocities around 2 m/s in the 

mid-upper atmosphere. Conversely, the G3 CP (Fig. 3.13e,f) produces peak updrafts which are 

weaker and further away from the center of circulation, which is consistent with a larger 

circulation and greater rain rates far from the center of circulation.  

Similarly, Figure 3.14 shows a cross-section of mean vorticity. The G3 CP cyclone (Fig. 

3.14e) is characterized by weaker cyclonic vorticity near the storm center and larger vorticity far 

from the center when compared with the KF CP (Fig. 3.14a) or BMJ CP (Fig. 3.14c) cyclone. 

Figure 3.15 shows mean divergence for the same time and locations as Figures 3.13 and 3.14, 

and shows the expected couplet of convergence at low-levels of the atmosphere and divergence 

at upper-levels of the atmosphere. The combination of Figures 3.14 and 3.15 indicate vorticity 

generation through column stretching would generally be confined to near or over the center for 

the KF CP and BMJ CP cyclones given that low-level convergence is coincident with positive 

low-level vorticity. This is an effective combination for cyclone intensification. However, the 

maximum convergence locations within the G3 CP mean circulation are not coincident with the 

maximum vorticity with the G3 CP, meaning that (1) increasing vorticity associated with the 

low-level center will be slow to occur, and (2) vorticity generation also occurs at a distance from 

the storm center, which would act to increase storm size. 

Rotunno and Emanuel (1987, RE87 hereafter) demonstrated that incipient vortices 

developed more slowly if the radius of maximum wind was larger than vortices with an 

equivalent maximum wind at smaller radii, which is consistent with the observed behavior 

shown here. They showed that although vortices with different radii of maximum winds would 

eventually reach an equal steady-state (all else being equal), a threshold value of roughly 160 km 

existed at which point the vortex would no longer be able to intensify. While there are certainly 
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Figure 3.14 As in Figure 3.10, except depicting a zonal cross-section of vorticity (10
-5

/s).
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Figure 3.15 As in Figure 3.10, except depicting a zonal cross-section of divergence (10
-5

/s). 
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many differences between RE87’s simplified model and the more complex WRF-ARW model 

used here, a number of parallels exist between their study and the behavior of the G3 CP 

cyclones after genesis. First, their cyclone experiments studying the importance of radius of 

maximum wind used a maximum tangential wind of 12 m/s which is effectively equivalent to the 

25 kt threshold used here to determine genesis. Second, the 160 km radius threshold by which a 

cyclone did not intensify with time is also effectively equal to the radius of maximum wind 

associated with the G3 CP cyclones at genesis. Finally, of all twelve genesis cases when using 

the G3 CP, none developed to an intensity of greater than 31 kt during their lifetime or before the 

simulation ended. In RE87, the final intensity of their equivalently sized cyclone was 

approximately 15 m/s, which is quite consistent with the development of G3 CP cyclones. One 

additional impediment toward development of the G3 CP cyclones is the relatively large mean 

radius of deformation (due both to a larger size and slightly smaller maximum wind) associated 

with them relative to the comparatively smaller radii found in the KF CP and BMJ CP mean 

cyclone. A smaller radius of deformation would favor a more beneficial materialization of latent 

heating into kinetic energy with the latter two CPs.  

Although the G3 CP is capable of producing stronger cyclones (including to hurricane 

intensity), this only seems possible when the initial conditions already contain a relatively 

compact system. For example, the G3 CP was eventually able to produce a TC with hurricane 

force winds in the case of Hurricane Bill when initialized with a smaller circulation than is 

depicted for the circulations at genesis with the G3 CP. A related problem is an increased 

inability to correctly predict TC genesis for real TCs. As shown in Figure 3.9, the peak in ACE 

associated with Hurricane Bill is delayed for the G3 CP. This is a function of the KF CP (and to 

a lesser extent the BMJ CP) developing the cyclone at extended forecast times before it was 
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officially declared a storm, which the G3 CP could not effectively do until the system was 

initialized in the model. A similar phenomenon can be seen with Hurricane Fred. 

CONCLUSION 

 B09 attempted to determine whether certain MPs and CPs exhibited systemic biases 

when forecasting TC track, intensity, or structure. This chapter continues that effort and extends 

it toward tropical cyclogenesis. Cumulatively, they demonstrate that certain parameterizations do 

display clear biases when analyzing these fields (or processes). The biases noted with convection 

(particularly over tropical oceans) with the G3 CP from Chapter 2 have been shown here to have 

significant impacts on TCs. Most prominently, difficulty with producing intense convection 

decreases the likelihood of TC genesis, and decreases the potential for intensification afterward. 

This is in part caused by larger circulations associated with the G3 CP and GD CP, which have 

the added effect of creating a poleward track bias with these cyclones when compared with other 

common CPs. Although not a surprising result, these conclusions reinforce the need for accurate 

depictions of TC circulations and distributions of heating in order to produce realistic forecasts 

within models. Additionally, it demonstrates that the ensemble nature of the GD CP and G3 CP 

poses significant challenges to TC prediction in their present configuration.  

 It was also found that the cause of track and intensity differences between the EF MP and 

the nEF MP were due to differences in the vertical distribution of potential vorticity. Although 

this is a problem unlike the above GD/G3 CP problem in that it has been largely solved in the 

current iteration of the EF MP, it does demonstrate the forecasting value of correctly distributed 

potential vorticity within a cyclone (even if the column total is correct). Additionally, it suggests 

potential utility in the development of a TC steering approach guided by the interaction between 

the magnitude of potential vorticity and the steering flow in that layer. Velden and Leslie (1991) 
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demonstrated that the depth of a vortex significantly impacted the choice of an optimal steering 

flow, so perhaps this approach could be extended to the distribution of potential vorticity.  

Finally, virtually all of the findings within B09 and this chapter reinforce the necessity of 

parameterization studies which incorporate forecast lengths of greater than 48 hours. This is of 

particular importance for TCs, considering the obvious usefulness of forecasting them correctly 

as well as the fact most TCs are forecast out to 120 hours (or longer) among the primary 

forecasting agencies.  
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Chapter 4: Statistical Optimization 

Introduction 

 As discussed in Chapter 1, ensemble forecasting is commonly used to understand 

uncertainty and improve forecasts. Frequently, ensembles are generated by varying one or more 

of the following parameters amongst ensemble members: initial conditions, parameterizations, 

grid spacings, or dynamical core. Two topics are discussed within this chapter pertaining 

specifically to parameterization-based ensemble forecasting (i.e. where choice of 

parameterization differentiates ensemble members). The first is within the context of a specific 

parameterization - the Grell-Dévényi cumulus parameterization (and the related G3 cumulus 

parameterization), which is an ensemble-based parameterization that frequently produces 

anomalous precipitation forecasts as shown in Chapters 2 and 3. Using tropical precipitation as 

an example, several statistical approaches will be discussed to improve these forecasts. The 

second topic considers a comparison between an optimized ensemble of forecasts produced by 

the Global Ensemble Forecasting System and a low resolution ensemble where members are 

differentiated by choice of parameterization. Linear regression techniques will be used to 

demonstrate that a parameterization-based ensemble contains additional information which, 

when leveraged properly, can allow such an ensemble to produce much more improved forecasts 

relative to the improvement shown when a similar technique is used with the Global Ensemble 

Forecasting System. The result is that the two ensembles produce comparable forecasts when 

optimized. 
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STATISTICAL PRECIPITATION CORRECTION 

 A Statistical Approach For Correcting The Grell-Dévényi Cumulus Parameterization 

 As described in Chapter 2 and Chapter 3, the Grell-Dévényi (GD) cumulus 

parameterization, as well as its updated version (G3), suffers from two general problems. First, 

forecasts using the GD CP frequently overproduce light precipitation and underproduce intense 

precipitation relative to other CPs, particularly over tropical locations. Second, this effect 

becomes magnified with forecast time due to the nature of the parameterization, which acts to 

enhance mid-troposphere drying and further decrease the model’s (and parameterization’s) 

ability to produce heavy rainfall rates relative to other parameterizations. Both of these problems 

stem from the ensemble nature of the parameterization, wherein 144 distinct members are 

averaged to yield feedback to the model on moisture and temperature tendencies as well as 

precipitation. In the original introduction of the parameterization (Grell and Dévényi, 2002), 

Grell and Dévényi suggest using a Bayesian approach whereby rainfall data over the first few 

hours of a simulation are assimilated and used to determine a proper weighting for each member.  

