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ABSTRACT 
 

Cloud radiative feedbacks continue to be a primary source of uncertainty with respect 

to climate sensitivity in global climate models. This is often attributed to how clouds, their 

microphysical properties, and radiative processes are represented in these models. Much of 

the variability is caused by simplifications to the in-cloud microphysical properties and cloud 

morphology, and treatment of these properties as homogeneous. Satellite datasets provide 

daily measurements of cloud cover and their properties, which often can serve as model 

validation. This research seeks to investigate the 3D cloud radiative effects for both internal 

and external heterogeneity over the ocean through the use of MODIS Aqua and Terra 

satellites for a 10-year record. Internal heterogeneity is addressed through the use of a 

method that derives horizontal distributions of in-cloud properties while conserving the 

observed visible reflectance. This method corrects the horizontal distributions of cloud 

properties for possible filtered pixels from satellite algorithms. Sensitivities to the method are 

examined with respect to spatial and temporal variables as well as their relationship to areas 

with significant 3D cloud effects.  A small satellite inter-comparison is also performed using 

PATMOS-x datasets using the method. External heterogeneity is addressed through the use 

of a metric to spatially identify heterogeneous scenes and use of the I3RC Monte Carlo 

radiative transfer model for one year. The I3RC model simulations compare the plane 

parallel assumption with the full 3D Monte Carlo as well as a comparison including the cloud 

property correction using the method described above. Future work to expand the model 

simulations and quantify the 3D effects is also discussed. 
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1. Introduction 
 
1.1 Importance of Clouds and Remote Sensing for GCMs 
 

Cloud feedbacks still remain a major source of uncertainty for climate sensitivity in 

general circulation models (GCM). One of the leading sources of this uncertainty is 

variability in solar radiation from changes in low-level marine cloud processes, which 

include shallow cumulus and stratocumulus topped boundary layer clouds (Webb et al. 

2013).  These types of clouds cover a vast amount of the Earth’s oceans giving them an 

important role in regulating the Earth’s energy budget, especially with respect to incident 

solar radiation. Approximately 30% of incoming solar radiation is reflected back to space 

from these clouds, which causes an overall net cooling effect at the surface. Studies have 

found that the variability of the solar radiative field in GCMs can be attributed to poor 

simulation of clouds including the neglect of the sub grid scale processes and cloud 

morphology, which encompass 3D radiative cloud effects (Cahalan et al. 1994a; Pincus and 

Klein 2000; Larson et al. 2001; Barker et al. 2003).  

Satellite observations have been increasingly incorporated into 3D cloud effect 

studies since they more accurately portray daily cloud scenes and provide global data from 

multiple instruments.  Satellite observations are used to identify cloud microphysical 

properties as well as providing a relationship between clouds and their radiative properties.  

Satellite instruments provide the only record of long-term global cloud observations that can 

provide validation for models. Satellite retrieval algorithms also refer to 1D radiative transfer 

for solving the inverse problem of satellite remote sensing. This can cause errors in retrieving 

optical thickness, an important cloud property often needed to derive other properties such as 

liquid water path depending on the instrument used. For this work, the Moderate Resolution 
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Imaging Spectroradiometer (MODIS) instrument is an imager that relies on optical depth 

retrievals and particle size to calculate LWP.  

1.2 Biases from 1D Radiative Transfer 

Many studies seek to quantify the magnitude of the bias in GCMs caused by the 

treatment of clouds as homogeneous. There are several variations in these results given the 

types of models used, specific regions chosen, individual cloud scenes selected, and time 

span of the study. These studies typically address either the effects of the in-cloud 

distributions of properties or the external cloud morphology. The bias caused from the 

neglect of in-cloud microphysical properties is referred to as the plane parallel albedo bias. 

The plane parallel albedo bias is calculated from the difference between the independent 

column approximation (ICA) and the standard 1D plane parallel calculations (Cahalan et al. 

1994a). The ICA calculation consists of dividing a given grid box into several vertical 

columns and calculating the individual cloud properties for each smaller grid box.  This 

approximation accounts for what shall be referred to as internal cloud heterogeneity.  A 

variety of studies have been conducted to quantify the effects of the plane parallel albedo 

bias within models (Cahalan et al. 1994b; Marshak et al. 1998; Barker et al. 1999; 

Oreopoulos et al. 2004; Räisänen et al. 2004; Barker and Räisänen 2005). The results of the 

impacts of the plane parallel albedo bias vary from each study given the use of different types 

of cloud generating models such as a LES or a cloud-resolving model (CRM) with differing 

types of cloud scenes. Studies have also been conducted examining this bias with satellite 

data (Barker et al. 1996; Oreopoulos and Davies 1998; Pincus et al. 1999; Fu et al. 2000; 

Barker et al. 2003; Giuseppe and Tompkins 2003, 2005; Oreopoulos et al. 2007). Most 

importantly to this work, certain studies looked at the plane parallel bias for stratocumulus 
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clouds, which are the most homogeneous and closely resemble a plane parallel assumption. 

The results showed that even stratocumulus clouds are affected by this bias.  In spite of the 

varying results, the studies all agreed that the plane parallel albedo bias does affect the 

radiative transfer, but in differing magnitudes and signs.  

While the ICA method is able to capture the bias caused by the neglect of in-cloud 

properties, it does not account for horizontal photon transport between grid boxes. This bias 

can be referred to as the ICA bias(Cahalan et al. 1994a). In order to quantify the bias caused 

by the neglect of horizontal photon flow, the ICA bias can be described as the difference 

between a full 3D radiative transfer simulation and the ICA calculations. This bias accounts 

for the neglect of cloud morphology, which includes cloud shapes, cloud size, number of 

clouds, and distributions of clouds within a grid box. These variations of cloud field 

morphology are known as external cloud heterogeneity.  Studies that examine external cloud 

heterogeneity have focused on the effects of cloud morphology on both heterogeneous and 

homogeneous clouds, cloud shadowing, enhanced illumination, horizontal photon flow, and 

the dependence on viewing geometry (Kobayashi 1989; Barker and Davies 1992; Zuev and 

Titov 1995; Marshak et al. 1998; Genkova and Davies 2003; O’Hirok and Gautier 2005; 

Liang et al. 2009; Girolamo et al. 2010). In connection to satellite measurements, studies 

have also aimed to spatially detect the difference between homogeneous and heterogeneous 

clouds as well as the effects of the viewing geometry (Kobayashi, 1993; Loeb and Davies, 

1996; Loeb and Coakley, 1998) .  

1.3 Challenges of Modeling Clouds in GCMs 

Given that the horizontal resolution of commonly used GCMs ranges from 100-200 

km, the variability of in-cloud properties must be parameterized to fit the much larger grid 
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box (IPCC, 2013).  Studies using large eddy simulations (LES) of marine boundary layer 

clouds have shown that cloud properties such as cloud liquid water path (LWP) are sensitive 

to changes at horizontal resolutions of 100 m (Siebesma et al. 2003; Stevens et al. 2005). The 

microphysical properties of clouds remain an important part of research since certain aspects 

of cloud microphysical processes are still poorly understood. With respect to using GCMs for 

climate projections, a misrepresentation of cloud microphysical properties can lead to errors 

in atmospheric heating rates, cloud formation and dissipation, and precipitation rates. The 

larger grid boxes also neglect the spatial heterogeneity of cloud and atmospheric properties. 

In order to obtain computationally efficient global model runs, some GCMs will 

simplify the radiative transfer to one vertical dimension, giving clouds and their boundary 

conditions a 1D plane parallel assumption. Using this assumption, cloud properties and 

atmospheric conditions are often based on mean values within the grid box. Parameterization 

and simplifications are used to estimate domain-averaged fluxes of 1D solar radiative 

transfer.  Typically there are also separate parameterizations for liquid and ice clouds. 

Parameterizations have also been developed to account for vertical distributions of clouds 

based on various cloud overlap schemes, though active sensors have shown that certain 

assumptions in GCMs may over predict the overlap amount in subtropical ocean regions and 

land at high latitudes (Naud et al. 2008; Mace et al. 2009). The algorithms used to compute 

the radiative transfer of clouds is unrealistic given the clouds are assumed homogeneous and 

plane parallel while horizontal fluctuations between grid boxes are ignored. Advances in 

liquid water cloud representation incorporate model prediction of mass and number mixing 

ratio (Morrison and Gettelman 2008; Salzmann et al. 2010). Some models have developed 

methods to calculate microphysical processes while using subgrid cloud water variability 
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(Morrison and Gettelman 2008). While there has been progress to better parameterize the 

subgrid scale processes, this is still a continuing weakness in most GCMs causing biases due 

to misrepresenting the in-cloud microphysical properties and external shapes of cloud 

morphology.  

1.4 Satellite Biases from 1D Radiative Transfer 

Many recent satellite studies have explored the biases of using 1D radiative transfer 

to derive cloud microphysical properties on various cloud scenes (Horváth and Davies 2004; 

Kato et al. 2006; Kato and Marshak 2009; Girolamo et al. 2010; Ham et al. 2014). The 

effects of viewing geometry often the primary subject for these retrieval biases. As solar 

zenith angle increases, cloud optical depth measurements also tend to increase in research 

using the Earth Radiation Budget Satellite (ERBS) and MODIS instrument(Loeb and 

Coakley, 1998; Grosvenor and Wood, 2014) . For sensor zenith angle, MODIS cloud optical 

depth showed decreases the further the angle was from nadir (Várnai and Marshak 2007; 

Maddux et al. 2010). Satellite derived cloud effective radius has shown an opposite effect 

where an increasing sensor zenith angle is associated with increasing cloud effective radius 

(Maddux et al. 2010; Horváth et al. 2014). The study, Horvath et al. (2014) has considered 

whether the 3D effects can partially cancel each other out with respect to the liquid water 

path values, which are calculated from cloud effective radius and cloud optical depth. There 

are a variety of different results for each satellite instrument that derives cloud properties.   

