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Abstract

Using information content to determine the sensitivity of AIRS channels to

mid-latitude ice clouds in single- and multi-layer regimes

by Ashtin Massie

From increasing the planetary albedo to decreasing the Earth’s outgoing longwave ra-

diation, clouds have a significant influence on the Earth’s energy budget and climate.

However, clouds and aerosols continue to contribute the largest uncertainty to our under-

standing of the Earth’s response to global climate change (Boucher et al. 2013). A large

portion of this uncertainty is because of ice clouds, whose properties satellites can have

difficulty retrieving and thus can be underrepresented in cloud datasets used to inform

climate models. In single-layer cases, the thin nature of upper-level ice clouds makes

retrievals problematic; in multi-layer cases, which have an estimated annual mean occur-

rence near 30% (L’Ecuyer et al., 2019), the reflection and emission from lower level clouds

influence the radiation field observed by satellites, muddling the retrieval of the separate

cloud layers and posing a challenge for both conventional observations and models. Due to

the different challenges in retrieving single-layer and multi-layer ice clouds, treating these

cases separately can improve retrieval algorithms and enhance global cloud datasets. This

study will focus on assessing the information content of satellite hyperspectral radiances

for ice clouds in single- and multi-layer regimes. Using an ensemble of ice cloud regimes

derived from the Atmospheric Radiation Measurement (ARM) Southern Great Plains site

from 2003-2009, and modeling the radiances that would be measured by the Atmospheric
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Infrared Sounder (AIRS) when these ice clouds are present, we are able to narrow down

the AIRS channels that are the most sensitive to the properties of certain mid-latitude ice

clouds and see how the sensitivity of these channels changes in scenes with multiple cloud

layers. We found that in single-layer cases, longwave channels near 9.5 µm, 11 µm, and

13 µm were preferentially selected as containing the most information about ice clouds.

While some of these longwave channels remained important in the multi-layer scenes, the

information of shortwave channels between 3.8 and 4.2 µm increased substantially with

the introduction of low-level clouds. This selection of channels and their significance will

be explored more thoroughly throughout this paper.
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Chapter 1

Introduction

Clouds have varying but significant influences on the Earth’s energy budget and climate,

and understanding their processes is essential to our ability to create accurate climate

models. However, clouds and aerosols continue to contribute the largest uncertainty to

our understanding of the Earth’s changing energy balance in response to global climate

change (Boucher et al. 2013). Specifically, the manner in which ice clouds contribute

to climate change remains particularly complex. In single layers, ice clouds tend to

have a warming effect on the atmosphere; however, their occurrence in multi-layer cloud

scenes, which tends to occur more frequently than single-layer scenes globally, changes

the net radiative effects of upper-level ice clouds from warming to cooling (L’Ecuyer et al.,

2019). These contrasting effects indicate that the radiative effects of ice clouds are highly

sensitive to the presence or absence of underlying cloud layers, which complicates the

contribution of ice clouds to the Earth’s radiative budget. The response of these different
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types of ice clouds to climate change can be equally complicated, as our ability to model

changes of global ice cloud coverage and multi-layer cloud scenes depends on our ability to

observe various cloud regimes in the present and then effectively use those observations

to parameterize the cloud processes of these scenes in climate models. However, the

optically thin nature of these ice clouds makes them difficult to monitor and model, and

their occurrence in multi-layer cloud scenes complicates satellite retrievals, as underlying

low-level cloud layers can dramatically alter our ability to accurately retrieve upper-

level cloud properties through reflection and absorption processes. Thus, improving the

detection of ice clouds and their properties from space-borne instruments in single- and

multi-layer regimes is essential, both for improving our understanding of the global cloud

radiative effects of ice clouds and for reducing the overall uncertainty associated with

clouds in climate models.

This study will focus on improving the retrieval of ice cloud properties in the mid-

latitudes using the high-spectral-resolution Atmospheric Infrared Sounder (AIRS). The

AIRS instrument (https://airs.jpl.nasa.gov), launched in 2002 onboard NASA’s Aqua

satellite, contains 2378 spectral channels in the infrared spectrum and can be used to

retrieve the properties of clouds on a global scale at a relatively high horizontal and

vertical resolution. More specifics about the AIRS instrument will be described in this

paper. Here, we look to use an information content analysis to determine the optimal

set of AIRS channels for the retrieval of the properties of ice clouds observed in the

mid-latitudes, in both single-layer and multi-layer cloud scenes. We explore the impact

that the presence of low-level clouds has on the selection of AIRS channels that contain

https://airs.jpl.nasa.gov
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the most information about upper-level ice clouds, with the goal of contributing to the

advancement of ice cloud retrievals across a multitude of settings.

1.1 Clouds and the Earth’s Radiative Budget

Figure 1.1: The 10 cloud genera within their allocated level or levels as classified by
the World Meteorological Organization (2017).

On average, clouds cover nearly 70% of the globe (Stubenrauch et al., 2013). While

the cloud fraction depends on the detection sensitivity and the spatial resolution of cloud

profiling instruments (Wielicki and Parker, 1992), nevertheless we can say that clouds are

an intrinsic component of the atmosphere year-round. Globally, around 40–50 percent

of clouds observed are classified as high clouds, with cloud top pressures below 440 hec-

topascals (hPa); about 15 percent are classified as mid-level clouds with no higher clouds
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above them, with cloud top pressures between 440 and 680 hPa; and 40 percent are clas-

sified as single-layer low clouds, with cloud top pressures above 680 hPa (Stubenrauch

et al., 2013). These broad cloud classifications can be broken down further to account for

varying optical, radiative, or microphysical properties. The World Meteorological Orga-

nization (WMO) breaks down the clouds at these three levels into 10 genera of clouds,

shown in Figure 1.1 and Figure 1.2 (World Meteorological Organization, 2017). While

most clouds stick to the levels in which they are classified, the thicker cloud types, such as

cumulus (Cu), nimbostratus (Ns), altostratus (As), and cumulonimbus (Cb), can extend

to various levels. Thus, defining specific cloud boundaries is essential for classification

and analysis.

Figure 1.2: Approximate heights of each cloud level, and the genera occurring in each
(World Meteorological Organization, 2017).

High-level clouds are typically composed of ice crystals of various geometries, and

are typically found in the upper troposphere, with their cloud top pressure below 440 hPa

and their base generally at least 5 kilometers above the surface, although this altitude

varies depending on the depth of the troposphere (World Meteorological Organization,
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2017). Generally, pure ice clouds occur at temperatures below -40◦C; temperatures above

this can contain liquid or supercooled liquid cloud drops. The general ice cloud classifi-

cation includes cirrus (Ci), cirrostratus (Cs), and cirrocumulus (Cc). In general, cirrus

clouds cover an estimated 16-20% of the globe and tend to consist of large, non-spherical

ice particles (Liou 1986; Sassen et al. 2008). Figure 1.3 (Sassen et al., 2008) shows the

global distribution of cirrus clouds in single- and multi-layer regimes; we can see that

the highest frequency of high clouds occur in areas of deep convection, such as in the

tropics near the intertropical convergence zone (ITCZ) and monsoonal regions, and in

the mid-latitudes near mid-latitude storm tracks.

Figure 1.3: Global distribution of 1-year average frequency of occurrence of cirrus
clouds identified by CloudSat/CALIPSO algorithm, with 5◦ latitude by 5◦ longitude
grid boxes, daytime and nighttime measurements, and single and multiple cirrus layers

(Sassen et al., 2008).

In order for these clouds to form, there needs to be available water vapor and

cloud condensation nuclei (CCN) in the upper troposphere and some sort of mechanism
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to initiate condensation and homogeneous nucleation. Some examples of cirrus and their

formation mechanisms include synoptic cirrus, which form in association with jet streams

and frontal low pressure systems; injection cirrus, which form from strong updrafts in

deep convective clouds; mountain-wave cirrus, which form from orographically forced as-

cent; cold trap cirrus, which form in high altitudes in the tropics seemingly influenced by

thunderstorm activity and other tropical wave disturbances; and contrail cirrus, which

form from the rapid cooling of aircraft exhaust (Sassen et al., 2008). Due primarily to

the relative scarcity of water vapor in the upper troposphere, these high cirrus clouds

are generally rather transparent and optically thin, with optical depths usually below 3

and geometric thicknesses near 2 kilometers on average (Sassen et al., 2008). However,

often cirrus clouds have much lower optical depths than this; for example, Sassen and

Campbell (2001) found through a regional mid-latitude observational analysis that cirrus

cloud optical depths did not exceed 0.3 for about half of the time for detected cirrus

in their period of interest. The size of the ice crystals found in these high clouds can

range between 10 and 1000 µm (Liou, 1986), although the typical effective diameter of

ice crystals in cirrus clouds found in the mid-latitudes typically ranges between 10 and

100 µm (Ackerman and Stokes, 2003), and the ice water content of these types of clouds

is typically on the order of 0.1 g m−3 (Liou, 1986). We will primarily be focusing on high

level ice clouds in this analysis.

Low-level clouds are typically composed entirely of liquid droplets, whose base

usually appears below 2 kilometers above the surface, or below 680 hPa, depending on

your classification. Here, this classification includes stratus (St), stratocumulus (Sc), and
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cumulus (Cu). These clouds are often shallow but can cover large horizontal extents

(Wang, 2013). They also are often optically thick, due to the availability of water vapor

near the surface for condensation, which increases their liquid water content; and due to

the availability of cloud condensation nuclei near the surface, which increases the drop

concentration and decreases the cloud effective radius. In the mid-latitudes, these clouds

can be associated with light rain, drizzle, or snow. While the focus of this study will not

be on low-level clouds, low-level clouds often provide the background for retrieving ice

clouds in multi-layer cloud scenes. Thus, introducing these types of clouds is essential

to gain a broader picture of the typical cloud patterns observed on a global scale and to

better understand the make-up of typical multi-layer cloud scenes.

High and low clouds do not always occur separately; rather, multi-layer clouds

are common, with high ice clouds above low liquid clouds. Figure 1.3 shows the general

global distribution of single- and multi-layer cirrus clouds together. When we separate

these high cirrus clouds into separate single- and multi-layer scenes, we see that most of

the cirrus clouds observed are not isolated; rather, they occur in multi-layer cloud regimes.