However, despite being used in operational models such as the Rapid Refresh (RAP
5
) and 

its predecessor, the Rapid Update Cycle (RUC
6
), models, neither this approach nor any 

alternative approach has been implemented. Grell notes that primary reasons include lack of 

funding and manpower (Grell, personal communication, 2013). Specifically, in order to properly 

implement the approach outlined in his paper (or other similar approaches), a significant number 

of simulations need to be performed (each individual member needs to be run many times) while 

simultaneously having excellent observations of rainfall and the atmosphere in order to properly 

determine the appropriate weighting for each member. Additional problems include the 

                                                 
5 A RAP technical note can be found at: http://www.nws.noaa.gov/os/notification/tin11-53ruc_rapaae.htm 
6 A description of the RUC can be found at http://www.meted.ucar.edu/nwp/pcu2/rucintro.htm 

http://www.nws.noaa.gov/os/notification/tin11-53ruc_rapaae.htm
http://www.meted.ucar.edu/nwp/pcu2/rucintro.htm
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susceptibility to model resolution when determining weights as well as the issue of what 

observations to use to train the model (precipitation, vertical profiles of temperature or moisture, 

upward vertical motion, etc.). Finally, this approach becomes virtually impossible over oceanic 

environments, as high temporal and spatial observations of rainfall or atmospheric data are rare. 

Given the above limitations, this work will focus on alternate methods of improvement, 

while allowing for future implementation in the GD CP or G3 CP. The data used will be the 

“real-time” simulations using a 30 km grid spacing described in Chapter 2 (along with additional 

simulations described below). Due to the inherent difficulty in obtaining high spatial and 

temporal resolution observational data over oceanic environments, all subsequent approaches 

will seek not to fit forecasts to observed data, but rather to fit the general characteristics of model 

output to observed characteristics of the real atmosphere. For example, it was noted in Chapter 2 

that the cumulative distribution function (CDF) of the G3 CP both underforecast intense 

precipitation and also changed significantly with model forecast time. The approaches presented 

below seek to convert forecast model CDFs of a given field into realistic distributions of that 

field (additional detail will be provided below). For the purposes of this study, precipitation will 

be the variable analyzed, although in practice any variable could be used.  

In the absence of a significant source of observational data, the approaches used below 

will use a substitute dataset in the form of rain rates estimated every three hours obtained using 

observations from the Tropical Rainfall Measuring Mission (TRMM) dataset available every 

three hours over tropical locations (Liu et al., 2012). These instantaneous rain rate estimates are 

delivered as one hour rain rates, and were locally converted to three hour rain rates. It should be 

noted that one of these three hour rainfall totals is not the equivalent of an actual rain gauge 

accumulating rainfall over an equivalent three hour period. While the latter would be more 
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desirable (and more accurate), the former is the best option available. TRMM data is available at 

.25° x .25° resolution, which is comparable to the 30 km horizontal grid spacing used in the real-

time forecasts. Data is obtained every three hours between 0000 UTC 1 June 2009 and 0000 

UTC 1 November 2009 over a domain approximately equal to the real-time forecasts. In total, 

this constitutes 53,517,800 unique “observations”. 

Simplest Approach: Precipitation Reassignment Based On Climatology 

 This approach follows a fairly simple supposition: given that the range of possible 

precipitation intensities in the model forecast is smaller than the range of precipitation intensities 

in reality, given an infinite amount of model data, and an infinite amount of real data (over the 

same region), one could relate the most intense model output precipitation with the most intense 

observed precipitation. That is to say, that if the greatest model forecasted precipitation over 3 

hours was 15 cm (as an example) while in reality the greatest atmospheric precipitation over 3 

hours is 50 cm, then we can say that in the event the model forecast 15 cm of precipitation over 3 

hours, what it should be forecasting is 50 cm over 3 hours. Given a large dataset, one could 

construct two CDFs of precipitation – one for model data and one for TRMM-based precipitation 

rate estimate data. Once created, one could reassign the observed precipitation to the model 

forecast, using the same percentile for both. For example, if the model forecasts 4 mm of rainfall 

over 3 hours, one could look-up the percentile for this amount on the model CDF and reassign 

the precipitation to have a value equivalent to that percentile on the observed CDF. 

 Rather than implement this method directly, a slightly simplified method will be used. 

Instead of a continuous CDF (with infinite possibilities), a binning approach will be used. Nine 

different bins are chosen representing a range of values. While additional bins could be added to 

enhance effectiveness, this would decrease the number of observations per bin. Conversely, 
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fewer bins would unnecessarily increase the range within each bin. Nine bins is chosen as a 

compromise of these options. Table 4.1 gives the range for each bin, along with the equivalent 

range of TRMM estimated precipitation rate for forecast hour 120 as an example. First, both 

precipitation datasets are sorted from lowest to highest rain rate. Using the example of the zero 

precipitation bin (bin 1), the percentage of zero precipitation model grid points is calculated, and 

an equivalent percentage of the lowest real rain rates is assigned to bin 1 (in this case, they are 

zero as well). Next, bin 2 is calculated, which includes non-zero model rainfall. The real 

precipitation values assigned to this range are zero, because there are more zero precipitation 

grid points in the real data (as can be seen by comparing row 2 and row 4 of Table 4.1).  

However, as this process is continued to bin 4, it can be seen that model values between 

0.01 mm/3h and .1 mm/3h are reassigned to a range from zero to 0.030 mm/3h. This process is 

continued for each bin, which consists of all rainfall data within the given range. A series of bins 

and ranges are created for every forecast time and saved. A comparison of the percentage of data 

falling into a given bin again demonstrates that the G3 CP produces excess light precipitation 

than the real data and less intense precipitation (as shown by bins 7, 8, and 9). This can also be 

seen in Table 4.2, which shows the percentage of total accumulated precipitation which falls for 

each bin relative to all precipitation. This is done by adding all rain rates in a given bin and 

dividing by the total of all rain rates. Table 4.2 clearly demonstrates that the majority of total 

rainfall produced by the G3 CP is light (more than 89% of total rainfall falls as rain rates 

between 0.1 /3h and 10 mm/3h), while the real dataset produces the majority of its rainfall in the 

form of intense precipitation (it should be noted that TRMM frequently has difficulty observing 

very light precipitation, which likely skews the exact percentages somewhat, as shown by Berg 

et al. (2010) as well as Rapp et al. (2013)). 
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Bins 1 2 3 4 5 6 7 8 9 

Model Range 

(mm/3h) 

X=0 0<X<0.01 0.01≤X<.1 0.1≤X<1 1≤X<5 5≤X<10 10≤X<25 25≤X<50 50≤X 

% of  Model 

Data per Bin 

60.911 4.706 9.771 12.834 8.884 2.522 0.3633 0.0070 0.0009 

TRMM 

Range 

0 0 0 0 to 

0.030 

0.030 

to 

5.010 

5.010 to 

22.59 

22.59 to 

93.57 

93.57 to 

149.22 

149.22 

to 

214.80 

% of  Real 

Data per Bin 

69.949 5.238 10.615 9.262 2.847 0.7744 0.7254 0.3996 0.1889 

 

Table 4.1: This table details the range of rain rates prescribed to each bin within the G3 CP 

model at forecast hour 120, as well as the percent of total grid points which fall within each bin. 