Distributions of satellite derived cloud properties can also be skewed depending on 

how an instrument decides what pixels are considered quality retrieval. MODIS uses a cloud 

mask to determine which pixels are considered cloudy (Ackerman et al., 1998; Ackerman et 

al. 2010). From this, an algorithm called the Clear Sky Restoral (CSR) algorithm performs a 
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series of quality checks to determine whether cloud property retrieval will be made for a 

specific pixel(King et al. 2006). Although the CSR algorithm does provide a filter for pixels 

that would be poor candidates for retrievals, there is room for error to filter pixels that are 

difficult to identify as clear or cloudy, which can affect the distributions of cloud properties. 

A method from Foster et al. (2011) that will be used later creates horizontal distributions of 

cloud properties while conserving the measured visible reflectance. 

1.5 Study Objective 

This study seeks to identify the 3D effects of both internal and external heterogeneity 

throughout the MODIS dataset. To examine internal heterogeneity, the method from Foster et 

al. (2011) is applied to generate horizontal distributions of liquid water path from visible 

reflectance measurements to compensate for pixel filtering. The effectiveness of the method 

is analyzed in comparison to using the MODIS retrieved cloud properties. Sensitivities to the 

method are explored with reference to viewing geometry, cloud spatial heterogeneity, and 

cloud amount. The method is also applied to a different satellite and processing algorithm. 

For external heterogeneity, a spatial heterogeneity index is applied to define the magnitude of 

heterogeneity (Liang et al. 2009).   The study of external heterogeneity also includes full 3D 

Monte Carlo radiative transfer simulation for one year over an ocean region in the North 

Pacific to examine radiative differences between using a 1D plane parallel simulation and 3D 

Monte Carlo simulation.  Additionally, the 3D Monte Carlo simulations apply the Foster et 

al. (2011) method to investigate radiative differences that can possibly occur from pixel 

filtering.  
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2. Data and Methodology 

2.1 Introduction 

In order to identify the different biases that arise from 3D radiative cloud effects, a 

few different metrics are applied. This study focuses primarily on using data from MODIS 

along with Pathfinder Atmospheres-Extended (PATMOS-X) processed data from the 

Advanced Very High Resolution Radiometer (AVHRR) instrument for comparison. To 

account for internal inhomogeneity, a method published by Foster et al. (2011) generates 

horizontal distributions of cloud microphysical properties over a grid box while conserving 

the scene visible reflectance. Other methods have explored using the statistical moments of 

cloud properties from satellite data to create probability distribution functions (PDF) to input 

into GCMs, but this can cause skewed distributions from pixel filtering. The goal of the 

method from Foster et al. (2011) is to create more accurate distributions of liquid water path 

throughout a grid cell that include potentially filtered pixels. This method will be referred to 

as the “fit method,” where as the PDFs generated from the retrieved satellite data will be 

referred to as the “mask method.”  

With respect to external inhomogeneity, a metric that identifies homogeneous cloud 

fields (Liang et al. 2009), will be used as well as the International Comparison of 3-

Dimensional Radiative Transfer Codes (I3RC) Monte Carlo model. The MODIS data is also 

fitted to 3D Monte Carlo model using a combination of the 1-km products. Both the fit and 

the mask method are applied to create input for the I3RC Monte Carlo Model to examine the 

radiative differences caused by pixel filtering along with comparison to a 1D plane parallel 

simulations. 
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2.2 MODIS 

The MODIS instrument is located on the polar orbiting satellites, Aqua and Terra, 

which are a part of the NASA Earth Observing System mission.  Terra has an orbit from 

north to south with an equatorial pass time in the morning where as Aqua has an orbit that 

passed from south to north with an afternoon equatorial pass time. Both satellites are able to 

obtain full data of the Earth’s surface in 1-2 days.  MODIS has 36 spectral bands ranging 

from 0.4 to 14.4 microns with spatial resolutions varying from 250 m to 1 km depending on 

the band used.  All products used are from Collection 6. 

2.2.1 Cloud Product (MY/OD06_L2) 

The MODIS cloud product combines both visible and infrared radiances to solve for 

radiative and physical cloud properties. Used in this study, cloud optical thickness, cloud 

water path, effective radius, and cloud particle phase are derived from the visible, near-

infrared, and shortwave infrared bands. Cloud top temperature and pressure are retrieved 

from the infrared bands (King et al. 1998).  

2.2.2 Cloud Mask Product (MY/OD35_L2) 

The MODIS Cloud Mask product uses an algorithm that employs a series of tests 

with visible and infrared thresholds (Ackerman et al. 1998; Ackerman et al. 2010). From this, 

confidence levels are assigned to each pixel with the broadest categories specifying confident 

clear, probably clear, probably cloudy, and cloudy. For this study, the cloud mask is used to 

determine which pixels are cloudy and determine cloud fraction over a larger area. 

2.2.3 Calibrated Radiances (MY/OD021KM) 
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This product contains Level 1B calibrated and geolocated radiances for all 36 bands 

at 1 km. For this study, the visible reflectance channel (channel 1) measures from 0.62 to 

0.67 microns. 

2.2.4 Atmospheric Profile Product (MY/OD07_L2) 

The atmospheric profile product is used to supply a profile of temperature and height 

for the 3D radiative transfer model. These profiles are produced at a 5 x 5 km resolution 

when at least 9 of the pixels are identified as cloud free. The temperature and height profiles 

are derived at 20 vertical levels using a clear sky synthetic regression retrieval algorithm.  

2.2.5 Collection 6 Clear Sky Restoral 

The clear sky restoral algorithm identifies which pixels are cloudy to retrieve optical 

and microphysical properties of clouds. The MODIS cloud mask product has certain pixels 

that are classified as probably cloudy and probably clear. The clear sky restoral algorithm 

identifies from those unclear pixels whether or not the pixel would be a poor retrieval 

candidate.  If the algorithm finds the pixel to be a poor candidate, the pixel would be 

considered clear sky and no retrieval of optical or microphysical properties would be made. 

(King et al. 2006) 

2.2.6 Geolocation Product (MY/OD03) 

 The geolocation product provides corresponding latitude and longitude coordinates 

for the 1 km data sources. It also provides solar and sensor zenith angles and solar and sensor 

azimuth angles for each 1 km grid cell. 

2.3 PATMOS-x 

The PATMOS-x dataset contains atmospheric and surface products from the AVHRR 

instrument. The AVHRR instrument has been aboard NOAA meteorological satellites since 
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1979. The instrument has 5 channels that range from solar to terrestrial infrared. Unlike 

MODIS, the visible reflectance channel has a larger span from 0.58-0.68 microns with a 

spatial resolution close to 1 km. The visible and near infrared channels are used to retrieve 

cloud optical depth and cloud effective radius. The infrared channel is used to retrieve cloud 

top temperature.  The product also includes cloud mask and cloud phase. (Heidinger et al. 

2014) 

2.4 Horizontal Distributions of Cloud Properties conserving Scene Visible Reflectance 

This method uses MODIS satellite measurements to calculate liquid cloud properties 

over partially cloudy scenes while conserving the total scene reflectance (Foster et al. 2011). 

Many times retrievals of cloud optical depth and effective radius are not attempted because 

of CSR identifying pixels as poor candidates for retrieval. Pixels often considered as poor 

candidates are dust and smoke particles, partially cloudy pixels, and sun glint. For some, 

cloud mask algorithm will still identify the pixel as cloudy, but they are given a missing 

value for their cloud property retrievals.  In some cases due to the CSR, optically thin clouds 

or cloud edges are considered missing retrievals, which affects the distribution of the cloud 

microphysical properties. 

The ocean from 60 degree N to 60 degree S is studied using MODIS data. The 

regions are then separated into 1 x 1 degree boxes, which are sampled at approximately 0.1-

degree intervals. Ice clouds are also filtered out. The ocean regions are chosen because the 

surface emissivity of the ocean varies less than the surface emissivity over land. Many of the 

equations for the fit method rely on relationships with reflectivity values that are sensitive to 

variations of the surface albedo. Horizontal distributions of liquid water path will be 
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generated using the successful retrievals from MODIS (mask method) and derived 

distributions using a fit function between optical depth and visible reflectance (fit method).  

2.4.1 Mask Method 
 
 The mask method refers to using only the successful cloud property retrievals made 

by the MODIS algorithms.  

2.4.1.1 Liquid Water Path Calculation 

The mask method obtains its cloudy pixels from the cloud mask. Only pixels that 

have cloud optical depth and near-cloud-top effective radius retrievals are used in order to 

calculate liquid water path. Equation 1 calculates liquid water path (Wood and Hartmann 

2006). The density of liquid water is considered constant. 

𝑊 =
5
9 𝜏𝜌!𝑟!""              (1) 

2.4.1.2 Cloud Fraction Calculation 

Cloud fraction is calculated from the cloud mask that indicates which pixels are 

defined as clouds. A ratio is formed for the number of pixels defined as clear divided by the 

total number of pixels within the 1 x 1 degree box. Subtracting this ratio from 1 will give the 

cloud fraction for the mask method. 

2.4.2 Fit Method 

 The fit method refers to the methodology published in Foster et al. (2011) that aims to 

include the neglected optical retrievals from thin clouds and cloud edge pixel.  The horizontal 

distributions are generated with respect to liquid water path, which is one of the main input 

variables for the 3D Monte Carlo radiative transfer model. This methodology can also be 
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used to create horizontal distributions of other cloud properties such as cloud optical depth 

and cloud effective radius. However, the focus of this study is strictly on liquid water path. 

2.4.2.1 Liquid Water Path Calculation 

Different from the mask method, the fit method calculates liquid water path based on 

a relationship between cloud optical depth and visible reflectance. From the cloud optical 

depth retrievals from MODIS, the relationship between the visible reflectance (Rvis) and 

retrieved optical depth (τret) can be seen as the following, where a and b are coefficients that 

account for directional dependence from solar zenith angle, single-scattering albedo, and 

asymmetry parameters (e.g. Petty, 2006; Koren et al., 2008) :  

𝑅!"# =  
𝑎𝜏!"#

1+ 𝑏𝜏!"#
               (2) 

The left hand side of the equation is then expanded to include a geometric series for 

multiple scattering effects between the cloud and surface following a derivation from Koren 

et al. (2008):  

𝑅!"# =  𝑅!"# +  
𝑐(1− 𝑅!"#)!