Figure 1.4 (L’Ecuyer et al., 2019) separates clouds observed globally into their different

classifications, separating multi-layer cloud scenes from single-layer clouds scenes. Focus-

ing on ice clouds, we see that single-layer cirrus clouds in this dataset have an annual

mean cloud fraction of 7.9%, while multi-layer cloud regimes have an annual mean cloud

fraction of 29.9%. While multi-layer clouds could involve a multitude of cloud combi-

nations, when we partition those multi-layer cloud scenes into their high and low cloud

components (Figure 1.5), we can see that cirrus clouds are the most common upper-level
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Figure 1.4: Breakdown of annual mean cloud fraction by cloud type determined
based on CloudSat’s 2BCLD classification, 2007-2010 (%). The area-weighted global
average (in %) is shown in parentheses. Ci=cirrus, As=altostratus, Ac=altocumulus,
St=stratus, Sc=stratocumulus, Cu=cumulus, Ns=nimbostratus, D.C.=deep convection

and M.L.=multi-layered cloud system (L’Ecuyer et al., 2019)

cloud in multi-layer cloud environments in the mid-latitudes, while altocumulus or stra-

tocumulus are the most common lower-level cloud in these environments (Hang et al.,

2019). So, not only are high level cirrus clouds prevalent as single-layer clouds, but they

are even more frequently seen in multi-layer clouds scenes above low-level liquid clouds.

A multitude of factors contribute to the formation and dissipation of clouds; how-

ever, two of the primary drivers of cloud formation are the large-scale general atmospheric

circulation and localized dynamical processes, such as vertical air motions, deep convec-

tion, and mixing (Rogers and Yau, 1996) as seen in Figure 1.6 and Figure 1.7 (Boucher

et al., 2013). The strong solar insolation at the equator initiates widespread convection
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Figure 1.5: The most frequent and the second frequent cloud types identified as the
bottom and top layers of multi-layered cloud systems (Hang et al., 2019).

and drives the tropical Hadley cell, which influences the cloud regimes seen in both the

tropics and the subtropics (Figure 1.6c). On the ascending branch of the Hadley cell near

the equator, we generally observe active areas of convection, which create a combina-

tion of shallow cumulus, deep convective clouds, and upper-level cirrus clouds that result

from dissipating anvils and other large-scale weather disturbances (Sassen, 2002). On

the descending branch of the Hadley cell in the subtropics, we typically observe low-level

stratus, primarily in eastern ocean basins with a source of cool ocean water (Arakawa

1975; Klein and Hartmann 1993). The frequency of these tropical clouds can be seen in
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Figure 1.7.

Figure 1.6: Cross sections of general circulation patterns and cloud regimes associated
with them (Boucher et al., 2013).

In the mid-latitudes, baroclinic cyclones dominate the general circulation, and

frontal ascent creates clouds spanning from shallow cumulus and stratocumulus to nimbo-

stratus, cumulonimbus, and upper-level cirrus, most frequently along mid-latitude storm

tracks (Figure 1.6b, Figure 1.7). In polar regions, the shallow polar cell primarily con-

tributes to the development of low-level stratus clouds that vary seasonally with sea ice

extent (Eastman and Warren, 2010). While other microscale and macroscale processes

influence the condensation processes that create these clouds, atmospheric dynamics play

a key role. However, in cases when the large-scale forcing is weak, such as with the forma-

tion of some cirrus clouds, localized dynamical processes remain important (Mace et al.,
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Figure 1.7: (a–c) December–January–February mean high, middle and low cloud
cover from CloudSat/CALIPSO 2B-GEOPROF R04 and 2B-GEOPROF-LIDAR
P1.R04 data sets for 2006–2011 (Mace et al., 2009); (e–g) same as (a–c), except for

June–July–August (Boucher et al., 2013).

2001). Without localized processes such as turbulent mixing, condensation and freezing,

and other microphysical processes, we would not be able to understand clouds as we do

today.

However, clouds are not solely a product of atmospheric motions; rather, they in
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turn work to influence the atmosphere around them through coupled dynamic, hydro-

logical, and radiative processes such as the transport of atmospheric water vapor, redis-

tribution of sensible and latent heat, and the modification of regional solar and infrared

radiation balance (Arakawa 1975; Rogers and Yau 1996). Through this cycle, clouds act

to influence the atmosphere and the global climate, which in turn adapts and responds

by modifying the clouds present in the atmosphere. Understanding these cloud-climate

interactions and feedbacks from various cloud types is essential to improving climate

models and climate processes.

One of the primary influences that clouds have on the global climate is their ability

to influence incoming and outgoing radiation beyond that of the clear atmosphere. The

atmospheric absorption spectrum is displayed in Figure 1.8 (Marshall and Plumb, 2007).

We see that the clear atmosphere absorbs a significant amount of outgoing longwave radi-

ation, especially near the peak of infrared radiation emitted by the Earth. When looking

specifically at the absorption by water vapor in the infrared spectrum, we see that water

vapor is a near perfect absorber of infrared radiation, and must therefore be a near perfect

emitter of infrared radiation as well, being in thermal equilibrium with its environment.

When we incorporate clouds into our analysis, we see similar patterns. Figure 1.9 (Petty,

2006) shows an example of the scattering features of water and ice clouds. We see that in

most of the shortwave spectrum, both liquid and ice clouds can rather effectively scatter

shortwave radiation, while as we transition to the thermal infrared spectrum, clouds grad-

ually become less effective at scattering and instead have higher absorption of infrared

radiation (and higher thermal emissivity as a result).
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Figure 1.8: (a) The normalized blackbody emission spectra for the Sun (T = 6000K)
and Earth (T = 255K) as a function of ln λ, where Bλ is the blackbody function and
λ is wavelength. (b) The fraction of radiation absorbed while passing from the ground
to the top of the atmosphere as a function of wavelength. (c) The fraction of radiation
absorbed from the tropopause (typically at a height of 11 kilometers) to the top of the

atmosphere as a function of wavelength (Marshall and Plumb, 2007).

The emissivity features of clouds can be confirmed and visualized with Figure 1.10

(Webster, 1994), which shows the relationship between cloud type and infrared emissiv-

ity. The broadband infrared emissivity of most cloud types is near unity, which indicates

that most clouds behave like blackbodies in the infrared spectrum and are near perfect

absorbers and emitters of infrared energy. The peak wavelength and the intensity of



14

Figure 1.9: Single scatter albedo as a function of wavelength for water and ice spheres
(Petty, 2006).

infrared emission by clouds are related to the temperature of the cloud, as evident by

Wien’s Displacement Law and Planck’s Law, respectively, with cooler clouds emitting ra-

diation that is both less intense and primarily at longer wavelengths than warmer clouds.

This will become important when analyzing the differing radiative effects of clouds at

different levels in the atmosphere. In summary, not only do clouds absorb a large portion

of outgoing longwave radiation, they do so near perfectly, and thus can play a large role

in the atmosphere’s longwave radiative budget.

Looking again at Figure 1.9, we see that liquid and ice clouds scatter almost all

and absorb little visible radiation, which is in the peak of emitted solar radiation. Since

the absorption of visible radiation is near zero among both liquid and ice clouds, clouds

will either reflect or transmit this type of shortwave radiation. The ability of clouds to
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Figure 1.10: Relationship of the cloud albedo and emissivity as a function of the liquid
water path of a cloud (Stephens, 1978). Cloud type with the values of liquid water path
are shown on the upper abscissa. Whereas albedo increases relatively slowly with liquid
water path, the emissivity increases rapidly. Thus, from the planetary surface, a cloud
will appear to become optically black even for relatively thin clouds. The change in

albedo grows at a slower rate with thickening clouds. (Webster, 1994)

reflect incoming solar radiation is modulated in part by a property known as cloud optical

depth. Cloud optical depth is a non-dimensional parameter that describes a cloud’s effect

on the transmittance of light through the depth of a cloud. A cloud’s optical depth is a

function of its vertical extent, the concentration of liquid or ice within the cloud, and the

size of the cloud particles, with the equation for optical depth below (Petty, 2006),

τ ∼=
3LWP

(2ρre )
(1.1)

where liquid water path (LWP) equals the liquid water content [LWC, ( g m−3)] times the

geometric thickness of the cloud (∆z). Its relationship to transmittance is also described
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here,

t(z1, z2) = exp[
−τ(z1, z2)

µ
] (1.2)

where µ = |cos(θ)| and θ is the zenith angle. Here, we see that a cloud’s optical depth is

directly proportional to its liquid water path (or ice water path when the cloud is an ice

cloud), and inversely proportional to the effective radius of the cloud. Furthermore, we see

through eqn. 1.2 that as a cloud’s optical depth increases, less radiation is transmitted

through the cloud; it therefore must be either reflected or absorbed. Since clouds are

generally poor absorbers of visible radiation (Figure 1.9), they have the tendency to

reflect visible radiation, which is at the peak of incoming solar radiation. An exception to

this is in the near infrared, for which absorption may be significant at some wavelengths.

Furthermore, as a cloud’s optical depth increases, it must reflect more incoming solar

radiation, since the incident solar radiation is not being entirely absorbed or transmitted.

This is shown in Figure 1.10, which shows that as a cloud increases in its liquid water

path (or ice water path), its albedo increases, and it becomes more reflective of shortwave

radiation.

Thus, we have learned that clouds are poor absorbers and good reflectors of visible

radiation, and near perfect absorbers and emitters of thermal infrared radiation. These

properties, however, depend on cloud type and optical depth. Generally, as evidence from

Figure 1.10, clouds become more effective reflectors and absorbers, albeit at different

rates, with increasing optical depth. The way that cloud radiative effects are quantified

and the unique relationship between absorption and reflection for clouds at different

heights in the atmosphere are described below. Here, we focus on clouds at lower levels
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and clouds at upper levels, given that their opposing characteristics tend to also give

them opposing radiative effects.

The manner in which different cloud types moderate the Earth’s radiative balance

can be quantified into a term called the cloud radiative effect (CRE), or cloud forcing.

The cloud radiative effect (CRE) is defined below as the difference between the net clear

sky flux and all sky flux (Hartmann et al. 1986; Ramanathan et al. 1989; Henderson

et al. 2013):

CRE = (Fupwelling − Fdownwelling)clear − (Fupwelling − Fdownwelling)all sky (1.3)

A positive net CRE at the top of the atmosphere indicates that clouds have a warming

effect on the atmosphere, whereas a negative net CRE at the top of the atmosphere indi-

cates that clouds have a cooling effect on the atmosphere. Based on various observational

studies, the global and annual average net top of atmosphere (TOA) cloud radiative effect

is near −20 W m−2 (Henderson et al. 2013; L’Ecuyer et al. 2019). However, as described

above, regional cloud regimes contribute varying shortwave and longwave net CRE to

the global average. Globally averaged, clouds tend to cool the climate system, despite

regional variations in cloud type and height.