Also shown is the equivalent range produced by TRMM observations if they were distributed 

according to the percentages shown per G3 CP bin. Finally, the percentage of TRMM 

observations which fall into the model bin ranges is shown. 
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Bins 1 2 3 4 5 6 7 8 9 

Range (mm/3h) X=0 0<X<0.01 0.01≤X<.1 0.1≤X<1 1≤X<5 5≤X<10 10≤X<25 25≤X<50 50≤X 

% of  Model 

Total Rainfall 

Per Bin 

0 0.0314 0.9331 9.156 45.523 34.690 9.086 0.4562 0.1199 

% of  TRMM 

Total Rainfall 

Per Bin 

0 0 0 11.505 22.897 12.259 17.947 17.338 18.055 

 

Table 4.2: This table details the fraction of rainfall produced within each bin as a fraction of 

total liquid water produced across all bins for both the G3 CP at forecast hour 120 as well as all 

TRMM observations. 
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Once all bins are created, it becomes possible to correct any G3 CP forecast at any 

forecast hour. This is done by first determining how many grid points with rain rates within the 

bins shown in Table 4.1 and Table 4.2 exist. Once this is determined, a random sample of an 

equivalent number of rain rates is taken from the TRMM dataset in the given bin. For example, if 

a given forecast at hour 120 possessed 3000 grid points with rain rates falling in bin 5 (consisting 

of rain rates between 1 mm/3h and 5 mm/3h), a random sample of 3000 rain rates would be 

taken from bin 5 of the real dataset (which contains rain rates between 0.030 mm/3h and 5.010 

mm/3h). After this is done for each bin, the model rain rates are reassigned to the newly derived 

rain rates by assigning the lowest model value to the lowest real value, continuing through the 

greatest model rain rate, which is assigned the value of the greatest real rain rate obtained in the 

sample. This method allows the forecast precipitation to be corrected while also maintaining 

some of the original forecast characteristics. For instance, forecasts with very little intense 

precipitation are not treated equivalently to those with significant amounts of precipitation, 

because the number of rain rates sampled per bin will vary (and may include zero samples taken 

from certain bins in some situations). The beneficial effects of this approach are best 

demonstrated with a series of examples from a given forecast.  

 Figure 4.1 shows an uncorrected 12 hour forecast initialized at 0000 UTC 15 August  

2009 (Fig. 4.1a), the corrected version using the above approach (Fig. 4.1b), as well as the 

closest TRMM observed rainfall (Fig. 4.1c). There are a number of interesting features to note. 

Most notably, the original forecast produces a rather unphysical large region of extremely light 

rainfall (approximately 1 mm/3hr or less) covering much of the tropical and subtropical Atlantic 

ocean. A comparison of the uncorrected and corrected plots immediately demonstrates that this 

problem is greatly ameliorated using this technique. Second, sea-breeze convection can be seen
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Figure 4.1 Forecast three hour precipitation (mm) for forecast hour 12 for (a) uncorrected G3 

CP, (b) corrected G3 CP, and (c) nearest corresponding TRMM data. Values less than .01 mm/3 

h are not plotted. All forecasts initialized 0000 UTC 15 August.  
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paralleling the coastlines of Central America as well as portions of Florida. The corrected 

forecast portrays larger rain rates in these locations, as would be more typical of sea-breeze 

convection seen by TRMM. Finally, the area of precipitation to the southwest of the Cape Verde 

Islands was recently declared a tropical depression that would eventually become Hurricane Bill 

(2009). As with the previous example, this technique produces enhanced rain rates in this region, 

as are commonly found with intensifying tropical cyclones. In this forecast, the system center 

was slightly north of the area of greatest rain rate. 

 Figure 4.2 is similar to Fig. 4.1 except for forecast hour 60. At this time the model 

continues to produce very light precipitation across a significant portion of the domain (Fig. 

4.2a), albeit scattered across a larger area. It is immediately obvious that the corrected (Fig. 

4.2b) forecast drastically reduces the quantity of very light precipitation, particularly across 

regions to the northwest of the Cape Verde Islands. The tropical cyclone noted at the previous 

forecast time can now be seen approximately equidistant between the west coast of Africa and 

the Lesser Antilles. While in reality this storm had just achieved hurricane status, in this forecast 

it is a borderline tropical storm (this underintensification can be ascribed in part to systemic 

problems with the G3 CP described in Chapter 3 concerning tropical cyclone forecasts). A 

comparison of the uncorrected and corrected forecast once again demonstrates an enhancement 

of rain rates very near the center of circulation, as denoted by the eye-like feature observed in the 

rainfall distribution (Fig. 4.2c).  

 At forecast hour 120, shown by Figure 4.3, noteworthy differences in the coverage of 

very light precipitation exist between the uncorrected and corrected forecast. At this forecast 

time the tropical cyclone has advanced to a position just east of the Virgin Islands. In actuality 

this cyclone was a powerful storm with maximum sustained winds of 115 kts. However, in this 
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Figure 4.2 As in Figure 4.1 but for forecast hour 60. 
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Figure 4.3 As in Figure 4.1 but for forecast hour 120. 
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forecast the tropical storm was of moderate tropical storm intensity undergoing a modest 

intensification phase. It can be seen that maximum rain rates associated with this storm are 

roughly 20 mm/3 hr (Fig. 4.3a), while in the corrected forecast the rain rates near the center of 

circulation approach 80 mm/3 hr (Fig. 4.3b), which corresponds well to the observed rates using 

TRMM (Fig. 4.3c).  

 To demonstrate the impact this precipitation reassignment approach has on the CDFs of 

forecast rainfall, Figure 4.4 was created. Figure 4.4 displays the original and corrected G3 CP 

forecast rainfall for the above time as well as the climatological (2009 North Atlantic hurricane 

season) value of TRMM precipitation for comparison. A comparison of the two G3 CP forecasts 

demonstrates several important features. First, very light values of precipitation are reduced in 

frequency in the corrected forecast compared with the original forecast. Second, the frequency of 

intense rainfall rates is dramatically increased. Finally, it can be seen that the CDF of corrected 

precipitation is similar, yet not identical, to the CDF of TRMM climatology for this reason. This 

discrepancy is due to the fact this approach does not simply randomly sample the TRMM data, 

but rather uses a binning approach in order to retain some character of the original distribution 

(i.e.. whether a given forecast contained more or less rainfall than normal). If this approach used 

a pure random sample, one would expect the corrected G3 CP CDF and TRMM climatological 

CDF to perfectly overlap. The fact that the corrected G3 CP CDF indicates a greater frequency 

of intense precipitation is due in part to the presence of a reasonably intense tropical cyclone, 

which includes a slightly greater amount of intense rain rates in the unaltered G3 CP forecast 

than is representative of the entire season within the G3 CP. 

 Although this approach is presented here using precipitation data from forecasts using the 

G3 CP, it should be noted that theoretically this can be used with any model forecast and for any 
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Figure 4.4 Cumulative distribution functions of TRMM climatology (black), precipitation shown 

in Figure 4.3a (blue) and Figure 4.3b (red). 
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variable, provided a sufficient amount of prior data exists such that the statistical framework this 

is based upon can be constructed. 

Grell Cumulus Parameterization: Linear Regression Approach 

 As noted earlier, the G3 CP utilizes a 144 member ensemble of individual cumulus 

parameterizations, which are weighted equally to produce a final result. This frequently yields 

unphysical depictions of tropical rain rates, as shown in the previous section as well as prior 

chapters. For reasons described earlier, it is not possible to employ the Bayesian approach 

suggested by the authors due to lack of observational data as well as a lack of computer 

resources. A substitute to this in keeping with the authors’ original intent will be used here. The 

original 144 members broadly fall into four classes of cumulus parameterization closure: 

moisture convergence types, CAPE relaxation types, Arakawa-Schubert types, and omega-

triggered types (all of which are described in Grell and Dévényi (2002), as well as the sub-

permutations such as precipitation efficiency, entrainment rate assumptions, etc.). Although it is 

not feasible within the scope of this project to analyze each member, four representative 

members are chosen for analysis (representing each closure variety mentioned above) with the 

assumption that these four represent an approximate range of the total distribution of ensemble 

members. For each of the 76 real-time forecasts used for the above G3 CP precipitation 

correction, four forecasts were recreated using a representative member of each closure as choice 

of CP. 