1− 𝑐𝑅!"#
               (3) 

The coefficients can be solved for by inserting the values of the cloud optical depth 

retrievals and observed visible reflectance into the equations listed above. Once the 

coefficients have values, the equation can be solved with respect to cloud optical depth. The 

observed visible reflectance for every pixel can be inserted into the equation to solve for 

cloud optical depth values for the entire sky.  

A different equation must be used to solve for liquid water path other than Equation 1 

because there are not effective radius values for each calculated cloud optical depth value. 

Using a method from Bennartz (2007), liquid water path can be calculated using a drop 
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number concentration, condensation rate, and cloud optical depth.  Condensation rate is 

calculated from the following Equation 4, where !!!"#(!)
!"

!"
!"

 is the derivative of the saturation 

vapor pressure with respect to temperature and saturated adiabatic lapse rate for an 

adiabatically ascending parcel. 𝑅!!! is the gas constant for water vapor.    

𝑐! = 0.8
1

𝑅!!!𝑇
𝑑𝑒!"#(𝑇)
𝑑𝑇

𝑑𝑇
𝑑𝑧                (4) 

Equation 5 calculates droplet number concentration, where k is the ratio between the 

volume mean radius and the effective radius to the third power and Q is the extinction 

efficiency. CF denotes cloud fraction. Droplet number concentrations and condensation rate 

are averaged over the 1 x 1 degree box and considered constants when calculating the 

individual pixel liquid water path.  

𝑁 =  
2!! !
𝑘 𝜏!

𝑊
𝐶𝐹

!!
! 3
5𝑄𝜋

!! 3
4𝜋𝜌!

!!

𝑐!
!
!               (5) 

The droplet number concentration can be approximated as a mean and considered a 

constant due to the small size of the spatial domain.  The equation used to solve droplet 

number concentration can then be solved for liquid water path as seen in Equation 6. When 

using this equation to denote a single value of liquid water path, cloud fraction (CF) is 

assumed to be one.  

𝑊 =  
2!! !
𝑘

𝜏!"#!

𝑁
3
5𝑄𝜋

!! 3
4𝜋𝜌!

!!

𝑐!
!
!

!
!

               (6) 

2.4.2.2 Cloud Fraction Calculation 

At this point there is a liquid water path measurement for every observed visible 

reflectance point, meaning there are values for both clear sky and cloudy sky. In order to 
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have an accurate distribution of liquid water path over each individual 1x1 degree box, these 

must be differentiated to separate the clear sky from the cloudy portion of the sky. Assuming 

a Gaussian distribution of clear sky reflectance, the clear sky can be subtracted from the total 

sky reflectance distribution. The center of the clear sky distribution is defined as the median 

of the clear sky reflectance values determined by the cloud mask. Any reflectance values less 

than the median of the clear sky reflectance is considered clear sky. A symmetric distribution 

is generated for the clear sky.  The cloud fraction is solved using a ratio of the number of 

clear sky pixels from the symmetric distribution divided by the number of pixels in the total 

scene reflectance and subtracting from 1. Figure 1 shows an illustration of how clear sky is 

differentiated from cloudy sky over a scene. 

	

Figure 1. Illustration of distribution used to separate clear sky (white) from cloudy sky (gray) 
from Foster et al. (2011). 
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To create the distribution of liquid water path, the generated symmetric distribution of 

clear sky reflectance can be converted back to optical depth using the relationship of optical 

depth and visible reflectance established earlier in Equations 2 & 3.  The clear sky optical 

depth values can be subtracted from the total fit derived values of optical depth and the 

cloudy sky optical depth values can be converted to liquid water path as described in 

Equation 6 for a calculation of a distribution of cloudy sky liquid water path.  

2.4.3 PDFs of LWP 

  Once distributions of liquid water path are produced, the statistical moments of liquid 

water path are used to create probability distribution functions to identify the horizontal 

distribution and probability of occurrence for each 1 x 1 degree box. Both a gamma and 

Gaussian function can be applied for these distributions.  The gamma function is the 

following from Heidinger (2003) where 𝜈 is the width parameter: 

𝑃𝐷𝐹 𝑊 =  
1

Γ(𝜈)
𝜈
𝑊

!
𝑊!!!𝑒!

!"
!                (7) 

For the Gaussian function, a method is used in relating cloud geometric thickness to 

liquid water path in order to generate the probability distribution function (Considine et al. 

1997; Wood and Hartmann 2006). The relationship between geometric thickness and liquid 

water path is derived from Equation 8 (Bennartz 2007).  

𝑊 = 0.5𝑐!𝐻!               (8) 

First, the Gaussian distribution is generated as a function of geometric thickness. The 

probability density function of geometric thickness can then be converted into the probability 

density function of liquid water path from the relationship shown in Equation 9. 
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𝑃𝐷𝐹 𝑊 = 𝑃𝐷𝐹 𝐻
𝑑𝐻
𝑑𝑊 =

1
2𝑐!𝑊

𝑃𝐷𝐹 𝐻                (9) 

2.4.4 Total scene reflectance calculation   

The total scene reflectance for each 1 x 1 degree box can be calculated by using the 

cloud fraction, the mean reflectance of the cloudy portion and the mean reflectance of the 

clear portion (Equation 10). 

𝑅!"! = 𝐶𝐹 𝑅!"# + (1− 𝐶𝐹)(𝑅!"#)               (10) 

 The mean reflectance for the clear sky, 𝑅!"# , is the mean of the clear pixels defined 

by the cloud mask. The mean reflectance for the cloudy portion of the sky, 𝑅!"# , is 

determined by converting the probability density function of liquid water path into a 

probability density function of visible reflectance (Equation 11). This is done by taking the 

PDF of liquid water path and converting it back to a PDF of cloud optical depth, which was 

used earlier in Equation 6. The cloud optical depth distribution is converted back to 

reflectivity, and the mean of this distribution is used to solve the mean visible reflectance for 

the cloudy part of the sky. 

𝑅!"# =  𝑅!"#
!

!
𝑃𝐷𝐹 𝑊 𝑑𝑊               (11) 

Figure 2 shows a float chart describing the order of the steps and the equations used 

for both the mask and fit method to create horizontal distributions of liquid water path and 

derive the scene visible reflectance. 
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Figure 2. Float chart describing steps to calculate horizontal distributions of liquid water path 
and deriving visible reflectance for both the mask and the fit method. Modified from Foster et 
al. (2011) 

2.5 Inter-comparison of 3D Radiation Codes (I3RC) Radiative Transfer Model 

The I3RC radiative transfer model is a part of a project called the Inter-comparison of 

3D Radiative Codes that began in the late 1990s. The goals of this project are to compare 

methods of various 3D radiative transfer calculations, publishing open source community 3D 

Monte Carlo code, providing benchmark results for testing of 3D radiative transfer codes, 

and delivering resources on radiative transfer.  The model can be used to calculate radiances, 

radiative fluxes, and radiative heating rates for the top and the bottom of the specified 

domain within a cloudy atmosphere. With respect to this research, three main parts are used 
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to run the model, which include a scattering profile, creation of a domain of cloud properties, 

and a driver that performs Monte Carlo calculations (Pincus and Evans 2009).  

The scattering profile program uses Mie theory to create a phase function table as a 

function of effective radius for a distribution of spherical particles. The particles are either 

identified as water, ice or aerosols. For the purpose of applying the fit methodology to 3D 

radiative transfer, the only particles that will be included are water particles since ice clouds 

are screened out from the analysis. The scattering properties of the water particles are 

averaged over the wavelengths 620 nm-670 nm, which is the interval of Band 1 for MODIS. 

The distribution of particle size can be calculated as either a gamma or lognormal 

distribution. The program calculates the phase function table along with extinction and single 

scattering albedo of the particles. 

The cloud domain program reads in an ASCII file that has the properties of the clouds 

throughout the scene and formats the cloud input file along with the scattering profile to be 

used in the model. There are three different input files, which can be used in the model. All 

three input file types require the number of grid cells in each direction (x, y, z), the size of the 

grid cells, a height profile of the cell boundaries, and a temperature profile of the cell 

boundaries. The first input file type only requires the liquid water content (LWC) in each of 

the grid boxes. The second file type requires the LWC and effective radius. The third file 

type is for when using multiple types of particles, which requires a specification of particle 

type either as water, ice or aerosol, the mass content, and the effective radius. For this 

research, the first file type is currently being used to create input files. 

There are a few assumptions being made to format the satellite data into a 3-

dimensional scene for clouds. For the size of each grid box, one-kilometer MODIS data is 
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used. The height and temperature profiles are from the MODIS atmospheric profile product 

(MY/OD07_L2), which are retrieved for 20 vertical levels. From the MODIS cloud product 

(MY/OD06_L2), the cloud top height variable is used for identifying at which height the 

cloud top lies and is also used to calculate the height of the bottom of the cloud. The 

geometric thickness of the cloud is calculated by Equation 8 that uses liquid water path and a 

condensation rate (Equation 4), which is calculated from cloud top temperature (Bennartz 

2007).  

Cloud top temperature and cloud water path are also from the MODIS cloud product. 

The liquid water path is then distributed between the height levels it lies in and multiplied by 

distance between the height levels to give a LWC value.  In order to create applicable scenes 

to run through the model, thresholds are set to not include any ice clouds, use scenes that are 

at least 10% cloudy but no more than 90% cloudy, and contain no missing reflectance values.  

For the full 3D model scenes, a 10 x 10 km scene is created using the steps listed 

above for each 1 x 1 km grid box.  Two separate scenes are created using both the liquid 

water path values supplied by the fit and the mask method.  To create the 1D plane parallel 

scenes, one single grid box with spatial dimensions of 10 x 10 km is created using mean 

values of the LWC calculated by the fit and mask method as well as the other cloud 

parameters. The height and temperature profiles are a daily average over the specified ocean 

domain. 