Knowing what we know about the impact of clouds on incoming solar and outgo-

ing terrestrial radiation, as well as the general characteristics of clouds seen in the low

and high levels, we can determine the effects that both high and low clouds have on the

radiation balance. Single-layer low-level clouds tend to have a net cooling effect on the
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atmosphere, with radiative effects ranging from −8.3 W m−2 to −1.3 W m−2 depending

on the type of low-level cloud (L’Ecuyer et al., 2019). This occurs because being opti-

cally thick and bright, they have a tendency to reflect incoming shortwave radiation, as

described above. In the thermal infrared spectrum, they absorb and emit almost all of

the incident infrared radiation that they encounter. Since the cloud top temperature of

low-level clouds is comparable to surface temperatures, these clouds emit comparable, al-

beit slightly less, upwelling thermal radiation than a scenario without the low-level cloud

present. In other words, the emission temperature of low clouds is quite similar to that of

the surface; thus, by Planck’s Law, these clouds emit nearly equal amounts of longwave

radiation as a clear-sky scenario. Compared to the cooling effect these clouds have from

reflecting incoming solar radiation, their interference with net outgoing longwave radia-

tion is small; thus, the dominant influence that low-level clouds have on the atmosphere

is a cooling effect.

Single-layer cirrus clouds tend to have a net warming effect on the atmosphere

of 2 W m−2 (L’Ecuyer et al., 2019). Due to their altitude and the relative scarcity of

water and CCN available for ice particle growth, these high clouds tend to be optically

thin, with lower concentrations of particles than low-level clouds. This leads to a lower

albedo for these types of clouds, as shown in Figure 1.10. Furthermore, being higher in

the atmosphere, the emission temperature of these clouds is much cooler than that of

the surface. Thus, the radiation they emit is both at longer wavelengths and less intense

than that from a clear-sky scenario. This means they have a much stronger greenhouse

effect than lower level clouds, and thus the dominant influence that single-layer high level
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clouds have on the atmosphere is a warming effect.

Figure 1.11: Annual mean net cloud radiative effects at the top-of-atmosphere
(W m−2). Radiative effects are separated by cloud type determined based on CloudSat’s
2BCLD classification. All flux data presented are from CloudSat’s 2BFLX algorithm,
2007-2010. The area-weighted global average (in W m−2) is shown in parentheses.

(L’Ecuyer et al., 2019)

However, in multi-layer scenes, the net radiative effect of the cloud column is

negative, and these multi-layer environments tend to cool the planet by an average of

−6.1 W m−2 (L’Ecuyer et al., 2019). This is due to the reflectivity of lower level clouds

exceeding the greenhouse effect of the upper-level clouds, leading to an overall cooling

effect of clouds in multi-layer scenes. Therefore, the radiative effect that upper-level ice

clouds have on the atmosphere is cloud-scene dependent, and changes based on the num-

ber of cloud layers in the column. These radiative effects, based on cloud type, can be



20

seen in Figure 1.11 (L’Ecuyer et al., 2019).

While clouds on average work to cool the global climate system in the present, it

is possible that clouds will have different net radiative effects in a warmer climate. When

under the influence of a warming atmosphere, changes in cloud regimes have the potential

to alter the Earth’s radiative balance, influencing the net CRE on a global scale. The

cyclical nature of these cloud-climate interactions can be depicted in Figure 1.12 (Schnei-

der, 1972).

Figure 1.12: Flow chart illustrating the possible role of cloudiness as a climatic feed-
back mechanism. The arrows represent the order in which calculations would be made
by a climate model attempting to predict the effect of changes in environment (e.g.,

∆CO2) on the climate (Schneider, 1972).

We see that a change in carbon dioxide, for example, (Figure 1.12b) creates a

change in radiative fluxes and initiates a response by various meteorological variables,

which in turn initiates a response by clouds and creates a feedback loop that continues
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to change radiative fluxes and climate properties until an equilibrium is reached. The

response by clouds to changes in atmospheric variables include geographic shifts to cloud

regimes, vertical changes in cloud composition, and microphysical changes in response to

changes in water vapor and aerosols. Here, we focus on the effects that a warmer climate

has on the horizontal and vertical components of global cloud composition, as those are

easier to analyze and model than changes in microphysical properties.

Figure 1.13: Robust cloud responses to greenhouse warming (those simulated by
most models and possessing some kind of independent support or understanding). The
tropopause and melting level are shown by the thick solid and thin grey dashed lines,
respectively. Changes anticipated in a warmer climate are shown by arrows, with
red color indicating those making a robust positive feedback contribution and grey
indicating those where the feedback contribution is small and/or highly uncertain. No

robust mechanisms contribute negative feedback. (Boucher et al., 2013)

Projected shifts in cloud regimes in a warmer atmosphere are depicted in Fig-

ure 1.13 (Boucher et al., 2013). A warmer climate has the potential to increase the height

of high clouds in both the tropics and mid-latitudes, as the tropopause is projected to

increase in height, which can allow clouds to form at higher altitudes (Santer et al., 2003).

This can increase the greenhouse effect that high clouds impose on the atmosphere, since

their emitting temperature becomes cooler (Schneider, 1972). Further projected cloud
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changes include a broadening of the Hadley cell and poleward shift of the mid-latitude

storm tracks. The broadening of the Hadley cell has the potential to influence the low-

level stratus clouds observed over the subtropics, which are major contributors to the

total negative CRE of single-layer low clouds and multi-layer clouds presently. The pole-

ward shift of mid-latitude storm tracks has the potential to move clouds to areas with

less sunlight, which will diminish their cooling albedo effect and limit their ability to

reflect solar radiation in single-layer and multi-layer scenes. Furthermore, coupled with

the expanding troposphere and the increasing height of mid-latitude clouds, the CRE

of mid-latitude clouds could become more positive. Changes in cloud amount do not

necessarily always imply changes in the Earth’s radiative balance, since changes in high

and low cloud amounts and locations can have opposing radiative effects and other cloud-

climate feedbacks may be at play besides those mentioned here, such as interactions with

aerosols (Schneider, 1972). However, some of these projected changes in cloud amount,

specifically related to single-layer high clouds, could have a positive radiative effect and

amplify atmospheric warming; thus, those feedbacks are essential to analyze for improv-

ing climate projections.

In order to quantify the effects of changing cloud regimes in a warmer climate,

we need accurate measurements of clouds in the present, specifically of upper-level ice

clouds in single- and multi-layer environments. Specifically, focusing on multi-layer cloud

retrievals is essential to reducing uncertainty with climate projections, as these multi-

layer clouds tend to occur more frequently than single-layer cases. Furthermore, these

multi-layer clouds tend to be poorly resolved in climate models and joint observational
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datasets, due to inherent incompatibility with single-layer cloud retrieval algorithms and

various other multi-layer issues, such as problems with distinguishing between distinct

upper and lower cloud layers and single-layer mid-level clouds (Zhang et al. 2005; Bodas-

Salcedo et al. 2014). While a variety of ground-based stations are available worldwide

with cloud-measuring instruments, these stations are not ideal for compiling a global dis-

tribution of clouds and are instead more useful for regional analyses. Rather, satellite

retrievals would be better suited for this task; their global extent and their ability to

measure multiple radiative and microphysical properties of clouds make them ideal for

retrieving global cloud properties. The inherent problem of using conventional remote

sensing techniques for the retrieval of multi-layer clouds is two-fold. First, passive in-

struments tend to lack the ability to measure the vertical structure of clouds at high

resolutions or delineate various cloud boundaries in a multi-layer cloud scene (Mace et al.

2009; Mace and Wrenn 2013). Second, active instruments, while having better vertical

resolution, lack the horizontal coverage that passive sensors have and can have issues

with detecting low-level clouds due to attenuation near the surface. Despite these issues,

working through these observational difficulties and attempting to improve the detection

of these single- and multi-layered ice clouds is necessary to improve climate models and

decrease the uncertainty associated with climate change projections.
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Figure 1.14: An illustration of NASA’s Afternoon Constellation (A-Train) satellite
mission with the satellites’ respective instruments. Illustration courtesy of NASA.

1.2 A-Train Constellation and AIRS

The Afternoon Satellite Constellation (also known as the A-Train) contains a

convoy of satellites with a multitude of active and passive sensors that measure key com-

ponents of the atmosphere and improve our understanding of the processes that affect

climate (NASA 2003; L’Ecuyer and Jiang 2010). The formation of these satellites al-

lows for various collocated and synergistic measurements, meaning that more information

about the condition of the Earth is obtained from the combined observations than would

be possible from the sum of the observations taken independently (NASA, 2003). The

tools on these satellites help evaluate the accuracy of climate models and how well they

represent present-day atmospheric processes, such as the water cycle, surface-atmosphere



25

exchange, energy balance, and the composition of the atmosphere, specifically related

to greenhouse gases, aerosols, and clouds. Without accurate representation of present-

day atmospheric processes, climate model projections remain uncertain; thus, confirming

their accuracy with observations is essential. Beyond climate model validation, this con-

stellation of satellites can also provide data for present-day research, weather forecasting,

and policy making, and thus is an essential source of data for environmental monitoring

and policy.

NASA describes the A-Train constellation as follows:

NASA and its international partners operate several Earth-observing satellites that
closely follow one another along the same (or very similar) orbital “track.” A par-
ticular example of a coordinated group of satellites are in a sun-synchronous polar
orbit, crossing the equator in an ascending (northbound) direction at about 1:30
PM local solar time, within seconds to minutes of each other—hence the name
Afternoon Constellation. This allows near-simultaneous observations from a wide
variety of instruments that are synergistically used to aid the scientific community
in advancing our knowledge of Earth-system science and applying this knowledge
for the benefit of society. (https://atrain.nasa.gov)

The original A-Train satellites included Aqua (launched in 2002), Aura and PARA-

SOL (launched in 2004), CloudSat and CALIPSO (Cloud-Aerosol Lidar and Infrared

Pathfinder Satellite Observation, launched in 2006), and later included GCOM-W1 (2012)

and OCO-2 (2014). The PARASOL satellite eventually dropped out of the A-Train orbit

and ceased operations in 2013, and CloudSat and CALIPSO lowered orbits and exited

the A-Train constellation in 2018, now forming their own C-Train constellation at a lower

altitude. These satellites each are suited with a variety of instruments aimed at measur-

ing specific properties of the atmosphere that when analyzed together, can paint a more

https://atrain.nasa.gov
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accurate and complete picture of the Earth’s atmospheric processes.