 As with the prior example, rather than attempt to fit the forecast precipitation directly to 

the spatial distribution of observed precipitation, the goal was to produce forecast weightings 

such that the distribution of forecast precipitation more closely aligned with the characteristics of 

observed precipitation, as above. However, rather than using precipitation reassignment, this 
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approach will determine optimal weights for the four closures using linear regression, in the 

form: 

    ββ  = (XX'*XX)
-1

 * (XX'*YY)    (1) 

Here ββ represents a vector of coefficients of length equal to the number of predictors (and 

intercept, if included). Once it is obtained, an optimal combination (Yi) for a given forecast can 

be calculated by: 

Yi = ββ1  XX1+ …  ββn  XXn + II          (2) 

For each forecast time, a vector of precipitation forecasts consisting of each closure’s 

forecast as well as the mean of the four is created. This is done for each grid point across all 76 

forecasts, and combined to form one 2328336 x 5 matrix. Next the matrix is sorted from lowest 

mean precipitation value to greatest mean precipitation value. Afterward, the mean precipitation 

column is removed, resulting in a 2328336 x 4 matrix, which is XX in equation 1 (with the four 

columns representing four predictors). The TRMM data is used again as the observed dataset. A 

random sample (of size 76 x 30636) is taken from this dataset and sorted from lowest value to 

highest value, which represents YY in equation 1. Subsequently, linear regression is performed to 

determine the optimal weights to apply to each closure. It should be noted that no intercept 

parameter is calculated (II =0), due to the very frequent likelihood of precipitation forecasts being 

0 mm/3h (and the non-physical nature of negative precipitation in the event of a negative 

intercept parameter and zero forecast precipitation by each closure). This technique generally 

follows the simple assumption that the heaviest model forecast precipitation should most often 

occur when the mean of the ensemble members’ predicted precipitation is greatest. The above 

procedure is performed for each forecast time between hour three and 120 to produce optimal 

coefficients which are unique to each forecast time. 
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For comparison purposes, the forecast case presented earlier initialized at 0000 UTC 15 

August, will be used as an example of this technique as well. Figure 4.5a shows the mean four-

closure precipitation, the optimally weighted precipitation forecast (Fig. 4.5b), and the same 

TRMM precipitation (Fig. 4.5c) shown in Figure 4.1. Although the mean of the four closures is 

similar to the standard G3 CP forecast shown in Figure 4.1, the coverage of very light 

precipitation is slightly reduced while the maximum precipitation rates are increased. This is due 

to the fact there are fewer ensemble members in this forecast combination. Skipping ahead to 

forecast hour 120 depicted in Figure 4.6, it is immediately apparent that while this linear 

regression approach generally correctly increases maximum rain rates (as depicted by the warm 

colors near Hurricane Bill), this approach does nothing to decrease the widespread 

overproduction of light rainfall. Barring a negative or zero weight for any closure, this will 

always be true in the absence of an intercept parameter.  

Figures 4.7 and 4.8 reproduce Figures 4.5 and 4.6, except with recalculated coefficients 

without constraining the intercept to zero. This allows a negative intercept, which reduces the 

light precipitation bias. It should be noted again that TRMM likely tends to underestimate or 

miss very light precipitation, so it is difficult to know what constitutes the “correct” amount of 

light precipitation coverage. Another option is to incorporate both of the above approaches. This 

is done by first using linear regression (as above, with a zero intercept) and following with a 

reassignment approach as described in the first approach. This method both allows for more 

fidelity regarding appropriate weights for the various closures while also removing to a large 

extent the light precipitation bias. This can be seen in Figure 4.9, which uses this technique for 

the same 120 forecast shown in Figures 4.6 and 4.8. 
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Figure 4.5 As in Figure 4.1 but for (a) a mean of four G3 CP forecasts and (b) an optimal 

combination of four G3 CP forecasts constrained with a zero intercept. 
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Figure 4.6 As in Figure 4.3 but for (a) a mean of four G3 CP forecasts and (b) an optimal 

combination of four G3 CP forecasts constrained with a zero intercept. 
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Figure 4.7 As in Figure 4.1 but for (a) a mean of four G3 CP forecasts and (b) an optimal 

combination of four G3 CP forecasts not constrained with a zero intercept. 
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Figure 4.8 As in Figure 4.3 but for (a) a mean of four G3 CP forecasts and (b) an optimal 

combination of four G3 CP forecasts not constrained with a zero intercept. 
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Figure 4.9 As in Figure 4.3 but for (a) a mean of four G3 CP forecasts and (b) an optimal 

combination of four G3 CP forecasts not constrained with a zero intercept followed by 

precipitation reassignment. 
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Analysis Of Weights 

 Since the ensemble member weights are calculated independently at each forecast hour, it 

is possible to analyze the relative importance of each member as a function of forecast hour. 

Figure 4.10 displays the relative contribution of each member by dividing each member’s 

weight by the total of all weights for a given forecast hour. One obvious observation is that a 

prominent diurnal cycle emerges, which is nearly steady after approximately forecast hour 30. 

This somewhat corroborates the finding in Chapter 2 that the precipitation characteristics 

associated with the G3 CP do not become approximately steady-state until after forecast hour 24. 

The four closure types are distinctly paired in their behavior – the Arakawa-Schubert type and 

moisture convergence type are most influential during the afternoon hours of forecasts, while the 

CAPE-removal type and omega type are relatively more important during the nighttime hours of 

the domain. Several factors likely contribute to the patterns seen here. The Arakawa-Schubert 

type closure is strongly related to large-scale buoyancy, so it is perhaps intuitive that it would be 

of greatest relative importance during the afternoon hours when buoyancy is often maximized. 

Its position of greatest weight at nearly all times is likely due to its enhanced ability to produce 

intense rainfall relative to the other closures (not shown). Although the moisture convergence 

closure is also of relatively great importance, its slow decline after the first 6 to 30 hours of 

model integration is probably a result of the modeled atmosphere slowly becoming dryer with 

time, as described in Chapter 2. Since the precipitation produced in this closure is proportional to 

the vertical integral of moisture convergence, as the mid-level atmosphere dries this vertical 

integral would be expected to decrease with time, producing less intense rain rates with time (as 

described in Chapter 2).  
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Figure 4.10 Percent contribution (with forecast hour) to an optimal combination with Arakawa-

Schubert type (black), Omega type (blue), Moisture Convergence type (red), and Cape removal 

type (green). 
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Strengths And Weaknesses Of Both Approaches 

 The primary strength of both approaches is their extreme computational efficiency. Once 

the climatological precipitation bins and closure weights are created for the precipitation 

reassignment and linear regression approaches are created, improved precipitation forecasts can 

be created within seconds. The clear weakness of both approaches is that they occur outside of 

any model integration; therefore any enhancement of model accuracy resulting from a 

(presumably) more realistic depiction of convection goes unrealized. Intuitively, one could alter 

the existing G3 CP cumulus heating, drying, and other atmospheric variable profiles with the 

weights described above. However, it is not certain that doing so within the parameterization 

would produce a superior or realistic result. While precipitation is an observable model variable 

with obvious societal and economic importance, it is also generally a final product of a cumulus 

parameterization integration. Given this, determining appropriates weights based on this final 

product may not be optimal. For example, perhaps variables such as the vertical profiles of 

temperature and moisture would be more appropriate for calculating weights rather than 

precipitation. The difficulty with this approach using the G3 CP is that the various ensemble 

members determine precipitation based upon different criteria. This leaves precipitation as the 

primary variable to use for weighting, which as stated earlier may be problematic. It should be 

noted that Grell and Dévényi (2002) used their optimal weighting approach to improve 

precipitation forecasts rather than parameterization feedback to the model. 

 Although a linear regression approach ameliorates the G3 CP’s difficulty with intense 

precipitation, at best it is neutrally effective at reducing widespread spurious light rainfall.  

Barring a zero or negative coefficient for any ensemble member, this is true by definition. For 

that reason, another statistical approach might be optimal. The simplest option is to simply 
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combine the above approaches – use the new member weighting to produce a corrected 

precipitation, and then apply the precipitation reassignment approach to that corrected 

precipitation. However, this still does not address potential changes to real-time modeled 

interactions the convection has with the grid scale variables. One option to address this issue 

would be to first run the parameterization as is at a given time-step, then determine what the 

corrected precipitation value should be based upon either above approach. Afterward, the 

parameterization could be rerun with the appropriate weighting applied to any heating, cooling, 

moistening, or drying predicted by that ensemble member. In the event that the corrected 

precipitation changes from a positive value to a zero value, the parameterization could be 

deactivated for that particular grid point. While an attempt at this approach is beyond the scope 

of this work, this method would effectively cause the CP to be called twice per time-step, which 

would certainly increase the length of model integration. However, assuming no significant 

destabilization of the model results, this approach could presumably lead to improved forecasts.  

