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Abstract

Forecasts generated by numerical weather prediction models continue to improve, but they
are far from perfect. Forecast errors can be separated into those caused by shortcomings in the
model (e.g., discretization and parameterization errors) and those caused by an imperfect estimate
of the state of the atmosphere, oceans, and land surface (i.e., the initial conditions) given to the
model. The goal of data assimilation is to eliminate the second class of errors to the greatest extent
possible, given the observations at hand. Data assimilation is often treated as a statistical problem:
Given a set of observations valid at some time, a previous forecast also valid at that time, and
information about their error characteristics, what is the initial condition that is most likely to be
closest to reality?

Morphological data assimilation is a complementary approach that seeks to use visual infor-
mation, satellite data in particular, to help define the state of the atmosphere. The connection
between satellite imagery and initial conditions in the form a model expects is made through the
use of potential vorticity and its inversion.

The results presented in this dissertation document the construction of methods necessary to
carry out morphological data assimilation in a more advanced and presumably accurate way than
previous attempts. In particular, warping, wind partitioning, and potential vorticity inversion
techniques are discussed within the context of morphological data assimilation. The potential
vorticity inversion procedure is the most involved, and its discussion takes up the bulk of the work.
Although the inversion procedure is not currently robust, prospects for the future are discussed

that may lead to further improvement.
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Chapter 1

Introduction

1.1 Background

1.1.1 Traditional approaches toward improvement of numerical weather pre-

diction

As early as a decade ago, Reynolds et al. (1994) suggested that errors in the analysis rather than
errors in the model formulation were primarily responsible for forecast errors in the extratropics
over the short-to-medium range. In the intervening decade, computer power has continued to
increase, leading to the production of numerical forecasts with higher resolution, better physics,
and more advanced data assimilation schemes. Despite these advances, large forecast errors still
occur on occasion. Buizza and Chessa (2002), Zhang et al. (2002), and Zupanski et al. (2002)
all discuss the “Surprise” Snowstorm of 2000, while McMurdie and Mass (2004) document recent
bad forecasts affecting the Pacific Northwest. Closer to home, Alberta Clippers have recently
produced unforecasted snowfalls both in Madison (12 February 2003) and near the Twin Cities (8
March 2004), while neither the Storm Prediction Center (SPC) nor local National Weather Service
(NWS) forecast offices anticipated the tornado outbreak across Illinois on 20 April 2004. Clearly
there is room for improvement.

A number of approaches have been taken in an effort to improve numerical weather forecast
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fidelity. I will focus on improvements to the initial conditions, since that avenue should have the
greatest impact on the 1-5-day range, which is the time-frame on which I wish to focus. The
three main assimilation schemes in present use, 3DVar (Three dimensional variational), 4DVar
(Four dimensional variational, time being the extra dimension), and the Ensemble Kalman Filter
(EnKF), continue to be improved. Work on 3DVar currently focuses on improving the specification
of the background error covariance matrix (e.g., Purser and Parrish 2003), and a 3DVar system
has recently been introduced for the Weather Research and Forecasting (WRF) modeling system.
4DVar relies on adjoint models, which are constantly being upgraded to keep up with their related
forward models’ development. Currently, no adjoint model for the WRF is available, making 4DVar
unfeasible with that model. EnKF requires on the order of 100 ensembles, which is very compu-
tationally intensive at present. Aside from that, the main issue preventing EnKF from becoming
widely adopted is the occasional catastrophic failure it suffers known as filter divergence. Filter
divergence occurs when model background error covariances become so small that all observations
are essentially ignored. As a result, the model forecast loses touch with reality, rendering itself

worthless.