The Monte Carlo program runs a Monte Carlo simulation that calculates for each 

domain the outgoing fluxes for the top and bottom of the specified height profiles, absorption 

within the domain, intensity at the top and bottom of the domain for specified directions, and 

heating rate profiles. Assumptions made by the model are monochromatic solar radiative 
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transfer, uniform optical properties in each grid box, lambertian surface reflection, and 

periodic horizontal boundary conditions. Parameters that are input for the Monte Carlo 

simulations are solar zenith angle, azimuthal direction of photons, surface albedo, and the 

amount of photons to be used. Intensities are computed with respect to the sensor zenith 

angle and sensor azimuth angle.  
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3. Internal Heterogeneity 

3.1 Introduction 

Using the fit and mask methods, horizontal distributions of liquid cloud properties are 

generated over the ocean from 60 degree north to 60 degree south during the years 2003-

2013. The validity of these distributions is assessed by how well the scene visible reflectance 

can be recreated. Sensitivities to the spatial and temporal variables such as geography, 

seasonality, cloudiness, scene heterogeneity, and viewing geometry are also explored. 

Internal heterogeneity is studied through using the horizontal distributions as well as its 

incorporation into the 3D modeling, which will be shown in the section 4. The fit and mask 

methodology will also be compared with the PATMOS-x processed AVHRR from NOAA-

18 satellites, which has a comparable overpass times to Aqua, respectively. Additionally, 

PATMOS-x processed MODIS Aqua will also be compared. 

3.2 Generation of Horizontal Distributions of Liquid Water Path 

 Horizontal distributions of LWP are generated for each 1 x 1 degree box as explained 

in section 2.4.3. Both a gamma and a Gaussian PDF were originally used to create these 

distributions. The initial results consistently showed that the Gaussian PDF was not able to 

recreate the scene visible reflectance as well as the gamma PDF, so the only the gamma PDF 

will be analyzed in this study.  

 Figure 3 shows scenes of different observed LWP distributions and their 

corresponding gamma PDF distribution for the fit and mask method using an array of 

different cloud fractions and mean LWPs. In general, the shape of the fit PDF agrees with the 

observed LWP distribution better than the mask generated PDF. There are a few instances 

where the observed LWP shows a smaller frequency of occurrence and the gamma-derived 



22	

distributions is skewed towards greater amount of LWP. The distributions with the largest 

cloud amounts (left column) tend to have a closer fit to their gamma-derived counterparts. 

The mask tends to do better when the observed distribution has a larger standard deviation. 

 

Figure 3. Relative frequency of occurrence for 1x1 degree distributions of liquid water path 
generated for an array of cloud fraction and liquid water path values for both the observed 
(solid gray) and the fit derived (dotted black) liquid water path distributions. 

3.3 Global Liquid Water Path Adjustments 

 The scene measured mean LWP for the mask method corresponds to the satellite 

retrieved LWP from the MODIS algorithms, which includes the CSR.  The global 

distribution of the mean LWP for all seasons show enhanced LWP along the ITCZ region in 

both the Pacific and Atlantic Oceans. There is seasonal increase of the mean LWP towards 

the north and south of the domain likely associated with midlatitude systems with highest 

LWP observed during each hemisphere’s winter (Figure 4). Slightly lower amounts of LWP 
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are observed in the marine stratocumulus region off the coasts of California, Peru, and 

Angola.  Aqua and Terra both show similar spatial patterns of the mean LWP, but the 

magnitude of the LWP for Aqua tends to be higher.  

	

Figure 4. Aqua (left) and Terra (right) seasonal mask method mean liquid water path for 1x1 
degree scenes measured in g/m2 

The fit method adjusts the mean LWP to account for potential pixels that do not have 

optical depth retrievals. This helps incorporate the optically thin or cloud edge pixels. As 

described previously in the methods section, the scene LWP is determined from a fit function 

between the observed visible reflectance and the retrieved cloud optical depth. The 
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application of the fit method lessens the total scene mean LWP (Figure 5). The highest values 

of the mean LWP are still observed in the ITCZ region, which remains constant throughout 

all the seasons. The southern hemisphere shows an increase of liquid water path from March 

to August with its peak occurring in the boreal summer months (June to August).  The 

marine stratocumulus regions are visibly more apparent in comparison to the mask method. 

Similar to the mask method, Aqua tends to have overall higher values of the mean LWP than 

Terra. 

	

Figure 5. Aqua (left) and Terra (right) seasonal fit method mean liquid water path for 1x1 
degree scenes measured in g/m2 
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 To better analyze the changes in the mean LWP, Figure 6 shows the mean LWP 

adjustment as a percentage change between the mask and the fit methodology. The region 

that experiences the largest adjustment is the ITCZ region, particularly in the areas where 

precipitation most often occurs.  Through September to October, the northern hemisphere has 

the largest mean LWP adjustment with some reaching a 45% difference.  The opposite 

occurs from March to August with the southern hemisphere exhibiting the largest adjustment. 

The least amount of change is experienced within the marine stratocumulus regions, which 

would be expected due to the more homogeneous nature of these clouds. Since the 

stratocumulus clouds are more uniform in shape and structure, fewer missing edge pixels and 

optically thin cloud are observed in scenes that contain them. The fit method adjusts the 

mean LWP values to lower than the mask method because the edge pixels and optically thin 

clouds are more likely associated with low LWP values.  

 Aqua shows an overall larger adjustment of LWP in comparison to Terra. This could 

possibly be linked to the cloud amounts present during the satellite overpass time. A study 

from King et al. (2013) that looked at the spatial and temporal distributions of clouds 

observed by both Aqua and Terra showed that the oceans tend to be cloudier during Terra’s 

earlier overpass. With cloudier scenes, it is likely that there are less edge pixels or optically 

thin clouds to restore. With more cloud pixels detected, the fit method is likely to create a 

better fit function between the observed visible reflectance and retrieval optical depth 

measurements.  
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Figure 6. Aqua (left) and Terra (right) seasonal liquid water path percentage adjustment 
between the mask and fit method 

3.4 Assessment of Mask and Fit methods    

The ability to reconstruct the scene visible reflectance relates to the relationship 

between cloud optical properties and radiances in models. Often a model is evaluated based 

on how well the top of the atmosphere or surface radiances correspond to the observed 

reflectance from satellite data. Biases in the distribution of cloud properties will affect the 

model’s capacity to reproduce the observed data. Therefore, the mask and fit method are 

assessed by the capacity to recreate the observed visible reflectance. 
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The mask method over the global ocean region from 2003 to 2013 from MODIS 

Aqua and Terra show an overall positive bias, indicating that the mask overestimates the 

visible reflectance (Figure 7). Spatially, Aqua and Terra show the same patterns with little 

deviation in the magnitude of the biases. Also, the magnitude of the bias adheres to a 

seasonal cycle. From December to February, the southern hemisphere summer shows a 

greater bias than the northern hemisphere, where as from June to August the northern 

hemisphere summer shows a greater bias than the southern hemisphere. March to May and 

September to October show the transition of the shift of the positive bias between the 

northern and southern hemisphere. Both instruments show a consistent overestimation of the 

derived visible reflectance. 
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Figure 7. Seasonal difference between mask derived reflectance and observed reflectance for 
Aqua (left) and Terra (right) 

When the fit method is applied globally over the oceans, the magnitude in the bias 

becomes significantly smaller for both Aqua and Terra in comparison to the mask method 

(Figure 8). The fit method shows spatially areas where there are both overestimations and 

underestimations. Generally, the seasonal cycle is no longer easily visible from using the fit 

calculations. Spatially, the fit method tends to underestimate the observed visible reflectance 

with much of the overestimation taking place over the tropics. Both satellites do show the 

regions of overestimation in the tropics, but the fit method shows noticeable differences 
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between both Aqua and Terra.  At some points, Terra is slightly skewed towards the side of 

overestimation the observed visible reflectance, whereas Aqua tends to be marginally on the 

side of underestimating the visible reflectance. It is also important to note that the 

stratocumulus regions in the North Pacific, South Pacific and South Atlantic are located in 

regions of underestimation.  

	

Figure 8. Seasonal difference between fit derived visible reflectance and observed reflectance 
for Aqua (left) and Terra (right) 

To diagnose the existence of a potential seasonal cycle or the absence of one, monthly 

averages were taken of the percent bias of both the fit method and the mask method dividing 
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it between the northern and south hemisphere for both Aqua and Terra (Figure 9). Most 

notably, a seasonal cycle is shown for the mask method for both Aqua and Terra. The mask 

method always has a positive bias with the largest bias in the respective summer months for 

each hemisphere. Aqua tends to have a slightly smaller monthly bias than the mask method.  

The monthly bias for the fit method doesn’t quite hold a seasonal cycle with the bias coming 

very close to zero. The bias for Aqua is slightly on the negative bias side, whereas Terra is 

slightly positive for the northern hemisphere and slightly negative for the southern 

hemisphere.  

	

Figure 9. Average monthly bias between derived and observed reflectance for the mask (dotted, 
circle) and fit (solid, triangle) for the Aqua northern hemisphere (green) and southern 
hemisphere (purple) and Terra northern hemisphere (orange) and southern hemisphere (red) 

 From this the fit method can be seen as an overall improvement in comparison to the 

mask method given its ability to reconstruct the observed visible reflectance. To determine 
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spatially and temporally which areas experience the greater benefit of using the fit method in 

comparison to the mask method, Figure 10 shows the percentage improvement between the 

biases of the mask and the fit method. The largest improvements are seen over the tropics 

with maximum values reaching up to 15%, especially regions in the ITCZ that experience 

precipitation. The southern hemisphere shows more improvement from September to 

February, whereas the northern hemisphere shows the greatest amount of improvement from 

March to August. This is indicative of the smoothing out of the seasonal cycle that is shown 

by the mask method. Both Aqua and Terra show very similar amounts of improvement from 

using the fit method. 

	

Figure 10. Seasonal percentage improvement from mask method to fit method for Aqua (left) 
and Terra (right) 
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3.5 Variable Sensitivities to Fit Method 

 Although the fit method significantly reduces the amount of bias in recreating the 

scene visible reflectance, certain regions show smaller biases of over- or under estimating the 

visible reflectance. The reasoning for this can possibly depend on certain variables that 

introduce sensitivity into the fit method.  This section seeks to diagnose the characteristics of 

when the fit method best recreates the scene visible reflectance based on analysis of cloud 

fraction, viewing geometry, and cloud heterogeneity. The way these sensitivities are looked 

at is through using a 3D histogram to look at multiple variables at once. An example of 

interpreting this data is through Figure 11, which shows sensor zenith angle on the x-axis, 

solar zenith angle on the y-axis and cloud fraction on the vertical z-axis. The cubes are a 

measure of the bias between the fit derived visible reflectance and the observed visible 

reflectance. For instance, if a bin for sensor zenith angle of 50-60 degrees is chosen with a 

solar zenith angle bin of 10-20 degrees and a cloud fraction of 0 to 0.2, the bias for these 

parameters is approximately -2. The histograms were split up into northern and southern 

hemisphere to analyze any seasonal sensitivity. 