 Another obvious strength of either approach is the fact that they do not treat all forecast 

hours as equal. Since it has been demonstrated that the precipitation characteristics of the G3 CP 

change with forecast time, forecast time-dependent approaches are preferable. Although this may 

be possible to incorporate within the parameterization itself, it may be difficult to account for 

both diurnal variations as well as factors related to the time since model initialization (i.e. 

whether it is forecast hour 12 or 120). Finally, either of these approaches are effective for any 

model configuration and virtually any location on the globe at any time of year, provided a 

sufficiently large database of climatological values exists. 
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Examination Of Forecast Differences 

Although incorporating these approaches within a parameterization is outside the scope 

of this study, some brief speculation of the likely impacts is appropriate within the context of 

previous work. For instance, Chapter 2 showed that the G3 CP produced weaker (yet more 

frequent) convection over tropical locations relative to other CPs, which ultimately led to a 

weaker Hadley Cell circulation. Either of these approaches could help ameliorate excess 

precipitation produced by the G3 CP over subtropical regions while enhancing the intensity of 

convection within the ITCZ region, which may help resolve the weak Hadley Cell problem with 

this CP.   

Chapter 3 demonstrated that the GD CP was less inclined to produce tropical 

cyclogenesis due to a larger circulation when compared with other CPs. This large circulation 

was the result of more peripheral convection (rather than intense near-center convection). 

Similarly, it was shown that the GD CP was less able to intensify TCs due to a similar problem –

latent heating was spread over a large circulation rather than concentrated near the center of 

circulation. As shown earlier in this chapter, when either of these techniques are applied to a G3 

CP forecast including a hurricane, the result is to (1) decrease light rainfall distant from the storm 

center, and (2) dramatically enhance convection near the center. Given the problems described 

earlier, if a similar outcome occurred upon implementation within the parameterization, it is 

likely that the GD CP and G3 CP would be more able to generate TCs and more able to 

realistically intensify them after genesis. Similarly, a lack of peripheral convection (and 

associated latent heating) would likely decrease the generated mean circulation size, which may 

decrease the notable poleward track biases produced by these CPs shown in Chapter 3. 
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A COMPARISON OF TWO OPTIMIZED ENSEMBLES 

 Global forecast models such as NCEP’s Global Forecast System (GFS) employ ensemble 

techniques to improve an understanding of the potential future state of the atmosphere. The 

Global Ensemble Forecast System (GEFS) is a collection of twenty forecasts run in conjunction 

with the official GFS control forecast performed at a lower resolution and differentiated by 

choice of initial conditions. The variance within these initial conditions is designed to represent 

analysis uncertainty, with differences constrained to be orthogonal to one another (Wei et al., 

2008). Afterward, stochastic perturbations are applied to the different initial conditions
7
. The 

discussion below will compare the benefits of optimizing an ensemble such as this (to produce 

one superior forecast) to the benefits of optimizing an ensemble comprised purely of members 

differentiated by choice of parameterization (while using the same initial conditions). 

Methodology 

  Two ensemble datasets representing two different forms of ensemble generation will be 

compared. A parameterization ensemble constructed of 10 members with perturbed physics 

initialized using the 0000 UTC GFS control simulation for initial and lateral boundary conditions 

represents the parameterization ensemble. This is also the outer domain of the real-time forecasts 

described earlier, and uses a 90 km horizontal grid spacing and 28 vertical levels. The various 

parameterizations used in each member are shown in Table 4.3. The first nine GEFS ensemble 

members as well as the control simulation with a resolution matching the other nine GEFS 

members represent the initial condition ensemble. All members use the same combination of 

parameterizations while each member uses uniquely perturbed initial conditions. Consequently, 

each ensemble represents a significantly different way of generating model spread. It should be 

                                                 
7 Additional information can be found at http://www.dtcenter.org/ensemble_presentations/2-10_Toth-

NAEFS_GEFS.pdf 

http://www.dtcenter.org/ensemble_presentations/2-10_Toth-NAEFS_GEFS.pdf
http://www.dtcenter.org/ensemble_presentations/2-10_Toth-NAEFS_GEFS.pdf


 

Member Microphysics 

Parameterization 

Cumulus 

Parameterization 

Boundary Layer 

Parameterization 

1 WSM3 Kain-Fritsch Yonsei University 

2 WSM3 Kain-Fritsch Mellor-Yamada-Janjic 

3 WSM3 Betts-Miller-Janjic Yonsei University 

4 WSM3 Betts-Miller-Janjic Mellor-Yamada-Janjic 

5 WSM3 Grell-3 Yonsei University 

6 Eta-Ferrier Kain-Fritsch Yonsei University 

7 Eta-Ferrier Kain-Fritsch Mellor-Yamada-Janjic 

8 Eta-Ferrier Betts-Miller-Janjic Yonsei University 

9 Eta-Ferrier Betts-Miller-Janjic Mellor-Yamada-Janjic 

10 Eta-Ferrier Grell-3 Yonsei University 

 

Table 4.3: The parameterizations for each ensemble member within the parameterization 

ensemble is shown. 
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noted that the effective horizontal resolution of the GEFS is approximately 30% greater than that 

of the parameterization ensemble, and would not suffer from any potential lateral boundary 

errors considering it is a global model.  

 For each ensemble and for a given variable, a matrix of 76 five-day forecasts are created, 

representing one every two days of the 2009 North Atlantic Hurricane season (this is XX in 

equation 1 shown earlier). For each matrix, forecast hour 120 is analyzed using the native grid of 

the parameterization ensemble; the higher resolution initial condition ensemble is mapped onto 

this grid. Finally, for every grid point linear regression is used to determine an optimal weighting 

for each member of both ensembles such that a linear combination of the ten members within a 

given ensemble produce a single best forecast. Truth is considered to be the valid 0000 UTC 

initial conditions from the GFS control simulation mapped onto the same 90 km grid (this is YY in 

equation 1 shown earlier). Once appropriate weights are determined for each ensemble at each 

grid point, a single forecast is recreated for each of the 76 cases for each ensemble. It should be 

noted that traditionally two independent samples are created, whereby the statistics generated 

from a training sample are tested on the other sample. However, since the same method is used 

for both the parameterization ensemble and the initial condition ensemble, this is deemed 

unnecessary since both use the identical statistical analysis, making comparisons between the 

two impartial. 

 This process can be performed for virtually any variable and statistics easily calculated. 

Figures 4.11 and 4.12 show, respectively, the mean 2 m temperature error (°C) per forecast 

(without any form of optimization) for each member of the physics ensemble and initial 

condition ensemble. A comparison of the two shows that generally the physics ensemble 

members have greater mean errors than the initial condition ensemble members, particularly over 
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Figure 4.11 Mean 2 m temperature error (°C) at forecast hour 120 for ten parameterization 

ensemble members. 
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Figure 4.12 As in Figure 4.11 but for ten GEFS members. 
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land. Although some of the differences can be attributed to the elevation differences between the 

native grid and the verification grid, the majority of the difference is simply due to the fact that 

on average the GFS is a better, well-tested, higher-resolution model than the physics members. 

However, once both ensembles are optimized to produce a single forecast the errors for both are 

reduced, as can be seen in Fig. 4.13a (GFS) and Fig. 4.13b (parameterization ensemble), which 

shows the mean errors for each ensemble. Both ensembles are fairly comparable – maximum 

mean errors are approximately 3° C over North America. Figure 4.13c shows the difference 

between the two mean errors normalized relative to the standard deviation of the analyzed 2 m 

temperature per grid point, which allows for an easier comparison of relative skill across 

different locations. Warm (cool) colors represent locations where the physics ensemble 

performed relatively better (more poorly) than the initial condition ensemble. There is a roughly 

equivalent amount of area where one performed better than the other. Overall, the initial 

condition ensemble outperformed the physics ensemble by an average of 0.0257, which is 

effectively parity. Similar results can be found when examining any number of common 

variables such as 2 m dewpoint, 10 m wind speed, sea level pressure, 500 hPa height, and others. 