1.1.2 Potential vorticity and its inversion

Over the last two decades, it has become evident that a good way to encapsulate the dynamics of
the atmospheric flow is through consideration of the potential vorticity (PV). This is because PV
has two particularly useful properties, conservation and invertibility (Hoskins et al. 1985). The
latter property has proven especially important to many studies that have aimed to improve or
otherwise alter model initial conditions. This is because the invertibility principle allows for the
recovery of a number of other dynamical variables given a domain-wide PV distribution, a balance
constraint, and appropriate boundary conditions on the domain. An omega equation may be used
to recover vertical motion as well. The most well-known PV inversion technique is that of Davis and
Emanuel (1991) (DE), which invokes the Charney nonlinear balance along with an approximate
form of the definition of Ertel PV, using the Exner function as the vertical coordinate. Numerous

studies have used the DE method; a notable recent example is Martin and Otkin (2004).
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QGPYV inversion is also quite popular, both in real-world (e.g., Hakim et al. 1996) and idealized
(e.g., Kim and Morgan 2002) situations. QGPV inversion is advantageous because the equations
are linear, but the results are less accurate than full Ertel PV inversion. Accordingly, studies aiming
to improve model forecasts through direct intervention have tended to shy away from it.

Other inversion procedures are apparently less frequently used. Raymond (1992) derived a
nonlinear balance equation in height coordinates and used two different scaling arguments to for-
mulate approximate definitions of PV. The resulting elliptic equations were solved using a multigrid
method (Fulton et al. 1986). Of particular note is that a low-pass filter was occasionally applied
to keep the solution from oscillating. These methods apparently have not yet been applied to
real-data cases, however.

Arbogast and Joly (1998) formulated PV inversion as a minimization problem, first in a two-
dimensional context, and then (Mallet et al. 1999) in a real-data case involving an inversion from
output of a numerical model in sigma coordinates, albeit using QGPV. Rather than solving elliptic
equations, this method uses a cost function composed of two terms, one measuring the inaccuracy
of the PV equation, the other the imbalance of the flow. A quasi-Newton method minimizes
the cost function and requires the adjoints of the PV and nonlinear balance operators to do so.
A particularly nice advantage to this approach is that the PV need not be strictly positive to
guarantee a solution. On the other hand, the method may not find the cost function’s global
minimum.

Although they do not perform inversion, Schneider et al. (2003) develop PV equations analogous
to Maxwell’s equations in electrostatics. In this formulation, PV and its flux determine the rest of
the dynamical variables, rather than PV and a balance constraint. The study of Vallis et al. (1997)
is intriguing since they were able to invert the PV of a small-scale flow arising during analysis of
convectively generated balanced motion in a large-eddy simulation, a situation for which DE is
unlikely to converge. This study used a linearized form of PV and gradient-wind balance in height
coordinates.

Applications of PV inversion extend beyond morphological data assimilation or the analysis of

flow fields. For example, in a study by Roebber et al. (2002), the sensitivity of the 3 May 1999
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tornado outbreak over Oklahoma. to a particular potential vorticity anomaly off the California coast
was assessed. The PV anomaly had been hypothesized to be important to the development of the
outbreak, and this was tested by changing the magnitude of the anomaly, inverting the various
resulting PV distributions, and rerunning numerical forecasts using the inverted PV for the initial

conditions.

1.1.3 Altering model initial conditions using satellite data
1.1.3.1 Feature calibration and alignment

It is a common complaint that satellite data are routinely ignored during the data assimilation
process at the national centers, particularly the National Centers for Environmental Prediction
(NCEP) (Derber 2003, personal communication). A number of studies have attempted to overcome
this through nontraditional use of satellite data to produce presumably better model initial states.
The techniques used in these studies could all be called forms of morphological data assimilation.
Hoffman et al. (1995) took an early step in this direction. They formulated a minimization problem
by which both displacement and amplitude errors in the forecast could be determined by comparing
a model-derived field with a corresponding satellite-derived product. Specifically, they compared
Special Sensor Microwave/Imager (SSM/I) precipitable water data with a precipitable water field
derived from a European Centre for Medium-Range Weather Forecasts (ECMWF') model analysis.
Although they have not used this information to rerun any forecasts in any of the papers listed in
this paragraph, they state forecast reruns as a possible application. Another application of their
approach in the study of model error involves, say, comparing a 24-hour forecast with the verifying
analysis. The resulting displacement and amplitude fields may provide a more meaningful depiction
of model error than a simple RMS error or skill score. This technique, known as feature calibration
and alignment, has been extended subsequently by Hoffman and Grassotti (1996), Grassotti et
al. (1999), and Nehrkorn et al. (2003). Specifically, Hoffman and Grassotti introduced a double
sine series representation for each component of the distortion, Grassotti et al. employed sensitivity