3.5.1 Viewing Geometry and Cloud Fraction 

 The first relationship explored is that between viewing geometry and cloud fraction. 

The set up for this 3D histogram is sensor zenith angle on the x-axis, solar zenith angle on 

the y-axis and cloud fraction on the z-axis (Figure 11).  One of the primary features seen for 

all seasons in the northern and southern hemisphere for Aqua is the greatest negative bias 

occurs at cloud fraction values below 0.2, which would indicate that the derived visible 

reflectance is too low. The greater the cloud fraction becomes the closer the bias gets to zero. 

Another noticeable trend at these lower cloud fractions is that the bias becomes greater as the 
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solar zenith angle decreases. There is a lack of points available for lower solar zenith and 

lower sensor zenith angles due to the filtering of sun glint.  

 Similar to Aqua, Terra shows the highest negative biases at cloud fractions below 0.2 

for all viewing angles as well as the increase in the magnitude of the bias when approaching 

lower solar zenith angles (Figure 12).  In the northern hemisphere from December-February, 

scenes with cloud fractions from 0.4 to 0.8 and mid range viewing angles from 30 to 50 

degrees show a positive bias. The southern hemisphere from December to January shows a 

negative bias for all scenes with high viewing angles. From June to August, the scenes with 

cloud fractions above 0.2 show very little to no bias. 

 

Figure 11. 3D histograms showing bias between fit derived reflectance and observed visible 
reflectance with respect to sensor zenith angle (x-axis), solar zenith angle (y-axis), and cloud 
fraction (z-axis) for Aqua DJF (left) and JJA (right) in the northern (top) and southern 
(bottom) hemisphere 
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Figure 12. 3D histograms showing bias between fit derived reflectance and observed visible 
reflectance with respect to sensor zenith angle (x-axis), solar zenith angle (y-axis), and cloud 
fraction (z-axis) for Terra DJF (left) and JJA (right) in the northern (top) and southern 
(bottom) hemisphere 

	
3.5.2 Cloud Heterogeneity, Solar Zenith Angle, and Cloud Fraction 

 Cloud heterogeneity is a metric that can be defined as the standard deviation of the 

visible reflectance in a scene divided by the mean scene visible reflectance to give a measure 

of how heterogeneous the cloud scene is (Liang et al. 2009). A high value indicates a 

heterogeneous cloud field and a low value indicates a more homogeneous cloud field.  



35	

 The 3D histograms for Aqua do not show any particular seasonal sensitivity to the fit 

method though the 3D histograms reveal interesting relationships between cloud 

heterogeneity, solar zenith angle, and cloud fraction (Figure 13). The positive bias is seen for 

scenes with higher cloud fraction with either very high heterogeneity or very low 

heterogeneity. This suggests that for scenes that are overcast with either highly 

heterogeneous or highly homogeneous clouds the fit method overestimates the scene visible 

reflectance. At low cloud fractions, the fit method under-predicts for the entire range of solar 

zenith angles and cloud heterogeneity, but an increase in this negative bias is seen as 

heterogeneity increases and the closer the solar zenith angle moves towards nadir. Unique to 

the northern hemisphere for December to February, there seems to be a noticeable outlier for 

a negative bias at higher cloud fractions, high cloud heterogeneity, and only for solar zenith 

angle bins of 10-20 and 60-70 degrees.  

 Terra shows observations similar to Aqua. The major difference is for scenes with 

high cloud fraction, high heterogeneity, and a range of solar zenith angles (Figure 14). Aqua 

showed a large positive bias for these variables. In contrast, Terra has a mixture of both 

positive and negative biases with the negative biases occurring in the highest heterogeneity 

bin of 1.0 to 1.2 and the next lowest cloud heterogeneity bin from 0.9 to 1.0 showing positive 

biases. Both Aqua and Terra show the least amount of bias for mid-range cloud heterogeneity 

(0.2-0.9), mid range cloud fractions (0.2-0.8) and for the entire range of solar zenith angles 

where there are not missing values.  
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Figure 13. 3D histograms showing bias between fit derived reflectance and observed visible 
reflectance with respect to solar zenith angle (x-axis), cloud heterogeneity (y-axis), and cloud 
fraction (z-axis) for Aqua DJF (left) and JJA (right) in the northern (top) and southern 
(bottom) hemisphere 
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Figure 14. 3D histograms showing bias between fit derived reflectance and observed visible 
reflectance with respect to solar zenith angle (x-axis), cloud heterogeneity (y-axis), and cloud 
fraction (z-axis) for Terra DJF (left) and JJA (right) in the northern (top) and southern 
(bottom) hemisphere 

	
3.5.3 Cloud Heterogeneity, Sensor Zenith Angle, and Cloud Fraction 

  With the combination of cloud heterogeneity, sensor zenith angle, and cloud fraction, 

Aqua shows a slight amount of seasonality between the northern and southern hemisphere. In 

the northern hemisphere, December to January show a negative bias for lower cloud fractions 

(0.0 – 0.4) with the peak of the negative bias seen around sensor zenith angles closest to 

nadir and mid-range cloud heterogeneities between 0.5 to 0.9 (Figure 15).  Similar to the 

previous histograms in sections 3.5.2 showing cloud heterogeneity, cloud fraction, and solar 
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zenith angle, a positive bias is seen at high cloud heterogeneities and high cloud fractions, 

though for the northern hemisphere winter there are some negative biases that show up in this 

same area. The northern hemisphere summer shows a similar trend to the northern 

hemisphere winter for scenes with lower cloud fractions. At higher cloud fractions, there is a 

positive bias for high cloud heterogeneity and low cloud heterogeneity that does not show a 

dependence on sensor zenith angle. The southern hemisphere summer corresponds very well 

with the northern hemisphere summer suggesting a slight seasonality between these 

relationships. The southern hemisphere winter is comparable to the northern hemisphere with 

the exception of the high cloud fractions scenes with high cloud heterogeneities only have a 

positive bias.  

 Terra shows very similar patterns to Aqua with minor differences (Figure 16). The 

northern hemisphere and southern hemisphere winters have a negative bias at scenes with 

lower cloud fraction values, sensor zenith angles closest to nadir and mid range 

heterogeneities. While at higher cloud fractions, there is a positive bias for high cloud 

heterogeneities with the exception of a negative bias around sensor zenith angles of 0-10 and 

50-70 degrees. For the northern and southern hemisphere summers, the same biases are seen 

in likeness to the winter with the only contrast being seen for high cloud fraction scenes with 

low cloud heterogeneity showing positive biases.  
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Figure 15. 3D histograms showing bias between fit derived reflectance and observed visible 
reflectance with respect to sensor zenith angle (x-axis), cloud heterogeneity (y-axis), and cloud 
fraction (z-axis) for Aqua DJF (left) and JJA (right) in the northern (top) and southern 
(bottom) hemisphere 
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Figure 16. 3D histograms showing bias between fit derived reflectance and observed visible 
reflectance with respect to sensor zenith angle (x-axis), cloud heterogeneity (y-axis), and cloud 
fraction (z-axis) for Terra DJF (left) and JJA (right) in the northern (top) and southern 
(bottom) hemisphere 

3.5.4 Discussion of Variable Sensitivities 

 The primary trend in the 3D histograms was the dependence on cloud fraction. For 

scenes with lower cloud fractions, there is an overall negative bias meaning the fit method is 

underestimating the observed visible reflectance. This would suggest that the distribution of 

LWP is skewed towards small values of liquid water path or the calculated cloud fraction of 

the scene is too small. At lower cloud fractions, there are fewer points available to calculate 
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the ideal coefficients for a fit function between the observed optical depth and corresponding 

visible reflectance, which may skew the LWP distributions.  

 With the incorporation of the cloud scene heterogeneity, it is possible to see how the 

scenes with higher cloud fraction tend to have a positive bias for certain cloud 

heterogeneities. Within the summer months for the northern and southern hemisphere, this 

was observed for both high cloud heterogeneity and low cloud heterogeneity. The winter 

months for the northern and southern hemisphere only showed the positive bias for high 

cloud heterogeneity. This means that scenes with overcast skies are overestimated by the fit 

method, which could imply that scenes with overcast skies may not benefit as heavily from 

using the fit method.  

 The effects of viewing geometry were primarily seen at scenes with lower cloud 

fractions, with a larger bias coinciding with angles closer to nadir. Many of the points closest 

to nadir were screened out due to the effect of sun glint over water, which makes it difficult 

to assess the success of the fit method for these angles. 

 Overall, there seemed to be minimal biases for scenes with midlevel cloud fractions 

between 0.2-0.8 along with heterogeneities varying from 0.2 to 1.0. These scenes did not 

show a large dependence on viewing angle. Though there are biases for certain scene 

scenarios, the fit method continually does better recreating the scene visible reflectance than 

the mask method.   

3.6 Satellite Inter-comparison 

 An advantage of using this methodology is that it can be applied to any satellite 

dataset that provides measurements of visible reflectance and liquid water path, which allows 

for satellite comparison as well as applications of different cloud processing algorithms. In 
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this study, the method is applied to two different instruments, MODIS and AVHRR/NOAA-

18, and two different types of cloud processing, standard MODIS processing with CSR and 

PATMOS-x. The main difference between the MODIS measurements and the PATMOS-x 

processed AVHRR/NOAA-18 and MODIS measurements is that PATMOS-x does not 

include any pixel filtering in the processing of cloud products. AVHRR/NOAA-18 has the 

closest equatorial overpass time to Aqua. The dataset for AVHRR/NOAA-18 contains data 

from 2005 to 2011 whereas the Aqua data is from 2003-2013. 