 In all examples, a crude low-resolution physics ensemble initially more poorly predicts 

the atmosphere than an equivalent-sized collection of GEFS members when examining several 

variables. Yet when an identical statistical improvement is applied to both, the effect is that the 

two ensembles perform effectively equally. What accounts for the significant improvement in the 

physics ensemble relative to the initial condition ensemble? The answer lies in the type of biases 

associated with each ensemble. Figure 4.14 shows the mean 2 m temperature anomaly (°C) for 

each physics ensemble member relative to the mean of all members. The solid contour denotes 

locations where that particular member is statistically significantly different from the other 
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Figure 4.13 Optimized ensemble mean 2 m temperature error (°C) for (a) GEFS ensemble, (b) 

parameterization ensemble, and (c) the difference between (a) and (b) normalized by the standard 

deviation of 2 m temperature at each grid point. 
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Figure 4.14 Fill depicts 2 m temperature anomaly (°C) per member relative to a mean of all 

members. Contour denotes regions with anomalies surpassing a 95% statistical significance 

threshold.  
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members using a 95% confidence threshold. These locations are generally in the lower center of 

each panel or over Africa on the eastern portion of each panel. It can be immediately seen that 

certain members are cooler or warmer than other members on average, particularly over 

continental locations. 

Figure 4.15 depicts the same plot as Figure 4.14, but for the initial condition ensemble. 

It is immediately apparent that any particular member does not exhibit the same magnitude of 

anomalies relative to the mean of all members. No statistical significance contour is plotted 

because no anomalies are significant at the 95% threshold. The clear differences between 

Figures 4.14 and 4.15 are due to the nature of the two ensembles. The various parameterizations 

used in the physics ensemble have unique biases. For example, rows one, three, and five in 

Figure 4.14 are comprised of members using the Yonsei University boundary layer 

parameterization while rows two and four use the Mellor-Yamada-Janjic boundary layer 

parameterization. For these forecasts it is quite clear that the Yonsei University boundary layer 

parameterization is warmer for continental locations that the Mellor-Yamada-Janjic boundary 

layer parameterization on average. When examining other atmospheric variables, similar patterns 

emerge. For instance, an examination of 500 hPa height (not shown) demonstrates that the 

various member biases relative to one another are sorted by cumulus parameterization, which 

intuitively seems reasonable considering this level is frequently modified by the effects of 

convection. 

The GEFS uses the same combination of parameterizations for each member, because it 

differentiates members by choice of initial condition, so by definition any biases exhibited 

between members cannot be a product of differing parameterizations. However, unlike with a 

parameterization, there is no scientific reason that any apparent bias in a given member 
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Figure 4.15 As in Figure 4.14 but for ten GEFS members. 
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differentiated by choice of initial conditions for one run would be reproduced in the following 

cycles, as is made clear by the lack of statistically significant differences. In this manner a 

physics ensemble possesses additional information to potentially leverage with statistical 

applications than does a purely initial condition ensemble. This is made more apparent by 

examining the absolute error for each ensemble member. Figure 4.16 shows the absolute 2 m 

temperature error (°C) for each member of both ensembles for a grid point at approximately 44° 

N, -108° W, which is located over the western high plains of the United States. This is a location 

characterized by relative large 5 day forecast errors, given its frequent frontal passages and 

proximity to mountainous locations. The physics ensemble errors (Fig 4.16a) are highlighted 

according to choice of boundary layer parameterization while the initial condition ensemble 

errors (Fig 4.16b) are colored according to member. It is easily apparent that the physics 

ensemble’s errors are frequently grouped according to choice of boundary layer 

parameterization, with the Yonsei University parameterization frequently being warmer than the 

Mellor-Yamada-Janjic parameterization, which confirms Figure 4.14 for this region. However, 

no such distinction can be noted among any grouping of members within the initial condition 

ensemble.  

The various biases which exist among different parameterizations is what allows the 

physics ensemble to be improved relatively more than the initial condition ensemble, leaving 

them of comparable skill when optimally combined into a single forecast for each ensemble. On 

a member by member basis, a relatively untested limited domain forecast employing a 90 km 

horizontal grid spacing would be expected to be considerably worse than a well-tested, higher 

resolution global forecast such as a GEFS member forecast. The fact that a collection of ten low 

resolution 90 km forecasts can perform on par with an equivalent collection of GEFS forecasts 
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Figure 4.16 Absolute 2 m temperature (°C)  errors are shown per case for (a) parameterization 

ensemble members and (b) GEFS members for a grid point at approximately 44° N, -108° W. 

Parameterization members are colored according to choice of boundary layer parameterization, 

with Yonsei University (Mellor-Yamada-Janjic) colored black (green). Each GEFS member is 

uniquely colored. 
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suggests there could be further utility in this approach, particularly if the physics ensemble 

members were constructed in such a way as to produce maximum (yet reasonable) forecast 

spread. As the physics ensemble is currently constructed, there is significant redundancy among 

the 10 members (combinations of only three cumulus parameterizations, two microphysics 

parameterizations and two boundary layer parameterizations). This suggests the possibility that a 

more well-chosen collection of members with more parameterization-independence would 

provide yet greater value.  

It is not being suggested here that a collection of low resolution forecasts can effectively 

improve upon or replicate the GEFS skill in more difficult forecasting challenges such as tropical 

cyclogenesis, mode of severe weather, mountainous weather, or other scenarios (although it is 

also not being ruled out). However, given that the vast majority of day-to-day forecasts consist of 

surface temperature, moisture, and wind speed forecasts, it does seem that there is perhaps some 

utility to this approach. Given a finite amount of computer resources, it is perhaps more useful to 

create a very large ensemble of low-resolution forecasts than a small ensemble of high resolution 

forecasts (again, potentially dependent on the type of weather one is forecasting), particularly if 

the low resolution ensemble consists of members with easily correctable biases as is the case 

with the physics ensemble presented herein. An obvious potential solution would be to construct 

an ensemble similar to the GEFS, but which incorporates differing parameterizations as well as 

initial conditions. This is partially done within the current ECMWF ensemble, which uses both 

differing initial conditions as well as slightly different model equations to integrate the model 

forward (Buizza et al., 1999).  
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CONCLUSION 

 Several statistical techniques to improve parameterization ensemble forecasts were 

examined within this chapter. First, precipitation deficiencies inherent in the ensemble-based G3 

CP were corrected in two different ways. The first, a precipitation reassignment approach, was 

shown to effectively re-map distributions of forecast precipitation within a given forecast 

towards an expected climatological distribution while still retaining the forecast’s original 

character. This approach is applicable to any model (and potentially other atmospheric 

variables). The second approach involved a linear regression framework with which the 

individual members within the G3 CP might be optimized to produce a more reasonable 

precipitation forecast. Although this was performed in post-processing, the approach is broadly 

within the context of an original proposal by Grell and Dévényi (2002). Both approaches were 

shown to have varying degrees of success eliminating spurious light precipitation while 

enhancing intense precipitation. 