The Aqua satellite, aptly named, focuses on the study of water in the earth

system; it carries six instruments that retrieve properties about water in the atmo-

sphere, temperature profiles, aerosols, land surface properties, radiative fluxes, and many

other aspects of the global climate system (Parkinson et al., 2006). With a period

of 98.8 minutes and a repeat cycle every 16 days, this satellite brings in nearly 90

gigabytes of earth system data per day. While it carries a variety of instruments,

such as microwave sounders and radiometers, one that has been used frequently for

the study of cloud properties is the Atmospheric Infrared Sounder (AIRS). The AIRS

instrument is a high-spectral-resolution grating spectrometer that contains 2378 chan-

nels that measure infrared radiation at wavelengths from 3.74–15.4 µm (Parkinson et al.,

2006). This instrument has a spectral resolution of λ/∆λ ≈ 1200 nominal, and an

NEdT at 250 K of 0.07–0.40 K from 3.75–11 µm and 0.27–0.68 K from 11.75–15.4 µm

(https://airs.jpl.nasa.gov/mission and instrument/instrument/specs). Combined with a

13.5 kilometer resolution at nadir and a swath width of about 800 kilometer on each side

of the ground track, the AIRS instrument is able to collect very high-resolution infrared

radiance data over a large section of the Earth at once. This radiance data can be used

to detect clouds in the atmosphere, due to the manner in which they influence the out-

going radiation, and the high-spectral-resolution of this instrument can be utilized near

atmospheric absorption bands to derive vertical profiles of atmospheric variables, despite

being a passive and non-probing instrument.

Other essential A-Train satellites that have been used for the retrieval of cloud

https://airs.jpl.nasa.gov/mission_and_instrument/instrument/specs
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properties are the CloudSat and CALIPSO satellites. Now located in the C-Train constel-

lation, these two satellites contain active instruments essential for the retrieval of the verti-

cal structure of clouds. The CloudSat satellite contains onboard a 94-GHz cloud profiling

radar (CPR) with 500-meter vertical resolution from 0-25 kilometers above the surface,

which can detect over 80% of liquid water clouds and over 90% of ice clouds (NASA,

2003). The CALIPSO satellite contains onboard a lidar instrument called CALIOP

(Cloud-Aerosol Lidar with Orthogonal Polarization), a nadir pointing dual-wavelength

polarization lidar at 532 nanometers and 1064 nanometers, with a horizontal resolution

of 30 meters from 0-40 kilometers above the surface and a footprint spacing of 333 meters

along track (NASA, 2003). The CALIOP instrument is able to provide more information

about the phase of the water present in the cloud, the boundaries of cloud layers in the

atmosphere, and the particle size of cloud droplets, providing complementary information

to CloudSat and other A-Train satellites. Together, these satellites are able to measure

the properties of a variety of clouds observed worldwide in the atmosphere. However,

their high vertical resolution comes at a cost of horizontal coverage, and their horizontal

swath is nothing compared to that of infrared sensors in the A-Train constellation, which

is why we are focusing on the AIRS instrument in this analysis.

We chose to focus on the AIRS instrument in this analysis rather than other in-

frared sounders (namely IASI and CrIS) because of the nature of the A-Train instruments

and the opportunities for joint retrievals among the A-Train instruments. Joint retrievals

among the AIRS instrument and other active and passive co-located A-Train instruments

can increase the confidence in the types of observed global cloud scenes. While we do



28

not attempt to combine measurements from other A-Train instruments here, we believe

that analyzing the way we use the AIRS instrument can improve joint retrievals with

other A-Train sensors in the future. However, repeating this analysis for other infrared

sounders, such as IASI and CrIS, could lead to some interesting insights due to differences

in the way these sensors make atmospheric measurements (Smith et al., 2015). Namely,

these instruments are not grating spectrometers like AIRS; rather, both IASI and CrIS

are Fourier transform spectrometers, which do not have issues with bad channels like the

AIRS instrument, an issue we will discuss later in this analysis.

1.3 Current Research on Satellite Retrievals of Cloud

Properties

Retrieving properties of clouds from satellites is no easy task and depends on the surface

type over which the clouds reside, the number of cloud layers, the time of day, and the

various properties of the clouds, including their thickness, altitude, particle size, and ice

or liquid water content. Generally, the process of cloud retrieval involves identification

of the cloud and retrieval of its properties. The first process of identifying a cloud can

involve comparing observed TOA radiances from passive satellite instruments to those

expected in a cloud-free atmosphere to see if clouds are present and their large-scale

structure (Minnis, 2002). From there, the measured signal needs to be processed to de-

termine what cloud properties could create the radiances observed across wavelengths.

Often, radiative properties of water, such as emissivity and reflection; absorption features
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of atmospheric constituents, such as carbon dioxide; and differences in radiances in in-

frared window channels are exploited to infer the properties of clouds in a column from

passive instruments (Stephens and Kummerow, 2007). For example, known differences

in scattering features across the infrared spectrum among liquid and ice clouds can be

exploited to infer the phase of observed clouds (Figure 1.9). Retrieving cloud properties

can also be done with active instruments, such as cloud radar or lidar, to measure the

internal structure of clouds. From active instruments, such as the 94 GHz cloud radar

on CloudSat and the CALIOP lidar instrument on CALIPSO, more direct measurements

of cloud properties are possible. The 94 GHz cloud radar, like that on board CloudSat,

is at a frequency that has a local minimum in absorption by atmospheric constituents

across varying humidities (Lhermitte, 1988). Its beam is also able to extend deep into

the atmosphere to measure the properties of near-surface layer clouds (Lhermitte, 1988),

which gives a more complete picture of all of the clouds present in the atmosphere. The

time and direction of the backscattered radar echo can yield insight into the location of

cloud droplets in the column, whereas the strength of the signal can yield insight into

the size and kind of cloud particles present (Wang, 2013). Lidar is able to complement

radar measurements by utilizing visible light instead of microwave. Since visible light

cannot penetrate through thick clouds, lidar is often used for the detection of cirrus

clouds (Wang, 2013). Dual-polarization, such as that found on CALIOP, can provide

insight into the shape of the cloud particles, which can be useful when the phase or type

of cloud droplet is ambiguous. Comparing cloud retrievals of active and passive sensors,
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specifically retrievals of cloud top height, shows broad agreement among these various ac-

tive and passive instruments, although inconsistencies can arise from retrieval algorithm

differences and instrumentation differences (Weisz et al., 2007).

Once we identify spectral regions that contain information about the cloud prop-

erties of interest, the measurements from these channels need to be processed. This can

occur through retrieval algorithms based on theory or empirical data analysis, inverse

methods such as optimal estimation, or others types of algorithms, such as the opera-

tional AIRS retrieval method (e.g. Kahn et al., 2014) or the dual regression algorithm,

(Weisz et al. 2011; Smith et al. Smith et al.) which can retrieve vertical cloud and ther-

modynamic profiles under all sky conditions in near-real-time. Some of these methods

involve using a cloud-clearing retrieval, which derives non-cloud-related atmospheric pa-

rameters from “clear sky” radiances that are estimated from various linear combinations

of channels sensitive to clear-sky properties, as well as optimal estimation, which is used

to retrieve cloud optical depth, particle size, and cloud temperature.

1.4 Shortcomings

Ice clouds, in single-layer and multi-layer regimes, can be difficult to observe; the ther-

mal contrast between clouds and their surroundings is very low, which makes ice cloud

retrievals challenging, especially with infrared instruments alone. Furthermore, their sub-

grid-scale nature does not help the retrieval process. As a result, large discrepancies exist

in global datasets and climate models related to their properties (Eliasson et al., 2011).

Observations of these upper-level ice clouds can be impacted by the spectral domain of



31

the instrument measuring them (Stubenrauch et al., 2013), which can be sensitive to

clouds in various atmospheric layers and can make retrieving and distinguishing clouds

in multi-layer environments challenging. Furthermore, conventional observation systems

have their limitations; while active sensors, specifically those found in the A-Train con-

stellation, are often able to retrieve high-resolution information about upper-level ice

clouds in single- and multi-layer environments, they lack the same areal coverage as pas-

sive sensors, whose swath width is on the order of hundreds of kilometers, and can have

issues with attenuation, which can be a problem for measuring multi-layer clouds. And

while passive sensors cover larger swaths of the Earth than active sensors, their resolution

and inability to directly probe the atmosphere in the same way as active sensors can pose

problems for cloud retrievals. There is room for growth in retrievals using both active and

passive instruments, and optimizing the measurements we attain from these instruments

will improve our understanding of global ice clouds and their radiative effects in single-

and multi-layer environments.

1.5 Research Questions

Through this study, we are looking to supplement satellite retrievals of mid-latitude ice

clouds by focusing on which AIRS channels are often most sensitive to the properties of

thin, upper-level ice clouds, particularly to their cloud top temperature, optical depth,

and particle size. We are interested in learning what combinations of AIRS channels

yield the most information about high-altitude ice cloud properties in the mid-latitudes;

furthermore, we are looking to see how channels with the most information change in
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multi-layer cloud environments, where lower, liquid clouds are present. We find that

there are some similarities and differences between the AIRS channels that contain the

most information about ice clouds in single-layer and multi-layer cloud scenes; those

details will be explored in this analysis.
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Chapter 2

Methodology

A summary of the methodology used in this study is as follows. We employed a radiative

transfer model (RTM) to simulate the top-of-atmosphere infrared radiances that would

be observed if a variety of ice clouds were in a general mid-latitude atmosphere. The

ice clouds we analyzed were derived from a 6-year database of ice clouds observed over

the Atmospheric Radiation Measurement program’s Southern Great Plains (ARM SGP)

site. We took this extensive ice cloud database and used a clustering algorithm to cluster

together clouds with similar properties to narrow down that database, with each derived

cluster being representative of a larger group of observed ice clouds. To address the ques-

tion of how low clouds influence ice cloud retrievals, we added in low-level liquid clouds

of varying optical depths beneath each ice-cloud cluster to simulate multi-layer cloud

environments and see how these low-level liquid clouds influence the top-of-atmosphere

radiative budget and optimal channel selection for ice-cloud retrievals. From here, we



34

used the AIRS spectral response function to convert the simulated radiances from the ra-

diative transfer model into simulated measurements from the 2378 channels on the AIRS

sensor. Finally, we calculated the information content of each of the simulated channel

measurements to see which AIRS channels were generally most sensitive to the properties

of the ice-cloud clusters that we simulated in the RTM from both single- and multi-layer

cases. The specifics of each of these steps are described below.