Figure 17 and Figure 18 show the mean LWP using both the mask and the fit method 

for MODIS/Aqua, PATMOS-x/Aqua, and PATMOS-x/NOAA-18 along with the percent 

adjustment from the mask to the fit method for December to February and June to August. 

From December to February using the mask method, all three datasets show increased LWP 

in the northern hemisphere with PATMOS-x /AQUA possessing the largest values. 

PATMOS-x/NOAA-18 shows consistently lower values than both Aqua versions. The 

southern hemisphere mask LWP is softened using PATMOS-x in comparison to MODIS. For 

all three scenarios, the LWP values agree the most in the stratocumulus regions. As shown in 

section 3.3, the fit method decreases the mean LWP in comparison to the mask method since 

it’s including the optically thin and edge pixels of clouds. PATMOS-x/AQUA remains the 

same showing the highest LWP values in comparison to PATMOS-x/NOAA-18 and 

MODIS/Aqua. To better visualize the difference between the fit and mask LWP, the percent 

adjustment is also plotted. MODIS/AQUA shows the largest adjustments globally. However, 

PATMOS-x/Aqua has the maximum adjustment in the northern hemisphere up to 45%. 

PATMOS-x/NOAA-18 shows the lowest amount of LWP adjustment especially in the 

southern hemisphere. The smallest adjustments for all three scenarios are in the 
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stratocumulus regions, suggesting that the cloud field is not in need of a large adjustment 

given the homogeneous landscape of these clouds. 

	

Figure 17. Satellite inter-comparison between MODIS/Aqua (left), PATMOS-x/Aqua (center), 
and PATMOS-x/NOAA-18 (right) displaying mean mask LWP (top), mean fit LWP (middle), 
and percent adjustment from the mask LWP to the fit LWP (bottom) from December to 
February. LWP is measured in units of g/m2 

 For July to August, MODIS/Aqua displays the largest amount of LWP throughout the 

southern hemisphere, while PATMOS-x/Aqua and PATMOS-x/NOAA-18 show the greatest 

amount only along the southern hemisphere edge. Similar to the northern hemisphere winter, 

the fit method lessens the mean scene LWP. The percent adjustment from the mask LWP to 

the fit LWP continues to show the largest adjustment for MODIS/Aqua. PATMOS-x/Aqua 

also shows a large adjustment up to 45% along the edge of the southern hemisphere. Once 

again, PATMOS-x/NOAA-18 shows the smallest adjustment overall. 
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Figure 18. Satellite inter-comparison between MODIS/Aqua (left), PATMOS-x/Aqua (center), 
and PATMOS-x/NOAA-18 (right) displaying mean mask LWP (top), mean fit LWP (middle), 
and percent adjustment from the mask LWP to the fit LWP (bottom) from June to August. 
LWP is measured in units of g/m2 

 With these LWP adjustments, the efficiency is determined by the ability to recreate 

the scene visible reflectance. Using the retrieved LWP according to the mask method for 

December to February, all of the scenarios over-estimate the scene visible reflectance (Figure 

19).  PATMOS-x/Aqua and PATMOS-x/NOAA-18 over-estimate the scene visible 

reflectance at a much smaller bias than MODIS/Aqua, especially in the northern hemisphere. 

Both PATMOS-x datasets shows a slight underestimation of the visible reflectance in the 

northern hemisphere associated with the highest amounts of LWP. When the fit method is 

applied, an opposite effect occurs with MODIS/Aqua showing the smallest bias and the 

larger biases from PATMOS-x/NOAA-18 and PATMOS-x/Aqua. All three scenarios 

primarily underestimate the scene visible reflectance. MODIS/Aqua shows slight 

overestimation in parts of the tropics. PATMOS-x/Aqua and PATMOS-x/NOAA-18 show 
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the largest underestimation in parts of the northern hemisphere, predominately in the 

northern portions of the Atlantic and Pacific oceans. From the percentage of improvement, 

MODIS/Aqua showed improvements over the entire area, while PATMOS-x/Aqua and 

PATMOS-x/NOAA-18 did not. Both showed improvement in the southern hemisphere and 

close to the equator in the northern hemisphere, but the fit method was not an improvement 

in the northern portion of the northern hemisphere around 60 degrees N. PATMOS-x/Aqua 

and PATMOS-x/NOAA-18 exhibit minor improvements in the stratocumulus regions over 

the North Pacific, South Pacific, and South Atlantic.  

	

Figure 19. Satellite inter-comparison between MODIS/Aqua (left), PATMOS-x/Aqua (center), 
and PATMOS-x/NOAA-18 (right) displaying mean mask bias (top), mean fit bias (middle), and 
percent improvement from the mask method to the fit method (bottom) for December to 
February. 

 From June to August, the mask method shows overestimation for all three cases with 

the smallest biases occurring in the southern hemisphere (Figure 20). MODIS/Aqua displays 

strictly an overestimation throughout the ocean regions. PATMOS-x/NOAA-18 and 
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PATMOS-x/Aqua differ from MODIS/Aqua in that they show positive biases within the 

northern hemisphere and biases close to zero or slightly negative in the southern hemisphere. 

For MODIS/Aqua, the fit method recreates the scene visible reflectance with very small 

biases ranging from -2 to 2 with most of the ocean regions being skewed towards slight 

negative bias. For PATMOS-x/NOAA-18 and PATMOS-x/Aqua, there is a stronger negative 

bias in the southern hemisphere and slight positive bias along some of the ocean regions 

surrounding coastlines. Similar to the December to January cases, MODIS/Aqua shows 

improvements of using the fit method to recreate the scene visible reflectance over the 

oceans. PATMOS-x/NOAA-18 and PATMOS-x/Aqua show smaller improvements in the 

northern hemisphere and certain regions of the southern hemisphere, which did not improve 

with the application of the fit method.  

 

Figure 20. Satellite inter-comparison between MODIS/Aqua (left), PATMOS-x/Aqua (center), 
and PATMOS-x/NOAA-18 (right) displaying mean mask bias (top), mean fit bias (middle), and 
percent improvement from the mask method to the fit method (bottom) for June to August. 
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 The application of the fit method continually recreates the scene visible reflectance 

better than the mask method for MODIS/Aqua, showing improvements over the ocean from 

60 N to 60 S. Using PATMOS-x/Aqua and PATMOS-x/NOAA-18, benefits of using the fit 

method were only seen seasonally with improvements seen in the southern hemisphere 

during the boreal winter and in the northern hemisphere during the northern hemisphere 

summer. Certain areas also showed no improvement where the mask method was able to 

better recreate the scene visible reflectance than the fit method. This inter-comparison 

demonstrates how the fit method especially benefits methods that use pixel filtering to 

calculate cloud properties. Given that the PATMOS-x processing does not use pixel filtering 

for its cloud property retrievals, it did not experience the amount of improvement that the 

standard MODIS/Aqua data did.  However, there are some cases where using the fit method 

would benefit PATMOS-x since there were a significant number of improvements in both the 

northern and southern hemisphere based on the season. The regions where the fit method did 

not excel for PATMOS-x/Aqua and PATMOS-x/NOAA-18 were the regions that 

experienced the largest adjustment in LWP from the mask method to the fit method. This 

suggests that the LWP could be underestimated from the fit method potentially causing these 

biases. The sources of these biases would have to be better explored for future studies. 
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4. External Heterogeneity 

4.1 Introduction 

 The external heterogeneity is examined by using a spatial heterogeneity index and the 

incorporation of a 3D radiative transfer model.  The spatial heterogeneity index was first 

introduced in section 3.5 with the 3D histograms to identify sensitivities to the fit 

methodology based on the cloud heterogeneity and viewing geometry. A 3D radiative 

transfer model is used to explore the resulting fluxes from the application of the fit method to 

account for internal heterogeneity and the spatial effects from using 1D radiative transfer in 

comparison to 3D radiative transfer. Given the computational resources required to run full 

3D radiative transfer simulation over the entire globe, a 20 x 20 degree region over the North 

Pacific is subsetted to apply the model to (Figure 21). From a year of model data in 2010, an 

analysis is conducted using 3 different modeling scenarios including a 1D simulation using a 

scene averaged LWP from retrievals (Mask method), 3D simulation with the retrieved LWP 

(mask method) and 3D simulation using the derived LWP from the fit method. 

	

Figure 21. Global map highlighting North Pacific ocean region (red box) used for 3D radiative 
transfer model  
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4.2 Global Heterogeneity 

 The global heterogeneity is calculated by using the standard deviation of the scene 

visible reflectance divided by the mean scene visible reflectance over the 1 x 1 degree grid 

boxes (Liang et al., 2009) as seen in Equation 13.  

                                                                       𝐻! =  
𝜎
𝑅

                                                                   (13) 

Lower values are indicative of homogeneous cloud scenes while higher values show 

more heterogeneous cloud scenes (Figure 22). For Aqua, the most heterogeneous clouds are 

seen around the tropics for all seasons. The magnitude of this heterogeneity in the tropics is 

the highest in June to August and the lowest in December to February. The lowest 

heterogeneity is located along subtropical western coasts lining up with the marine 

stratocumulus regions off the coasts of Angola, Peru and California. Terra shows very similar 

patterns to Aqua with very small changes in heterogeneity. Aqua shows a very slight increase 

in heterogeneity in comparison to Terra. These regions of high heterogeneity match very well 

with the areas of most improvement from the use of the fit method, especially along the 

tropics. This metric works best for comparing regions under the same solar zenith angle. At 

higher solar zenith angles, clouds are more likely to appear rougher or more heterogeneous 

from shadowing or illumination of cloud sides. At lower solar zenith angles, clouds may 

appear to be smoother due to horizontal transport of light (Girolamo et al. 2010).  
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Figure 22. Seasonal heterogeneity index for Aqua (left) and Terra (right) from 2003-2013 

4.3 Radiative Transfer Modeling 

4.3.1 3D Mask vs. 1D Mask 

 As explained in Section 2.5, the 1D mask scene is calculated by using the mean cloud 

properties that were retrieved by MODIS and assigning it the MODIS cloud mask derived 

cloud fraction. The 3D mask scene is calculated from the 1km MODIS retrieved cloud 

properties over a 10 x 10 km grid. The solar flux is normalized to 1.0, so the output flux 

values can range from 0 to 1.0. An example of the differences in these scenes is shown in 
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Figure 23. In comparison to the 3D mask scene, the 1D mask lacks the cloud morphology 

along with horizontal distribution of cloud properties.  