 The second section of this chapter explored a simple approach whereby a low-resolution 

parameterization-based ensemble as well as an equally-sized GEFS ensemble were optimized 

using a linear regression approach. Despite the fact that the unoptimized members of the 

parameterization ensemble were shown to be significantly worse predictors than the GEFS 

members, after optimization both performed comparably. This was shown to be possible because 

member errors between forecasts were correlated within the parameterization ensemble due to 

the inherent biases among parameterizations (several of which were discussed in a different 

context in Chapters 2 and 3). Conversely, the GEFS members’ errors are uncorrelated from one 

forecast to the next. This difference provides the parameterization ensemble with additional 

information to be leveraged upon optimization. 
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Chapter 5: Conclusion 

 Parameterization remains a necessary component of numerical weather prediction models 

in order to represent the important scale interactions between subgrid-scale (i.e. unresolved) 

processes and grid scale processes. It is now widely recognized that there is value in using 

ensemble prediction techniques to develop forecasts rather than attempting to forecast from one 

single deterministic model. This dissertation has explored the use of ensemble parameterization 

(e.g., the GD and G3 schemes) and parameterization ensembles). Chapter 2 (and chapters 3 and 4 

to a lesser degree) examined an ensemble within a (cumulus) parameterization, describing 

unintended consequences (largely negative) introduced by incorporating an ensemble approach 

to a cumulus parameterization scheme. Chapter 3 and a predecessor Master’s thesis compared 

parameterizations within an ensemble of tropical cyclone forecasts chosen for their dispersive 

nature. Finally, chapter 4 demonstrated several methods in which an ensemble-based 

parameterization as well as an ensemble of different parameterization-based forecasts could be 

improved through statistical techniques. All of these chapters incorporated a specific focus on 

forecasting timescales extending beyond 48 hours, as this is a timescale largely lacking in current 

parameterization research. This chapter will briefly summarize the primary takeaways from the 

previous chapters, some broad conclusions, and will also identify potential avenues to improve 

and advance the research presented within this dissertation. 

Chapter Overviews 

 Chapter 2 examined the sophisticated G3 cumulus parameterization (CP) which attempts 

to improve performance relative to other CPs by incorporating several variations of different 

CPs. A number of constants are varied as well to produce a total of 144 members, which are run 

individually and averaged to provide feedback to the model. It was shown that this approach 
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becomes problematic over tropical regions with little strong forcing for ascent. The primary 

reason for this is that due to the averaging over ensemble members inherent in the scheme, it 

becomes very difficult to produce intense rain rates unless a significant fraction of the 144 

members are also producing large rain rates. Conversely, it becomes relatively easy to produce 

widespread light precipitation, since at a given time step only a fraction of the members need to 

be producing rainfall for a grid point to report precipitation. The problem with this is that much 

of the tropical world (ITCZ and monsoon locations for example) are largely characterized by 

either intense precipitation, or no precipitation. This model behavior results in less intense 

convection and convective precipitation on average distributed over a greater area when 

compared with the Kain-Fritsch CP. A side-effect of this behavior is increased mid-level 

subsidence drying, which acts to make convection less likely as forecast length increases. These 

factors were shown to have important feedbacks on downstream extratropical weather through a 

weaker Hadley Cell. It was shown that artificially reducing the ensemble size within the G3 CP 

allowed for more intense convection. 

 Chapter 3 and a prior Master’s thesis studied several tropical cyclone cases notable for 

their real-time forecasting difficulty relative to both track and intensity. The aim was to 

determine whether certain parameterizations exhibited track, intensity, or structural biases related 

to tropical cyclones. This work was extended to tropical cyclogenesis through an examination of 

real-time forecasts created during the 2009 North Atlantic hurricane season. The most prominent 

group of biases related to the GD and G3 CPs, which were found to produce large, weaker 

cyclones which tended to have a poleward track bias. Additionally, these CPs were less able to 

initiate tropical cyclogenesis than other CPs. The cause of all of these differences appears to be 

related to the conclusions described in Chapter 2, which found that the GD and G3 CPs produced 



 148 

widespread weak convection, but were much less likely to produce intense convection. Chapter 3 

showed that the use of the GD and G3 CPs result in model forecasts that produced larger nascent 

vortices which were less able to achieve tropical cyclogenesis or to develop as intensely once 

genesis was achieved. It was also analyzed that differing vertical distribution of potential 

vorticity, as diagnosed with a pair of EF MPs, produced significant forecast differences relating 

to track and intensity. Specifically, it was found that a less variable (in terms of value at each 

level of the atmosphere) vertical distribution of potential vorticity aided the maintenance of the 

vertical integrity of tropical cyclones when confronted with moderate vertical wind shear. 

 Chapter 4 studied several approaches whereby the forecast precipitation deficiencies 

noted with the GD and G3 CPs in Chapters 2 and 3 could be ameliorated using statistical 

techniques applied in post-processing. This was done using approaches which sought to 

transform the predicted CDF of rainfall into one more representative of the atmosphere as found 

in TRMM data. These approaches effectively decreased the widespread light rain rate bias shown 

in these CPs while allowing for more realistic intense rain rates to be produced. In a separate 

study, a low-resolution parameterization based ensemble was compared with an equivalently 

sized ensemble comprised of GEFS members. Although the parameterization ensemble members 

perform worse than the GEFS members at predicting the atmosphere five days in advance, upon 

ensemble optimization it was found that the parameterization ensemble produced forecasts with 

roughly the same error characteristics as an optimized GEFS ensemble. It was shown that this 

extra improvement was possible due to the inherent correlation of biases among the 

parameterization ensemble members from one forecast to the next, which provided this ensemble 

additional information upon optimization that the GEFS ensemble was lacking. 
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Overarching Conclusions 

 As described in the introductory chapter (Chapter 1) most extant research into the 

development, testing, and behavior of parameterizations has been focused on short-term (less 

than 48 hours) periods. The work performed within this dissertation specifically avoided this 

research model, and the results shown certainly indicate the importance of examining 

parameterizations at extended forecast lengths for a variety of scales and situations. For example, 

it was shown that rainfall CDFs produced by the three CPs studied are not stationary with respect 

to forecast time until about hour 48, which was largely due to their slow modification of the 

simulated atmosphere which acted to alter the likelihood of forecast rainfall distributions. 

Similarly, research presented in a prior Master’s thesis and continued here demonstrated that 

when forecasting tropical cyclones, significant track, intensity, structural, and genesis differences 

among different parameterizations became increasingly apparent after forecast hour 48 (at the 

resolutions analyzed here). 

 While this dissertation did not set out to explore this, it should be noted that occasionally 

a consequence of parameterization-based research is the creation of de facto “what if” case 

studies. The analysis presented in Chapter 3 is a good example of this possibility – the 

unintentional defects within the EF MP allowed for a “what if the potential vorticity within a 

cyclone were distributed differently?” scenario to be examined. Although the analysis presented 

is not a comprehensive study of potential vorticity distributions, it does suggest the utility in 

additional research into this area. Chapter 2 detailed a similar unintentional “what if” – “what if 

the amount of tropical convection were increased, but its intensity were decreased?” Again, the 

answer to this question was not necessarily sought within this dissertation, but it does imply that 

this may be an interesting avenue of research. Both of these questions were asked as a result of 
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parameterization research, yet the questions themselves could be more thoroughly examined 

independently of parameterization research in a future study.  

Future Directions 

 A significant fraction of this dissertation has detailed the various deficiencies within the 

GD and G3 CPs. This might give the impression that it is the author’s opinion that these CPs are 

destined to be inferior to other CPs. This is not the case. The ensembling technique these CPs 

employ, while detrimental to forecasts currently, provide an avenue for potential significant 

improvement. The motivation for their creation – recognition that no single parameterization 

approach was superior in all situations combined with a desire to incorporate multiple techniques 

is still a worthwhile endeavor. While this thesis provides a variety of reasons as to why the 

current implementation of this concept is not ideal, it does not imply future efforts at 

improvement would not be valuable. Grell and Dévényi (2002) studied one possible technique to 

improve their parameterization, and this dissertation briefly examined an additional technique. A 

future attempt to implement these strategies could provide favorable results. 

 The scope of the precipitation reassignment technique discussed in Chapter 4 could also 

be greatly expanded. For example, instead of correcting precipitation in the forecasts used here 

with TRMM precipitation data, one could develop a more comprehensive database of observed 

precipitation from rain gauges (for example, over the continental United States) and use that to 

correct precipitation forecasts from global models such as the GFS. A similar approach has been 

used within a very narrow context thus far, primarily in order to drive hydrologic or agricultural 

models. Hwang et al. (2011) used a CDF mapping approach for stations around Tampa Bay, FL 

using a combination of MM5 forecasts and rain gauge observations. Their technique further 



 151 

differs from those presented here by virtue of the fact the model data they used was specific to 

immediate Tampa Bay vicinity, while Chapter 4 used the entirety of output model precipitation. 