2.1 Radiative Transfer Model

The radiative transfer model used in this analysis is based on the Vector Linearized Dis-

crete Ordinate Radiative Transfer (VLIDORT) model (Spurr, 2006) to simulate radiances

and Jacobians from the cloudy scenes that we prescribe it. The High-Resolution Trans-

mission Molecular Absorption (HITRAN) database (Rothman et al., 2009) was used for

gas attenuation, and the methodology of Bodhaine et al. (1999) is used for the treat-

ment of Rayleigh scattering. This model simulates line-by-line radiances and Jacobians,

which were processed with the AIRS spectral response function to simulate the radiances

observed by the AIRS instrument. Here, we assume that all of the cloudy scenes are

overcast (100%), and we assume daytime conditions. Our simulations were carried out

with a grass surface, with a spectral emissivity derived from the Advanced Spaceborne

Thermal Emission Reflection Radiometer spectral library (Baldridge et al., 2009) and an

ocean surface, with a spectral emissivity derived from Hale and Querry (1973) and Sidran

(1981). We used a constant solar zenith angle of 10 degrees and a viewing angle of 30

degrees. In our analysis, surface type had negligible influence on the channels selected as
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containing the most information about the single-layer and multi-layer cloud properties;

this result is consistent with other information content analyses of the AIRS instrument

(Chang et al., 2017). Furthermore, Chang et al. (2017) found that differences between

viewing angles had negligible effects on AIRS channel selections; thus, we only considered

one viewing angle in our analysis.

We used one standard background atmospheric profile in our analysis and inte-

grated the clouds we wished to observe into this profile. The atmospheric thermodynamic

and aerosol profile was compiled using a combination of a modeled atmospheric profile

and reanalysis data. The vertical resolution of the atmospheric profile was 500 meters

from the surface up to 20 kilometers; from here, the profile extended in layers up to 10

hPa. The profile of temperature, pressure, and atmospheric gases was compiled using

the US Standard Atmosphere (Anderson et al., 1986) and MACC reanalysis data (Inness

et al., 2013), taken over the SGP site. The MACC reanalysis dataset is from 2003–2010

and contains reanalysis data of atmospheric constituents compiled from a variety of global

observational datasets. Here, we took the mean of the reanalysis data over the SGP grid

box, coupled it with the US standard atmosphere temperature and pressure levels, and

interpolated it to a grid with 500-meter vertical resolution from the surface up to 20

kilometers, with additional levels up to 10 hPa. We then were able to take each of the ice

cloud clusters and integrate them into the atmospheric profile based on their cloud top

pressure and thickness of the cloud.

With our radiative transfer calculations, we assumed various sources of error re-

lated to the AIRS instrument, assumed temperature and water vapor profile, ice crystal
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habit, and aerosols, which we derived from Chang et al. (2017) and will describe more

extensively when we describe how we calculate information content.

2.2 Cloud Database

The Atmospheric Radiation Measurement (ARM) program hosts a variety of active and

passive ground-based instruments that monitor atmospheric variables that influence the

Earth’s radiative fluxes, with a specific goal of increasing our understanding of the inter-

action between clouds and atmospheric radiative fluxes and improving the representation

of clouds in global circulation models (Ackerman and Stokes, 2003). This program has

compiled years of data at various tropical, mid-latitude, and polar sites worldwide. Here,

we used observational data measured from the Southern Great Plains (SGP) site, with a

suite of instruments centered in Lamont, OK that measured atmospheric properties. For

this study, we consider the ice clouds observed here to be representative of the ice clouds

observed in the mid-latitudes; however, this analysis could be repeated using ice clouds

over ocean to create a more robust mid-latitude ice cloud dataset. The data used in this

study was collected from the SGP site from 2003–2009, with a 5-minute temporal scale

and 90-meter vertical resolution.

The occurrence, vertical structure, and microphysical properties of clouds at this

site are recorded by vertically pointing active ground-based sensors at the SGP central

site (Mace et al., 2006). This includes laser ceilometers, a micro-pulse and Raman lidar,

and a millimeter radar (MMCR). The laser ceilometer is used to denote cloud base in the

middle and lower troposphere; these observations are combined with observations from
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the MMCR to characterize the vertical profile of cloud properties. The MMCR is able

to record the radar reflectivity factor, the Doppler velocity, and the Doppler spectrum

width. These measurements are then plugged in to a hierarchy of algorithms to create

profiles every 36 seconds, which then are averaged into the 5-minute temporal resolution

that exists in the dataset, as described in Mace et al. (2006). Specifically, the cloud prop-

erties we focused on here for the upper-level cirrus clouds were the effective radius, ice

water content, cloud top temperature, cloud top pressure, and geometric thickness. To

derive ice water content, while a hierarchy of algorithms and parameterizations are used

at this site, we used the Liu and Illingworth (2000) algorithm for this quantity, as this was

the most reliable after data processing and quality control. This retrieval scheme relates

radar reflectivity to ice water content, and was the first in the hierarchy of algorithms

that produced all realistic values for both ice water content and effective radius. The at-

mospheric thermodynamic profiles were derived from the radiosonde record from the SGP

central site, and merged with nearby radiosondes and model data when needed. With

these ground-based sensors, we are able to create a continuous dataset from 2003–2009 of

the ice clouds observed at this site, with detailed information about their microphysical

and thermodynamic properties. From here, we were able to narrow down the clouds seen

by only choosing top-layer ice clouds, whose cloud top temperature was below -20◦C to

get our dataset of upper-level ice clouds used in this study. In this period, we were able

to extract 1.4 · 105 cloud profiles of ice phase below -20◦C, with properties visualized

in Figure 2.1. We consider these clouds to be representative of general mid-latitude ice

clouds.
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Figure 2.1: (a) Density plot showing the geometric thickness and effective diameter
(De) of the ice cloud profiles derived from the ARM SGP site from 2003–2009. (b)
Density plot showing the cloud top temperature and ice water content (IWC) of the
ice cloud profiles derived from the ARM SGP site from 2003–2009. (c) The geometric
thickness and effective diameter (De) of the ice cloud profiles from the ARM SGP site
after clustering. Each point represents one of the 500 cloud clusters; the grey points
were cloud clusters that were not analyzed, while the shaded clusters represent the 156
cloud clusters that were analyzed, shaded by the optical depth of the cluster. (d) Same
as (c), but showing the cloud top temperature and ice water content (IWC) of the ice

cloud profiles from the ARM SGP site after clustering.

2.3 Clustering Algorithm

Simulating the radiances of all of the single-layer clouds retrieved from the ARM SGP

site would be computationally intensive. Furthermore, with the aim of this study to

improve retrievals of ice cloud properties in the mid-latitudes as a whole, modeling the

specific TOA radiances with each individual ice cloud observed at this site would not be
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useful, as the likelihood of those specific clouds with their specific thermodynamic and

microphysical properties to reoccur in the future is extremely low. For these reasons, the

extracted cloud layers from this site were clustered using the non-hierarchical k-means

clustering algorithm (Wilks, 2011). The input into this algorithm is the cloud dataset from

the ARM SGP site, with values of cloud top temperature, effective particle size, geometric

thickness, cloud top pressure, and ice water content for each cloud, and a predetermined

number of centroids, with random values of these cloud variables assigned to them. The

Euclidean distance between each of the initialized centroids and each cloud point in the

dataset is calculated, and the cloud point is then assigned to the closest centroid, that

therefore has more similar cloud properties to the observed cloud point than the other

centroids. Once each point is assigned to a centroid, the centroid’s position (and cloud

variables) are then updated to the mean of the points that are assigned to it. The process

repeats until each point, which represents an observed cloud measurement, is closest to

its cluster mean and a full cycle reiteration produces no reassignments.

Here, the number of centroids chosen was subjective; the goal was to find the

number of clusters that seems to capture a majority of the range of characteristics included

in the observed SGP cloud dataset; for this study, the 1.4·105 single-layer ice cloud profiles

were reduced to 500 centroids. Once these centroids were determined, we calculated the

central optical depth of each centroid and compared it to the optical depths of the observed

cloud points assigned to each centroid. If the centroid’s central optical depth was less

than the standard deviation of optical depths assigned to that cluster center, we filtered

that cluster center out. Furthermore, centroids were filtered based on their effective
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diameter; only centroids with diameters between 10 and 120 microns were considered,

due to the limitations of the ice crystal scattering property dataset (Baum et al., 2014).

This left us with 138 initial ice cloud cluster centers to analyze and simulate, with a

range of properties shown in Figure 2.1 and Figure 2.2. Because this filtering technique

left us with very thin clouds with optical depths below 2.5, we ended up loosening our

restrictions to analyze clouds with larger optical depths. We analyzed 18 extra clusters

with optical depths above 2.5 by loosening the restriction so that the cluster’s central

optical depth be greater than 1.5 times the standard deviation of the optical depths of

the cluster points assigned to it. While this indicates that the clouds represented by

these clusters have a larger spread, we believe that analyzing these additional clusters

will expand the range of applicability of the results to more completely cover the spectrum

of cirrus cloud regimes observed in the mid-latitudes. This left us with a total of 156 ice

clusters that we analyzed.

Figure 2.2: Box-plots for each of the 156 cloud clusters analyzed in this study, map-
ping the optical depths of all of the points associated with each cluster center. The
central optical depth of each ice cloud cluster is plotted on top of the box-plots. The
green stars indicate that the standard deviation of optical depths among the points
associated with each cluster was less than the central optical depth, while the yellow
stars indicate that the standard deviation was larger than the central optical depth.