 Beginning with the flux results, the top of the atmosphere (TOA) flux calculated from 

the 3D mask and the 1D mask scenes is compared seasonally. The gray X’s represent the 

individual TOA flux for each scene. The black solid line is the mean 3D mask TOA flux 

binned according to the 1D mask TOA flux. For the most part, all seasons show a fairly 

strong 1:1 relationship between the 1D mask TOA flux and the 3D mask TOA flux. An 

interesting feature shown for all seasons is that the slope of the mean TOA flux line is 

decreased in comparison to the rest of the line for lower TOA flux values. This means that 

the 3D mask TOA flux is generally higher than the corresponding 1D mask TOA flux for 

values below 0.15 W/m2. The lower flux values likely indicate a scene with a small amount 

of clouds with a heterogeneous field. This difference is possibly the result of the changes in 

the TOA flux from heterogeneous cloud compensating for the lack of cloud morphology 

within the 1D mask scenes.  
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Figure 23. Scatter plot (gray) comparing normalized 1D mask TOA flux vs. 3D mask TOA flux 
seasonally over North Pacific for 2010 with mean 1D TOA Flux line (black) 

  To see if there are any dependencies on other contributing variables, the difference 

between the 3D mask TOA flux and the 1D mask TOA flux is compared to cloud fraction, 

viewing geometry, cloud heterogeneity, and visible reflectance. For cloud fraction, the small 

differences between the 3D mask TOA flux and 1D mask TOA flux does not show cloud 

fraction dependence for any of the seasons (Figure 24). For the points that do not hover 

around the zero mark, higher cloud fractions for DJF, MAM, and SON are more closely 

related to a negative difference in places where the 3D mask TOA flux is less than the 1D 

mask TOA flux, while JJA seems to have mid-level amounts of cloud fraction. The standard 

deviation of the TOA flux differences increases as the cloud fraction increases.  
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Figure 24. Scatterplot (gray) comparing difference between 3D mask and 1D mask TOA flux vs. 
cloud fraction seasonally over the North Pacific for 2010 with mean TOA difference line (black) 

 The cloud heterogeneity also has a concentration of points around zero in which the 

mean cloud heterogeneity is approximately 0.25 from December to May, and around 0.2 

from June to November (Figure 25). The largest amount of cloud heterogeneity in the North 

Pacific region occurs in December to February, which corresponds to Figure 21 from the 

previous section. The distribution of the difference between the 3D mask and 1D mask TOA 

flux is skewed towards negative differences with the largest differences occurring around 0.2 

W/m2 for all seasons. The largest positive differences between the 3D mask TOA flux and 

the 1D mask TOA flux are associated with greater heterogeneities from June to November 

reaching a maximum mean of 0.3 and from December to May a slight decrease in the 

heterogeneity factor as the difference increases.  
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Figure 25. Scatterplot (gray) comparing difference between 3D mask and 1D mask TOA flux vs. 
heterogeneity index (H_sigma) seasonally over the North Pacific for 2010 with mean difference 
line (black) 

 For solar zenith angle for all seasons, the majority of the points are scattered around 

the center, indicating there were not many large changes between the 3D and 1D TOA flux 

(Figure 26). December to February show the largest range of solar zenith angles, with higher 

solar zenith angle being associated with positive differences between the 3D mask and 1D 

mask TOA flux, and mid range solar zenith angle from 35 to 45 degrees being more likely to 

have a negative difference between the 3D mask and 1D mask TOA flux. The other seasons 

show a smaller range of solar zenith angles with no significant dependence on the solar 

zenith angle. 
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Figure 26. Scatterplot (gray) comparing difference between 3D mask and 1D mask TOA flux vs. 
solar zenith angle seasonally over the North Pacific for 2010 with mean difference line (black) 

 Sensor zenith angle does not show much of a seasonal pattern for the differences 

between the 3D mask and 1D mask (Figure 27). Many of the points are scattered along the 

zero line, though as the sensor zenith angle increases, the range of differences begins to also 

increase in both the positive and negative directions. This suggests that the further the sensor 

zenith angle is from nadir, the more the 1D plane parallel assumption does not accurately 

reflect a truly 3D scenario.  
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Figure 27. Scatterplot (gray) comparing difference between 3D mask and 1D mask TOA flux vs. 
sensor zenith angle seasonally over the North Pacific for 2010 with mean difference line (black) 

 Overall, there are not very significant dependencies on viewing geometry, cloud 

heterogeneity, or cloud fraction. This is likely due to the fact that there were not very large 

differences detected between the 3D mask TOA flux and the 1D mask TOA flux.   Most 

notable detection of the differences between the 3D mask and 1D mask TOA flux were seen 

for mid range cloud heterogeneity and high sensor zenith angles. These differences were 

likely caused by the spatial arrangement of the cloud field and the cloud shadowing and 

illumination due to the high viewing angle. 

 Finally, the mean scene visible reflectance over the 10 x 10 km scene is compared to 

the mean TOA flux. The TOA flux can be compared to the visible reflectance given their 

similarity in magnitude to one another in the visible spectrum. The better the correlation is 
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between the mean scene visible reflectance and the mean TOA flux, the more representative 

the scene is of both the optical properties and radiative effects.  Comparing the 1D mask 

TOA fluxes to the scene visible reflectance, there is a decent fit between the two variables 

(Figure 28). Seasonally, the 1D mask TOA fluxes contain a greater amount of outliers from 

December to February, while the least amount of outliers is from June to August. For all the 

seasons, the 1D mask TOA flux is consistently lower than the visible reflectance when 

comparing them to a 1:1 ratio. The 1D mask TOA flux shows the lowest amount of 

correlation from December to February and the highest amount of correlation from June to 

August. The North Pacific Ocean region is less heterogeneous in the summer months than the 

winter months, which could explain the better correlations between the TOA flux and visible 

reflectance in the summer.   

The 3D mask TOA flux also shows a similar relationship with the visible reflectance, 

with the largest correlation seen from June to August and the lowest correlation occurring 

from December to February (Figure 29). From December to February, the correlation 

between the TOA flux and visible reflectance is very similar for both the 1D mask and 3D 

mask. The main difference between the 1D mask and 3D mask is seen from June to August. 

The relationship between the TOA flux and visible reflectance is much stronger using the 3D 

mask scenario in comparison to the 1D mask scenario. Although there are only small 

differences between the 1D mask and 3D mask radiative transfer simulations, the use of the 

3D mask that includes the horizontal distribution of LWC and cloud morphology shows a 

better representation of the radiative field.  
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Figure 28. Scatterplot (gray) comparing difference between 1D mask TOA flux vs. visible 
reflectance seasonally over the North Pacific for 2010 with mean TOA flux line (black) 

	
Figure 29. Scatterplot (gray) comparing difference between 3D mask TOA flux vs. visible 
reflectance seasonally over the North Pacific for 2010 with mean TOA flux line (black) 
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4.3.2 3D Mask vs. 3D Fit 

 From comparing the 3D mask and 1D mask TOA fluxes, the radiative differences 

between the two scenarios show the value of representing cloud morphology and the 

horizontal distribution of cloud properties in radiative transfer modeling. The next issue to 

investigate is the effect of skewed distributions of cloud properties on radiative transfer due 

to pixel filtering methods. The 3D fit TOA fluxes were derived from the fit methodology to 

compute the horizontal distribution of LWP.  

 When comparing the initial 3D TOA fluxes seasonally to each other, the 3D fit 

method shows overall lower TOA flux values than the 3D mask method (Figure 30). For 

lower TOA flux values, there are smaller differences between the mask and fit method, while 

for higher TOA fluxes there’s a larger range of differences.  This observation is consistent for 

all seasons. The 3D fit TOA flux likely shows lower values than the 3D mask TOA flux due 

to the adjustment of the LWP, which are adjusted to smaller values to incorporate edge pixels 

or optically thin clouds.  
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Figure 30. Scatter plot (gray) comparing normalized 3D mask TOA flux vs. 3D fit TOA flux 
seasonally over North Pacific for 2010 with mean 3D TOA flux line (black) 

 To see if these differences between the 3D fit and 3D mask TOA fluxes are affected 

by variables which often have an impact on full 3D radiative transfer, the differences are 

compared to cloud fraction, cloud heterogeneity, and viewing geometry. For all seasons, the 

largest differences are seen at the lowest cloud fractions (Figure 31). The differences between 

the 3D fit and 3D mask TOA flux steadily increase to zero as the cloud fraction increases. 

For scenes with higher amounts of cloud fraction, the fit method has more retrieval of cloud 

properties to create a stronger fit function between the optical retrievals and observed visible 

reflectance. This is likely the cause of the minimal differences seen at cloud fractions above 

0.8 for all seasons. 
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Figure 31. Scatterplot (gray) comparing difference between 3D fit and 3D mask TOA flux vs. 
cloud fraction seasonally over the North Pacific for 2010 with mean difference line (black) 

 The cloud heterogeneity in comparison to the differences between the 3D fit and 3D 

mask TOA flux shows an interesting relationship (Figure 32). The largest difference between 

the 3D fit and 3D mask TOA flux is observed when the cloud heterogeneity index is the 

lowest, indicating homogeneous clouds. This association could possibly be due to the fact 

that the fit method provides the largest amount of improvement for heterogeneous cloud 

scenes, so these some of differences in the TOA flux could likely be attributed to the fit 

method performance rather than the effects of pixel filtering. For cloud heterogeneity index 

values above 0.1, these are indicators of heterogeneous cloud scenes, with scenes becoming 

more heterogeneous as the value increases. There are no highly heterogeneous scenes 

(heterogeneity index values above ~0.8) observed. This is likely due to the structure of 
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stratocumulus clouds typically seen in the North Pacific Ocean region selected. Though there 

are differences seen for cloud heterogeneity values between 0.2 to 0.5, which could either be 

attributed to the adjustment of the scene LWP for more realistic radiative transfer or the fit 

method being unable to recreate the scene visible reflectance due to being more 

homogeneous in nature. More research would need to be performed to separate the errors 

from when the fit method performs poorly in order to quantify the effects of skewed 

horizontal distributions of cloud properties. 