Although they did not use model data, Tobin and Bennett (2010) used statistical 

techniques to correct overland TRMM precipitation data based upon ground observations. Both 

of these studies found substantial benefits to the use of their techniques, which also suggests 

continued research within this realm of applications could be useful. A similar application aimed 

to benefit forecasters would be to not output corrected model precipitation, but to instead output 

forecast rainfall percentile. For an ensemble such as the GEFS (comprised of 21 members) a 

significant amount of precipitation data is generated. It could be reasonably easy to gather the 

considerable precipitation data generated from the 21-member GFS ensemble for a region, 

construct a rainfall CDF for a given forecasting interval, and produce forecasting plots indicating 

the percentile of precipitation. One potential problem with this approach is that frequent updates
8
 

to the GFS model make comparing or combining statistics from one implementation to another 

problematic. However, with the recent creation of the GFS reforecast
9
 dataset (which includes a 

sufficiently large amount of raw data to generate statistics), some limited implementations of 

similar statistical corrections have begun to be attempted. Given the earlier documented 

problems with model precipitation within this dissertation and among other studies (Brown et al., 

2012), this may be a more useful product for forecasters than raw precipitation output.  

 Finally, a considerable portion of this thesis has detailed relative biases attributable to 

choice of parameterization scheme on time-scales beyond 48 hours. Chapter 4 also demonstrated 

that these biases could aid forecasting when properly utilized. This combination naturally lends 

itself to expanded research in this area of understanding how to properly utilize parameterization 

                                                 
8A list of recent changes can be found at: http://www.emc.ncep.noaa.gov/GFS/impl.php 
9A description of this dataset can be found at: 

http://www.esrl.noaa.gov/psd/forecasts/reforecast2/README.GEFS_Reforecast2.pdf 

http://www.emc.ncep.noaa.gov/GFS/impl.php
http://www.esrl.noaa.gov/psd/forecasts/reforecast2/README.GEFS_Reforecast2.pdf
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biases. The Short-Range Ensemble Forecasting (SREF) System already does this for certain 

variables (Yuan et al., 2007), but a statistical correction of parameterization ensembles could 

expand to object-based forecasting, such as TC genesis, track, or intensity. For example, Chapter 

3 demonstrated that different CPs produce TCs of different intensities, structures, and tracks. 

However, none of the forecasted behavior was clearly atypical of TC behavior. Likewise, an 

examination of TC genesis during the 2009 North Atlantic Hurricane season showed significant 

differences in TC structure at genesis, as well as frequency and location of genesis. Again, none 

of the forecasted behavior was clearly atypical of TC behavior.  

A combination of a significant amount of data and an understanding of the tendencies 

among different parameterizations could provide an opportunity to develop a useful 

parameterization-based ensemble forecasting system. Some work has already been done on the 

optimal combination of forecast tracks (Goerss, 2007). Additionally, the Hurricane Forecast 

Improvement Project (HFIP) is a wide-ranging, coordinated effort to improve TC forecasting. Of 

particular focus within HFIP is on extended forecast lengths (up to 7 days lead time) and 

improvement upon rapid intensity change (Gall et al., 2013). This is a noble undertaking, but a 

parallel endeavor, or one working within the HFIP framework may be appropriate for a few 

reasons. First, three of the four global models in HFIP use an identical combination of 

parameterizations and grid spacings. When regional models are included, six of the eleven 

models use the Arakawa-Schubert CP and Ferrier MP combination (the remaining CP choices 

are two KF CP, two Emmanuel CP, and one GD CP). This lack of diversity among model 

physics may pose a significant challenge toward achieving a realistic diversity of forecasts, and 

thus potentially limit the scope of further forecast understanding. Second, a primary focus of 

HFIP is to use very high-resolution models in order to successfully predict inner-core dynamics 
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as well as rapid intensification. The high computational cost of doing this in real-time greatly 

limits the number of forecasts one is able to generate (and thus decrease ensemble size), while 

also necessitating the distribution of their creation across the world.  

Given the above two constraints, there may be great utility in a large parameterization 

ensemble of moderate resolution to aid in the goal of hurricane forecast improvement. There is 

already some evidence for the usefulness of this approach. Figure 5.1 shows 84 hour forecasts of 

10 m wind (kt) for a prototype version of the earlier described 2009 real-time ensemble, 

initialized 1800 UTC 26 May 2008. This ensemble used a slightly different domain, and slightly 

different parameterization combinations. At the time of this initialization, there was great 

uncertainty regarding the potential genesis of a tropical cyclone in either the Eastern Pacific 

Ocean or western Caribbean. As detailed by Jeff Masters
10

 at the time: “It is uncertain which 

ocean basin such a storm might form in … the GFS, NOGAPS, and Canadian models all predict 

a tropical depression might form in the Western Caribbean near Mexico's Yucatan Peninsula. In 

contrast, the UKMET shows development in the Eastern Pacific.” Figure 5.1 shows that several 

ensemble members (the KF CP members (Fig. 5.1a,d,g) and to a lesser extent the GD CP (Fig. 

5.1b,f,i) members) predict genesis in the Eastern Pacific, while several predict genesis in the 

northwest Caribbean (the BMJ CP members (Fig. 5.1b,e,h)). This distribution effectively 

duplicates the forecast distribution found in the available global models. Since the genesis 

location was differentiated by choice of CP, it is not inherently obvious that the models with 

identical parameterizations used in HFIP would be capable of producing such an appropriate 

diversity of forecasts. Incidentally, Tropical Storm Alma formed in the Eastern Pacific on 29 

                                                 
10 http://www.wunderground.com/blog/JeffMasters/comment.html?entrynum=947&tstamp=200805 

 



 

 

Figure 5.1 84 hour forecast 10 m wind (kt) is shown for nine parameterization ensemble 

members initialized 1800 UTC 26 May 2008. 
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May, eventually crossed Central America, while Tropical Storm Arthur formed near the Belize 

coastline on 30 May, so in a sense both genesis possibilities were correct.  

A more recent example can be seen in Figure 5.2, which depicts nine 144 hour sea level 

pressure forecasts of Hurricane Sandy (2012) from an ensemble of members differentiated by 

choice of CP (all other parameterizations are held constant) initialized 1200 UTC 23 October 

2012 using the GFS for initial and boundary conditions. The domain and grid is identical to the 

90 km real-time outer domain described in previous chapters. Although a wide variety of 

potential solutions exists, it is clear that a significant fraction of the ensemble members predict 

the location and intensity of Sandy on day six very accurately relative to what occurred (in 

actuality Sandy made landfall in New Jersey approximately at the time these forecasts were 

valid). The range of forecasts shown here effectively reproduces the observed spread of forecasts 

in operational models at the time, as models such as the ECMWF consistently predicted a Mid-

Atlantic landfall while the GFS consistently (at this time) forecast Sandy to recurve out to sea. 

Incidentally, the fact that this distribution is possible among forecasts using initial conditions 

from a model which produced a recurving track means that this result was not a product of the 

initial conditions. Rather, as shown by the ensemble member using the GFS version of the 

Arakawa-Schubert CP (Fig 5.2i), the forecast track produced by the official GFS model at that 

time was likely much more related to its choice of model physics given that that track is 

reproduced here in a different model when that CP is used. This may have potential implications 

for HFIP research, as it was earlier mentioned that a significant fraction of their models use a 

version of this parameterization. 
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Figure 5.2 144 hour forecast sea level pressure is shown for nine parameterization ensemble 

members initialized 1200 UTC 23 October 2012. 
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Several examples of a parameterization ensemble replicating observed trends in 

operational forecast models has been presented at the 14
th

 Cyclone Workshop in 2008
11

 as well 

as at a Unidata User's Meeting in 2012
12

. Although this has not been comprehensively analyzed 

to the extent where inclusion in this dissertation is appropriate, the accumulation of evidence 

certainly suggests that a great utility exists in parameterization-based ensembles, as shown by the 

previous two examples. 

                                                 
11 Presentation viewable at: http://aurora.aos.wisc.edu/~bassill/2008-Cyclone%20Workshop.ppt 
12 Poster viewable at: http://aurora.aos.wisc.edu/~bassill/2012%20-%20Unidata%20Workshop.ppt 
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