41

Figure 2.1 compares the characteristics of the observed cloud profiles from the

SGP site to the characteristics of the cloud clusters we analyzed in this study. We can

see that the cluster centers we chose to analyze are representative of the cloud properties

most frequently observed at the SGP site. Generally, we can see that the majority of

the ice clouds have a geometric thickness less than 3 kilometers, effective diameters less

than 100 microns, and ice water contents less than 0.1 g m−3; these characteristics are

echoed in the 156 cloud clusters that we derived and analyzed. Figure 2.2 plots out the

optical depths of the clusters we chose to analyze. A majority of the clusters we chose to

analyze have optical depths below 1, with all optical depths falling below about 7. This

indicates that most of our clouds are optically thin, and their other properties fall in line

with other general observations of cirrus clouds (Sassen and Campbell 2001; Sassen et al.

2008). In Figure 2.2, the clusters that we loosened our optical depth restrictions for are

highlighted; we can see that the spread of cloud optical depths associated with each of

these 18 clusters is large, and the central optical depth is therefore not necessarily the

best representation of the clouds associated with it. However, we believe that for now,

these clouds should still be analyzed until a more robust method to study optically thick

ice clouds is determined.

2.4 Liquid Cloud Database

While the purpose of this study is to improve retrievals of upper-level ice clouds in the

mid-latitudes, we know that these types of clouds are not always isolated. Rather, multi-

layer clouds, with cirrus layers in the upper levels and liquid cloud layers at lower levels
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are rather frequent (L’Ecuyer et al., 2019). Thus, liquid clouds were introduced as well

in the lower levels to simulate multi-layer cloud regimes, so we can see what effect they

would have on the retrievals of the ice-cloud properties here. These liquid clouds were

placed near the surface and were prescribed optical depths of 1, 2, 5, 10, and 20. The

effective diameter of these clouds was 20 microns, and they were placed about 1 kilometer

above the surface. These clouds had the same thickness of 500 meters, and fall within

the broad observed range of low-level cumulus observed at this site (Berg and Kassianov,

2008).

2.5 Information Content Calculation

To determine the sensitivity of each AIRS channel to changes in ice cloud properties,

we use a scalar metric called Shannon information content (Shannon and Weaver, 1949).

Shannon information content, described more in depth by Rodgers (2000), qualitatively

can be defined as the factor by which knowledge of a quantity is improved by making a

measurement. In other words, information content is the change in information provided

following a measurement. This can be visualized in Figure 2.3 (L’Ecuyer et al., 2006).

Here we see that when doing a retrieval of cloud properties, we start with the a priori

knowledge of the scene we are measuring. As we incorporate radiance observations from

different channels of our remote sensing instrument into our analysis, we can increase our

certainty about the properties of the cloud present in the environment. This decrease in

uncertainty is quantified in the metric known as information content. As we continue to

incorporate more measurements from different spectral channels, we can further decrease
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Figure 2.3: Graphical representation of the impact of adding information in a two-
dimensional retrieval using the retrieval of effective radius and liquid water path (LWP)
from shortwave reflectance measurements as an example. Each ellipse represents the
projection of the corresponding two-dimensional posterior Gaussian probability den-
sity function of solutions at the level that encompasses 95% of the possible solutions

(L’Ecuyer et al., 2006)

our uncertainty behind the cloud properties we are trying to retrieve, until eventually we

have a more accurate estimate of the cloud properties of the observed clouds in the scene.

The first measurement we incorporate into our retrieval contains the most information,

and continual measurements will further decrease the uncertainty with a retrieval until
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additional measurements add little additional information to what we know already about

the clouds we are observing.

To calculate information content, we will be following the steps outlined in Rodgers

(2000). We start with the a priori knowledge about the cloud properties we are observing.

The probability density function (PDF) of variables in a dataset is used as a measure of

the information of a system, or a system’s entropy S, where pi is the probability of the

system being in state i. Here, a system’s entropy can be defined as the change in the

logarithm of the number of distinct possible internal states of the system being measured:

S(P ) = −Σpiln(pi) (2.1)

This means that information content H, which is the change in information following

a measurement, can be written as follows. Here, P1 describes the knowledge before a

measurement and P2 describes the knowledge after a measurement:

H = S(P1) − S(P2) (2.2)

In other words, Shannon information content describes the decrease in uncertainty of a

system state following a measurement.

We can apply this methodology to remote sensing, where the measurements here

are from the AIRS channels and the variables of interest are the cloud variables from the

prior clustering database. Here, we assume a linear Gaussian distribution for the prior

and posterior PDFs, as done in Rodgers (2000). We can then rewrite our equation for
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the information content of each AIRS channel, H, as follows,

H = S [P (x)]− S [P (x|y)] (2.3)

=
1

2
ln|Sa| −

1

2
ln|Ŝ| (2.4)

=
1

2
ln|Ŝ−1Sa| (2.5)

where Sa and Ŝ are the prior and posterior error covariance of the retrieved variables,

respectively. Here, Sa is obtained from the climatological variance of the natural log of

the retrieved cloud properties (ice cloud optical depth, effective diameter [µm], and cloud

top temperature [K]) from the ARM SGP ice cloud data set that we compiled. Sa is a

3x3 matrix populated by the variance of the ice cloud properties in its diagonal, and the

covariance of these properties in its off-diagonal elements, listed below:

Sa =



var [ln(τ)]
4.927

cov [ln(τ), ln(De)]
0.655

cov [ln(τ), ln(CTT)]
-0.014

cov [ln(τ), ln(De)]
0.655

var [ln(De)]
0.277

cov [ln(τ), ln(De)]
0.011

cov [ln(τ), ln(CTT)]
-0.014

cov [ln(De), ln(CTT)]
0.011

var [ln(CTT) ]
0.002



Ŝ−1 can be written as the following, as shown in Rodgers (2000):

Ŝ−1 = KTSε
−1K + S−1

a (2.6)
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Here, K is the calculated Jacobian matrix. The Jacobian matrix contains the first-

order partial derivatives of the simulated radiances at each AIRS channel with respect to

various ice cloud parameters. In other words, it represents the sensitivity of the radiances

simulated at each AIRS channel to the ice cloud parameters, specifically ice cloud optical

depth, effective diameter, and cloud top temperature. We define the Jacobian matrix K

as

K =



∂Iυ1
∂ln(τ)

∂Iυ1
∂ln(De)

∂Iυ1
∂ln(CTT )

∂Iυ2
∂ln(τ)

∂Iυ2
∂ln(De)

∂Iυ2
∂ln(CTT )

...
...

...

∂IυN
∂ln(τ)

∂IυN
∂ln(De)

∂IυN
∂ln(CTT )


where Iυi is the radiance of channel i at AIRS channel υi, τ is cloud optical depth, De is

effective diameter, and CTT is cloud top temperature. Each row represents how sensitive

the radiances simulated at each channel are to incremental changes in ice cloud proper-

ties. Sε is the measurement error covariance matrix, defined as the sum of individual,

uncorrelated error covariance matrices from the various measurement sources of error,

Sε = Sy + ST + Swv + Shabit + Saerosol (2.7)

where Sy is the instrument error covariance matrix which is assumed to be diagonal, ST

is the temperature uncertainty, Swv is the humidity uncertainty, Shabit is the error due

to ice crystal assumptions, and Saerosol is the error due to aerosols. Here, Sε is a non-

diagonal matrix; however, when calculating the information content of each channel, only
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the diagonal elements are used, as we will see below. The AIRS instrument error matrix,

Sy, is derived using the AIRS NeDT (Noise Equivalent Temperature Difference) values,

and the other relative values for the various sources of uncertainty used to calculate the

error covariance matrix Sε are shown in Figure 2.4. The methods used to calculate these

various measurement sources of error are derived from Chang et al. (2017), and will not

be discussed in-depth here.

Figure 2.4: Uncertainty due to the specified source for AIRS channels. Percentages
indicate the magnitude of the error standard deviation relative to the mean radiance

of the simulations used to generate each uncertainty (Chang et al., 2017)

The error estimates associated with each channel from the various measurement

uncertainties are incorporated into the calculation of information content for each channel;
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if one channel has high errors associated with one of the measurement sources above, for

instance due to instrument error, the information content contained in that channel might

be less than other channels. The measurement of that channel has a high uncertainty

associated with it; thus, adding it to our analysis would not necessarily decrease our

uncertainty about the cloud properties being observed.

Using this methodology, we are able to calculate the information content of each

AIRS channel observation based on each channel’s sensitivity to ice cloud optical depth,

effective diameter, and cloud top temperature, while incorporating various sources of

uncertainty into the calculation. We modify the equations above so that we can calculate

the information content of each channel Hi as follows:

H =
1

2
ln |Sa (KTSε

−1K + S−1
a )| (2.8)

Hi =
1

2
ln |Sa (kT

i σ
−2
i ki + S−1

a )| (2.9)

Here, σ−2
i represents the diagonal element of Sε

−1 for channel i.

After the information content is calculated for all channels, the channel with the

most information is selected. Since we want to incorporate multiple AIRS channels into

our analysis to maximize the information we gain about the ice clouds, we select the

channel with the most information first, remove it from consideration, and repeat the se-

lection process again. The selected channel is then “added” to the a priori error covariance
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matrix Sa in the following manner,

Sa, new = (ki
T σ−2

i ki + Sa
−1)

−1
(2.10)

where ki is the i th row of the Jacobian K, and by assuming that the observation error

covariance is diagonal, we get the error variance σ−2
i . We then repeat the calculations

and update the a priori error covariance matrix to select other channels that are most

complimentary to those picked previously. We do this calculation three times, as done

in Chang et al. (2017), to pick the top three channels that provide the most information

about the cloud properties of interest.