	

Figure 32. Scatterplot (gray) comparing difference between 3D fit and 3D mask TOA flux vs. 
heterogeneity index (H_sigma) seasonally over the North Pacific for 2010 with mean difference 
line (black) 

 The range of the solar zenith angles differs based on the seasons (Figure 33). For 

TOA flux differences close to zero, the distribution of solar zenith angles is fairly even along 
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its range of angles for each season. The greatest concentration of differences between the 3D 

fit and 3D mask TOA flux for each season are located around their maximum observed solar 

zenith angle. The clouds located at higher solar zenith angles are more likely to experience 

the effects of cloud illumination or cloud shadowing which could easily change the scene 

radiative effects when the cloud scene morphology is altered. 

	

Figure 33. Scatterplot (gray) comparing difference between 3D fit and 3D mask TOA flux vs. 
solar zenith angle seasonally over the North Pacific for 2010 with mean difference line (black) 

 Sensor zenith angle also shows a similar effect with a large portion of the TOA fluxes 

distributed evenly along differences close to zero (Figure 34).  However as the sensor zenith 

angle increases, the concentration of TOA flux differences close to zero begins to spread out 

towards negative differences between the 3D fit and 3D mask TOA fluxes. For TOA flux 

differences from -0.4 to -0.5 W/m2, the mean sensor zenith angle peaks for all seasons. Past -
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0.5 W/m2, the sensor zenith angle slightly decreases. Higher sensor zenith angles are likely 

more susceptible to these differences due to being along the edge of scan, which leaves cloud 

retrievals likely to be exposed to the effects of cloud shadowing and cloud illumination.  

	

Figure 34. Scatterplot (gray) comparing difference between 3D fit and 3D mask TOA flux vs. 
sensor zenith angle seasonally over the North Pacific for 2010 with mean difference line (black) 

 As mentioned in section 4.3.1, the 3D mask TOA flux is better correlated with the 

observed visible reflectance in June to August than December to February. When the 3D fit 

TOA fluxes are compared to the observed visible reflectance, the correlation is also better for 

June to August than December to February as seen in Figure 35. Overall, the 3D fit TOA flux 

shows a larger range of values for lower values of visible reflectance suggesting that the fit 

method does better for mid range to higher reflectance values. When comparing the 3D fit 

and 3D mask to the visible reflectance, it is clear that the 3D mask is better matched with the 
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visible reflectance at lower flux values than the 3D fit for all seasons. Both show the best 

correlation for higher flux values from June to August. For December to February, the 3D 

mask method performed better overall than the 3D fit method. The application of the 3D fit 

and 3D mask method for 3D radiative transfer has only been applied to a generally 

homogeneous stratocumulus region in the North Pacific, which is a region that experiences a 

smaller amount of improvement from using the fit method over the mask method in 

comparison to other regions studied. The benefits of the fit method are more likely to be 

experienced in a more heterogeneous cloud regime. Section 6 will describe the future work 

that will be done to quantify the impacts of 3D radiative transfer due to the effects of skewed 

cloud property distributions from MODIS. 

	

Figure 35. Scatterplot (gray) comparing difference between 3D fit TOA flux vs. visible 
reflectance seasonally over the North Pacific for 2010 with mean TOA flux line (black) 
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5. Conclusions 

 The effects of internal heterogeneity were explored by the application of the fit 

method used to create horizontal distributions of cloud properties over a 1 degree x 1 degree 

area and were assessed by how well the method could recreate the observed scene visible 

reflectance using the MODIS instrument both on Aqua and Terra from 2003-2013. The fit 

method adjusted the mean LWP based on a fit function between retrieved optical depth and 

the visible reflectance and applied this function to the entire scene of measurements in an 

effort to restore pixels without retrievals that could possibly be cloud edges or optically thin. 

The largest adjustments of the mean LWP from the fit method were observed to be seasonal 

with the Northern hemisphere showing the largest adjustments from December to February 

and the Southern hemisphere showing the largest adjustment from June to July. When the 

mask method was used to recreate the scene visible reflectance, the mask method continually 

overestimated the scene visible reflectance. The mask method also showed a seasonal cycle 

in the magnitude of its overestimation with the largest overestimation occurring in the 

northern hemisphere from June to August and in the southern hemisphere from December to 

February. Generally, the fit method tended to slightly underestimate the observed visible 

reflectance, but the magnitude of this underestimation was much lower than the mask 

method. Slight overestimation of the visible reflectance with the fit method occurred in the 

tropics. Monthly averages of the bias between the fit derived reflectance and the observed 

visible reflectance showed very little to no bias for all months. The amount of improvement 

of utilizing the fit method over the mask method showed global improvement when the fit 

method was used. Areas in the tropics improved up to 15%. The stratocumulus regions off 
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the coast of California, Peru, and Angola were notable areas where the least amount of 

improvement occurred likely due to their homogeneous structure.  

 Given that the fit method showed slight biases for underestimating and 

overestimating in certain areas, 3D histograms were used to determine sensitivities of the fit 

method with respect to cloud fraction, cloud heterogeneity, and viewing geometry. A 

negative bias or underestimation of the visible reflectance was seen in scenes with low cloud 

fraction, which was likely due to the lower amount of optical retrievals used to calculate an 

optimal fit function. Cloud heterogeneity showed the largest effect on high cloud fractions. In 

both the northern and southern hemisphere summer months, there was a positive bias for 

both high and low values of the cloud heterogeneity index, while the winter months for both 

hemispheres showed only a positive bias for high cloud heterogeneity values. The effects of 

viewing geometries showed a negative bias for low cloud fraction increasing in magnitude as 

the angles become closer to nadir. The fit method did not show much sensitivity to scenes 

with medium amounts of cloud fraction and mid-value cloud heterogeneity index, which 

means the application of the fit method would most help these scenes.  

 A satellite inter-comparison was also conducted since the fit method can be applied to 

any dataset that contains both cloud property retrievals and visible reflectance measurements. 

The PATMOS-x processing was used on both Aqua and NOAA-18, which unlike MODIS 

does not base its retrieval algorithms on pixel filtering processes. Overall, MODIS/Aqua 

showed the most improvement from using the fit method over the mask method. Both 

PATMOS-x/Aqua and PATMOS-x/NOAA-18 showed improvements with using the fit 

method in each hemisphere’s respective summer months. Surprisingly, the mask method did 

better in the hemispheric winter months for both PATMOS-x/NOAA-18 and PATMOS-
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x/Aqua. The areas where the fit method did not improve the recreation of the scene visible 

reflectance were associated with the largest reduction in LWP due to the fit method 

adjustment. This suggests that perhaps these areas were not in need of adjusting the mean 

scene LWP since they already potentially included the pixels that MODIS/Aqua had filtered 

out.  

 The external heterogeneity was analyzed by spatially viewing the cloud heterogeneity 

index and the use of a 3D radiative transfer model where the adjustments to account for the 

horizontal distribution of cloud properties and cloud morphology are compared using three 

scenarios. The most heterogeneous clouds are located along the tropics, which coincides with 

where the fit methodology shows the most improvement. The areas that show the least 

amount of heterogeneity correspond with the stratocumulus regions that have already been 

noted.  

 The 3D radiative transfer model was utilized over a stratocumulus region in the North 

Pacific Ocean for the year 2010. The three scenarios used were the 1D mask derived plane 

parallel, the 3D mask derived, and the 3D fit derived. The comparison between the 1D mask 

and 3D mask showed the differences in the TOA fluxes when cloud morphology is included. 

There changes in the TOA fluxes between the 3D mask and 1D mask scenarios were small, 

but overall there was a better correlation between the 3D mask TOA flux and the visible 

reflectance than the 1D mask TOA flux and the visible reflectance. The largest differences 

between the 3D mask and 1D mask TOA fluxes were for higher cloud fraction values, mid-

range cloud heterogeneity, and viewing geometry further from nadir. The 3D mask and 3D fit 

were compared to show the differences between TOA fluxes when the horizontal distribution 

of cloud properties is altered to include pixels that were potentially filtered out by the CSR 



69	

algorithm.  The 3D fit TOA flux was not very well correlated with the lower visible 

reflectance values in comparison to the 3D mask TOA flux. The 3D mask and 3D fit TOA 

fluxes were both decently well correlated with high visible reflectance, especially during the 

northern hemisphere summer. The largest TOA flux differences were observed at low cloud 

fraction, low cloud heterogeneity, and higher viewing geometry.  

 Overall, the stratocumulus region chosen is not known for having heterogeneous 

clouds, so the fit method might not be providing the same amount of improvement as seen in 

highly heterogeneous regions. It is therefore hard at this point to fully assess the radiative 

impact with the application of the fit methodology. Future work will include a more thorough 

analysis of these radiative effects. 
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6. Future Work 

 Much of the future work on this study will expand upon the 3D radiative transfer 

aspect. More model runs will be performed over the MODIS record to correspond to the 

application of the fit method, which extended from 2003-2013 for both Aqua and Terra. A 

few more ocean areas will also be included in the model to incorporate more of the marine 

stratocumulus regions as well as selecting a few cloud heterogeneous ocean regions. In 

addition to comparing the TOA fluxes from the model to the observed visible reflectance, the 

TOA radiances will be computed to enable a better comparison to assess how well both the 

fit and mask method did. This will enable an improved analysis to the differences in the 

radiative field regarding both the internal and external cloud heterogeneity. The radiative 

transfer calculations can also be expanded to include an ICA calculation to study the impact 

of horizontal photon flow for both the mask and the fit method. In order to compensate for 

the degree of bias in the satellite data, the radiative transfer simulations will be conducted 

over a large range of differing cloud heterogeneities, solar zenith angles, and sensor zenith 

angles as suggested in Di Girolamo et al. (2010). 

 Potential work can also include the incorporation of microwave satellites such as 

AMSR-E or SMM/I to provide datasets to compare and validate the MODIS estimates.  
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