An example of the product of these calculations is shown in Figure 2.5. Figure 2.5

shows the information content of each AIRS channel in the presence of one of the single-

layer ice clouds we analyzed. Once we calculate the information content of each AIRS

channel, we find the channel with the most information and add it to the a priori error

covariance matrix, as described above, and repeat the process until we have our specified

number of channels selected with the most information about the cloud scene. Notice

how after each channel addition, the amount of information contained in each channel

measurement decreases. This occurs because our uncertainty about the cloud properties

we wish to retrieve is decreasing, and so there is not as more information to be gained as

we incorporate more and more channels into our analysis.
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Figure 2.5: Example of calculated values of information content for all channels in
the AIRS spectrum. This example is for one of the single-layer ice cloud clusters we
analyzed. The channels with the most information content after each of the three

iterations are starred.
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Chapter 3

Results

From our initial results, we can see that there are some noticeable differences in atmo-

spheric radiances in cases with single-layer ice clouds and multi-layer clouds. Figure 3.1

shows an example of one of the ice cloud clusters that was analyzed, with the modeled

AIRS brightness temperature spectra plotted for the single-layer cloud and the five multi-

layered cases that involve that upper-level ice cloud. We see immediately that once a low

cloud is introduced beneath the upper-level ice cloud, the observed brightness tempera-

tures from AIRS change noticeably in the shorter wavelength part of the AIRS spectrum

(3.8-4.2 µm) and in the broad infrared window region (8-13 µm). In fact, the brightness

temperatures in the shorter wavelengths increases as we transition to multi-layer scenes,

whereas brightness temperatures decrease in the window region as we transition to multi-

layer scenes. This makes sense, as in multi-layer cloud scenes, the presence of an optically



52

Figure 3.1: An example of the brightness temperature spectra that we calculated
for each ice cloud cluster using the radiative transfer model. This graph includes the
spectra for the single-layer ice cloud (“Ice Cloud”) as well as for the multi-layer scenes,
with the same ice cloud cluster as the single-layer case, but with an additional low-level

cloud with varying optical depths (1, 2, 5, 10, and 20).

thick low cloud can increase the reflection of radiation at the shorter wavelengths, increas-

ing observed brightness temperatures. Furthermore, in multi-layer scenes, the presence of

low-level clouds, when compared to the surface, reduces the outgoing longwave radiation

from the surface reaching the top of the atmosphere; this explains the decrease in the

observed brightness temperature in the infrared window region in the multi-layer cloud

scenes compared to single-layer scenes. In essence, the presence of the lower-level cloud is
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creating a more reflective, cooler surface above which the upper-level ice clouds sit; thus,

we see increased reflection in the shorter wavelengths as well as decreased emission in the

longer wavelengths in these multi-layer scenes.

Figure 3.2: An example of brightness temperature spectra showing the effect that
increasing the ice cloud optical depth of single-layer ice clouds has on the observed
brightness temperatures. The plotted brightness temperature spectra are from ice cloud
clusters with varying optical depths; their height and particle size, however, are not
consistent, so effects of differing particle size and altitude may influence the spectra.

When we analyze the brightness temperature for various single-layer ice clouds

Figure 3.2, we can see the effects of increasing optical depth of our single-layer ice clouds

on the observed brightness temperatures. While particle size and cloud top temperature
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of these clouds are not constant, we can still get meaningful qualitative insights into the

sensitivity of various AIRS channels to the various ice cloud properties. We see that

AIRS channels in the broad infrared window region (from 8-13 µm) seem to be the most

sensitive to the optical depth of our ice clouds, as the brightness temperatures in this

region are separating as the optical depth of our single-layer ice clouds change. This

occurs in the shortwave region of the spectrum as well to a lesser extent.

When we look at multi-layer clouds, we see similar but slightly different sensitivi-

ties in these two spectral regions. Figure 3.3 shows an example of brightness temperatures

modeled among various multi-level cloud scenarios. Here, the low-level cloud is the same,

but the upper-level ice cloud is increasing in optical depth, and again, the cloud top tem-

perature and particle size of the upper-level ice clouds are not held constant. We see here

that with the presence of a low cloud, the shortwave region between 3.8 and 4.2 µm is

even more sensitive than the single-layer cases to changes in upper-level ice cloud optical

depths. The separation between brightness temperatures increases even more than in the

single-layer cases, indicating that these shorter wavelengths might be useful for retrievals

of upper-level ice cloud properties in multi-layer scenes. The infrared window region is

also still sensitive to the ice cloud optical depths, although to a lesser extent than the

single-layer cases, indicating that channels in this range may not contain as much infor-

mation about the ice cloud properties as the shorter wavelengths in the AIRS spectrum

in multi-layer cloud scenarios. This qualitative analysis here is a good overview to the

information content analysis we are conducting, and allows us to have a more physical

interpretation of the information content calculations that follow.
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Figure 3.3: An example of brightness temperature spectra showing the effect that
increasing the ice cloud optical depth of ice clouds in multi-layer cloud scenes has on
observed brightness temperatures. The plotted brightness temperature spectra are from
ice cloud clusters with varying optical depths, with a low-level liquid cloud that has an
optical depth of 1 beneath them. The height and particle size of the ice clouds are not
consistent, so effects of differing particle size and altitude may influence the spectra.

Figure 3.4 shows the results of the information content calculations and channel

selections for each simulated single-layer ice cloud scenario. For single-layer ice clouds,

we find that the channels that are selected most frequently overall fall near 1050 cm−1

(9.5 µm) and between 850-950 cm−1 (10.5-11.8 µm), although channels near 1050 cm−1

(9.5 µm) were selected first most frequently, and thus contained the most information
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overall in these single-layer ice cloud scenarios. Other peaks in channel selection, in order

of selection frequency, occurred near 1000 cm−1 (10 µm), 725-825 cm−1 (12.1-13.8 µm),

2175 cm−1 (4.6 µm), 1200-1250 cm−1 (8 - 8.3 µm), and 2625 cm−1 (3.8 µm).

Figure 3.4: The channels that had the most information about single-layer ice clouds
for all of the ice clusters analyzed with both grass and ocean ground surfaces. The
selections are grouped into 10 cm−1 bins, and they are colored by the order that they

were selected (see Figure 2.5).

Overall, the channels selected most frequently fell in the broad infrared window region of

the AIRS spectrum (8-13 µm), which is what we predicted from qualitatively comparing

brightness temperatures for single-layer ice clouds of varying optical depths. While some

channels in the shortwave part of the AIRS spectrum are selected as containing the most
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information about single-layer ice clouds, these channels were selected infrequently, if at

all. These shorter wavelength channels overall seemed to contain much less information

than those found in the longer wavelength part of the AIRS spectrum.

Figure 3.5: The AIRS channels that had the most information about ice clouds in
multi-layer scenes. This includes the results for all of the ice clusters analyzed, each
grouped with five different low-level liquid clouds of varying optical depth, with both
grass and ocean ground surfaces. The selections are grouped into 10 cm−1 bins, and

they are colored by the order that they were selected (see Figure 2.5).

However, once lower-level liquid clouds were introduced, the channels with the

most information content about the ice cloud properties changed. Figure 3.5 shows the
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results of the information content calculations and channel selections for each simulated

multi-layer cloud scenario. This includes all simulations of the 156 ice cloud clusters,

each above the five different low-level clouds we introduced with varying optical depths.

The channels selected most frequently in these multi-layer scenes shifted to the shortwave

part of the spectrum, and are primarily concentrated between 2400-2650 cm−1 (3.8-4.2

µm). These channels, which were rarely selected as containing the most information in

single-layer cases, became significantly more important once a low-level cloud was intro-

duced into the column. Channel selections between 850-950 cm−1 (10.5-11.8 µm) still

were selected frequently in the multi-layer scenes, as well as channels between 725-825

cm−1 (12.1-13.8 µm) and 2175 cm−1 (4.6 µm). However, the shortwave channels were

selected with much higher frequency in the multi-layer scenes.

Figure 3.6 summarizes the results we found from our information content analysis.

Figure 3.6a shows the channels with the most information for the single-layer ice cloud

cases, while Figure 3.6b-f shows the channels with the most information about ice clouds

in the multi-layer cases, with optical depth of the low cloud increasing down the y-axis.

We can see that in multi-layer cases, as the low-level cloud’s optical depth increased,

shorter wavelength channels were selected more frequently than the longer wavelength

channels overall as containing the most information about ice cloud properties. This shift

is just a shift in the frequency of channel selection. New channels or ranges of channels

were not being selected with different low-level clouds; rather, the same channels were

selected in nearly all of our multi-layer cloud scenarios, but the frequency of selection is

what changed, with the shortwave channels being selected more frequently as the optical
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Figure 3.6: (a) AIRS channels with the most information about ice clouds for the
single-layer cases, grouped into 10 cm−1 bins. (b) AIRS channels with the most infor-
mation about ice clouds for the multi-layer cases, with all ice-cloud clusters above a
standard low cloud, with an optical depth of 1, grouped into 10 cm−1 bins. (c) Same
as (b), but the low cloud has an optical depth of 2. (d) Same as (b), but the low cloud
has an optical depth of 5. (e) Same as (b), but the low cloud has an optical depth of

10. (f) Same as (b), but the low cloud has an optical depth of 20.

depth of the lower-level cloud increased. However, this effect saturates with increasing

low-level optical depth, to the point where after the low-level cloud’s optical depth exceeds

a value of 5, the channels selected seem to remain the same as the low-level cloud becomes

more optically thick. An example of this saturation effect is pictured in Figure 3.7; here,

the channels selected transition from longer wavelengths to shorter wavelengths as the
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optical depth of the low cloud increases. While most scenarios transition to short wave-

length selections as soon as low clouds are introduced, some transition as the low cloud’s

optical depth begins to increase. Furthermore, what is interesting about this result is

that the amount of information about the upper-level ice cloud tends to increase, specif-

ically in the shortwave spectrum, once the scene transitions from a single-layer ice cloud

scene to a multi-layer scene. From this analysis, we can start to see that the amount of

information available in the AIRS shortwave channels about the upper-level ice clouds is

higher in multi-layer cloud scenes than single-layer scenes; however, this claim needs to

be tested more robustly to be definitive, and theories for why this is need to be explored.
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Figure 3.7: An example of the information content calculation and channel selection
(see Figure 2.5) for the single-layer case (top) and the multi-layer cases.



62

Chapter 4

Discussion

The channels selected here for the retrieval of ice clouds in single- and multi-layer scenes

fall in line with many cloud-retrieval analyses and algorithms. Channels in the infrared

window region were often selected to contain high values of information about ice clouds

for both single- and multi-layer cases. This makes sense, as the absence of absorption by

atmospheric constituents allows for easier retrievals of cloud top temperature. Specifically,

the split-window technique, which utilizes differences in brightness temperatures between

two channels near 10.8 and 12 µm, has been shown to be successful at retrieving the

properties of thin cirrus, specifically related to optical depth and particle size (Inoue

1985; Prabhakara et al. 1988). Channels selected in the longer part of the AIRS spectrum,

specifically near 725-825 cm−1 (12.1-13.8 µm), fall near the CO2 absorption band, and are

utilized in the CO2 slicing technique to retrieve the vertical position of clouds, especially

for optically thin clouds like cirrus (Smith and Platt 1978; Minnis 2002).
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For multi-layer clouds, we saw that channels in the shortwave part of the AIRS

spectrum, specifically from 2400-2650 cm−1 (3.8-4.2 µm), contained a significant amount

of information about the upper-level ice clouds. The source of radiation in this shortwave

range is almost certainly from sunlight being reflected off of low-level clouds. Higher

observed radiances in this shortwave window region near 4 µm, compared to in the 11

µm infrared window region, can distinguish clouds from the ground and can indicate

that there is indeed a low-level cloud present or that multiple cloud layers exist in the

column (Minnis, 2002). Therefore, coupling measurements in the shortwave and infrared

window regions can distinguish single-layer from multi-layer cloud regimes, similar to

what we saw in our information content analysis of multi-layer cloud scenes. However,

these joint measurements go beyond simply identifying multi-layer cloud scenes; rather,

these joint shortwave and longwave measurements have been further utilized to retrieve

cloud properties as well, including particle size and other optical properties (Arking and

Childs 1985; Minnis 2002; Stephens and Kummerow 2007). One caveat of using these

shortwave channels, however, is that the source of radiation in the shortwave channels

is primarily from the sun; thus, these channels might not be as useful at night, and

separate retrievals may need to account for diurnal changes in the observed radiances in

the shortwave spectrum.

While the methodology behind these current retrieval methods is different than

what is used in this information content analysis, seeing that similar wavelength channels

have been used before for retrievals of ice cloud properties confirms that the channels we

have selected contain information about the properties of ice clouds in both single- and
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multi-layer scenes. Thus, using the results of our information content analysis to create a

retrieval algorithm for the properties of ice clouds in single- and multi-layer scenes seems

promising, a step we hope to take in the future.
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Chapter 5

Conclusion

5.1 Summary of findings

Our quest to find the optimal set of channels that can be used to retrieve the properties

of ice clouds in single- and multi-layer scenes has left us with promising results. In both

single- and multi-layer cloud scenes, we find that AIRS channels near 11 µm, 13-14 µm,

and 4.6 µm contain information about the properties of observed ice clouds. However,

in single-layer cases, channels near 8 µm, and from 9.5 – 10 µm contained information

about the single-layer ice clouds, but did not provide information about ice clouds in

multi-layer scenes. In multi-layer cases, channels from 3.8-4.2 µm contained information

about ice clouds, whereas in single-layer environments these channels were rarely selected

as containing the most information about ice clouds. Thus, we have found that a one-

size-fits-all approach to retrieving ice cloud properties might not necessarily be useful
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when creating retrieval algorithms, as channels with information about ice clouds are

sensitive to the presence of underlying liquid clouds. Thus, improving techniques to test

for the presence or absence of low-level clouds in the presence of upper-level ice clouds is

essential to improving the retrieval of ice-cloud properties in the mid-latitudes and on a

global scale.

Our results have some limitations, based on the assumptions we made and the

dataset used in this analysis. In terms of assumptions made with the radiative trans-

fer model, our analysis assumed daytime conditions, 100% overcast conditions, a stan-

dardized atmospheric profile, and we assumed measurement noise based on a variety

of estimates. The cloud dataset used to create the ice-cloud clusters we analyzed was

derived from the ARM Southern Great Plains site, using five basic low-level clouds to

simulate multi-layer cloud scenes. While our assumptions attempted to create ideal-

ized mid-latitude scenes with realistic measurement error estimates, these assumptions

may not be applicable in all cloud scenes or in more unique sub-regions within the mid-

latitudes, and our results may be sensitive to our assumptions about various sources of

error. These assumptions indicate that our results for these theoretical scenes might not

be applicable for all observed single- and multi-layer cloud scenes, and further sensitivity

analyses would improve our confidence in these results.

5.2 Future work

Expanding our information content analysis to include other passive instruments onboard

the Aqua satellite, specifically MODIS, could improve retrievals of cirrus cloud properties.
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MODIS operates similarly to AIRS, but contains more channels in the shortwave spec-

trum, which as we see from our results, contain information about the properties of ice

clouds in multi-layer cloud scenes. This joint information content analysis of MODIS and

AIRS instruments has been done before (Chang et al., 2017), and combining measure-

ments from these two collocated instruments can add additional information to retrievals

of ice clouds.

Expanding the number of ice cloud clusters and liquid clouds that we analyze

could enhance the robustness of our results and enhance our understanding of the rea-

sons why some channels are selected more frequently than others. One of the ways we can

do that is analyzing more of the cloud clusters not initially selected in this analysis, such

as those with larger optical depths that may have had too large of an effective diameter

or too large of a spread in cloud optical depth to include in our current analysis. The

ice-cloud clusters we analyzed all had optical depths below 10; while our goal was to

analyze optically thin ice clouds, expanding our analysis to optically thicker clouds will

improve our understanding of channel selections for a variety of upper-level ice clouds

and make our results more robust. Similarly, incorporating ice clouds over ocean surfaces

could increase our confidence in our results as well. In our analysis, we created general-

ized ice cloud clusters that were derived from measurements of ice clouds over the ARM

SGP site. While our results are meant to be general, and the ice clusters we analyzed

encapsulate a broad array of observed ice cloud types, the results are based on a cloud

dataset observed over land. Upper-level ice clouds over land may contain some inherent

differences to those observed over ocean due to the dominant formation mechanisms or
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synoptic-scale conditions, and finding a way to incorporate oceanic ice clouds into our

analysis could make our results more robust. Similarly, in this study, to simulate multi-

layered clouds, we incorporated idealized low-level clouds of various optical depths into

the vertical profiles; these low-level clouds were not based on observations. One way to

improve our simulations of multi-layer clouds is to use observations of low-level liquid

clouds, like we did with the ice clouds in this analysis, rather than prescribed low-level

clouds, in order to fully encapsulate the variation in multi-layer cloud regimes. If we were

to do this, incorporating observed low-level liquid clouds over land and ocean would be

beneficial as well, as the low-level liquid clouds over land and ocean can be inherently

different from each other based on their varying formation mechanisms.

Analyzing the effect of our background atmospheric profile, our radiative transfer

model assumptions, and our sources of error on our results could increase our confidence

in our results as well. Varying the background atmospheric profile used in this analysis

could simulate more mid-latitude atmospheric regimes, as the generalized background

profile we used might not always be representative of the scene on hand. Varying the

atmospheric profile could confirm that the results we see are not a strong function of trace

gases, specifically ozone, carbon monoxide, methane, and carbon dioxide. Furthermore,

pre-excluding channels in strong gaseous absorption bands, and comparing the results

to what we derived here, would be an interesting analysis. We also assume daytime

conditions in the forward model calculations. Thus, we need to take this into account

when using our results in an operational ice cloud retrieval. During daytime conditions,
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complications with solar contamination and non-LTE effects can cause the radiance mea-

surements of shortwave infrared channels, specifically those above 2300 cm−1, to be less

reliable if they are not properly accounted for in the forward model. Thus, despite the

information content that these channels may have, they might not be as reliable in an

operational setting, and they might not be useful throughout the entire diurnal cycle. By

varying the atmospheric profile to account for seasonal or regional differences, or finding

a way to use real-time atmospheric data, we could improve our confidence that the AIRS

channels selected as containing the most information are consistent throughout all mid-

latitude sites and throughout the seasonal and diurnal cycles. Similarly, conducting an

error sensitivity analysis could yield some interesting results. Modifying our assumptions

about the various sources of error in our information content calculations, either by mod-

ifying individual sources of error or, say, by doubling our error estimates, for example,

could help us see how robust our results are.

Conducting this analysis with a separate radiative transfer model could improve

our confidence in our results. More specifically, using a radiative transfer model built to

handle high-spectral-resolution channels, such as SARTA (Stand-alone AIRS Radiative

Transfer Algorithm, Strow et al. 2003), which is specifically designed to simulate AIRS

radiances, could reduce some of the uncertainty in our results. Finally, assumptions about

the measurement noise may not always be appropriate for all mid-latitude scenes. Find-

ing a more realistic error matrix, or perhaps finding a way to incorporate off-diagonal

elements into the measurement error covariance matrix, needs further investigation be-

fore this approach could potentially be implemented in an operational setting. Looking
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at the assumed error sources and analyzing the channels with the highest sources of error

could yield some interesting insights into why some channels were selected over others.

With the current information we have from the model runs, we have an idea of

which channels are most sensitive to changes in cloud optical depth, cloud top tempera-

ture, and cloud particle size. Breaking this analysis down, where we analyze the channel

selections based on individual variables could provide insight into why certain channels are

selected more frequently than others. By doing this, we could attribute channel selection

to the cloud variables each channel is most sensitive to, and gain a deeper understanding

of why certain channels are preferentially selected over others.

In this analysis, we have not developed a way to retrieve the cloud cluster proper-

ties given the radiances simulated by the radiative transfer model, and our results remain

primarily theoretical. In theory, we should be able to take the radiances from the chan-

nels with the highest information content and create an algorithm to back out the cloud

properties in the column that would be creating the modeled radiances. Operationally,

the retrieval process might not be as easy. Challenges may arise due to the assumptions

we have made in our methodology, which may not apply to all regional mid-latitude cloud

scenes. Furthermore, challenges may arise from issues with instrumentation, with issues

specific to the AIRS instrument that result from its grating instrument. For example,

some AIRS channels have high noise due to dead or popping detectors, which make these

channels unusable for retrievals (Pagano et al., 2012). Incorporating what we know about

noisy channels and other instrumentation issues into our eventual retrieval method is es-

sential for accurate retrievals. To avoid the issue of noisy channels altogether, we could
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repeat this analysis with other advanced infrared sounders such as IASI or CrIS, which

are Michelson Interferometers, both of which have some advantages over AIRS, including

a continuous spectral coverage with over 8000 infrared channels on IASI or the lower noise

on CrIS, as well as differences in instrumentation that allow these instruments to avoid

popping sensors (Smith et al., 2015).

One method to retrieve the ice cloud properties from our results involves using

optimal estimation (Rodgers, 2000), which has been used for a variety of cloud property

retrievals previously. However, using other methods, such as Bayesian techniques, could

improve our interpretation of our results and test the effectiveness of using information

content for cloud property retrievals (Petty, 2018). Finally, confirming that the obser-

vations we are modeling are realistic can improve our confidence with our results. This

can be done by looking at actual AIRS and MODIS measurements and comparing them

to our simulations to make sure that the channels that have the most information in our

theoretical analysis are useful in operational settings.
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