tests to determine optimal values for various arbitrary parameters needed by the technique, and
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Nehrkorn et al. expanded the domain to the entire Northern Hemisphere while eliminating the

subjectivity of many of the parameters without the need for tuning,.

1.1.3.2 Warping

Alexander et al. (1998) took a different approach in their study using SSM/I data. They used
the technique of warping to alter the initial conditions of Fifth-Generation NCAR/Penn State
Mesoscale Model (MMS5) forecasts, using integrated water vapor as the field of comparison between
the model initial state and the satellite imagery.

In warping, one compares features between images, setting control points or lines that the
analyst believes correspond to matching features. Wolberg (1998) provides an overview of warping
techniques in the context of morphing. Morphing, which is used to produce animations, consists of
three steps, feature specification, warp generation, and transition control. Warping, on the other
hand, consists of only the first two steps, since, in warping applications, one cares not about how
the warped field moves from the initial to altered state, but only about what that altered state is.

Alexander et al. (1998) report only the slightest of improvements in their reruns, and there are
at least two reasons for this. First, they use a relatively simple warping technique, which they
call third-order warping. In this technique, the displacements defining the transformation between
initial and altered states are assumed to be two-dimensional polynomials of degree six. Thus, each
control point affects the warp at every part of the grid. In contrast, the technique of Beier and
Neely (1992), which uses control lines, limits the influence of each control line to the neighborhood
of that line, resulting in more degrees of freedom than a simple polynomial can provide. In this
way, features can be aligned more precisely. Another factor limiting the effectiveness of Alexander
et al.’s approach is that they only change the water vapor field; in their reforecasts the dynamical

fields remain as they were in the control run.

1.1.3.3 PV Modification

With the exception of Mallet et al. (1999), to my knowledge all studies to date involving PV

modification of initial conditions have employed either DE’s technique or the QGPV inversion of
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Hakim et al. (1996). Huo et al. (1998) used the piecewise inversion technique of DE to spread the
effect of buoy and ship observations over the Gulf of Mexico throughout the lower troposphere as a
revised initial condition for a simulation of the March 1993 superstorm. The model’s forecast was
significantly improved.

Demirtas and Thorpe (1999) compared PV on an isentropic surface intersecting the tropopause
with water vapor imagery from Meteosat. They then altered the PV on a gridpoint-by-gridpoint
basis until gradients in the PV matched those seen in the satellite imagery. Upon inverting the
modified PV using the same general procedure as DE, they fed the resulting balanced fields into

”

their model’s assimilation system as “bogus obs.” They noted marked improvement in the track
and intensity of a cyclone affecting the United Kingdom. In a follow-up study, however, Swarbrick
(2001) found that use of this technique on a regular basis produced little improvement. It should

be noted, however, that in Swarbrick’s study the regular assimilation scheme was turned off; in

effect, altering the PV was the assimilation scheme. Thus, the comparison was not truly a fair one.

1.2 Dissertation objective

The objective of the research presented here has been to synthesize and extend the techniques
described above in an attempt to reduce initial condition error in NWP. Specifically, I have en-
deavored to improve the initial conditions of WRF model runs by using the warping technique on
the near-tropopause potential vorticity field. Inversion of this altered PV field then produces the
necessary state variables for initialization into the WRF model. This research most directly builds
on the warping technique of Beier and Neely (1992), the idea of Alexander et al. (1998) to use
warping to alter initial conditions, the PV modification approach of Demirtas and Thorpe (1999)
and Swarbrick (2001), and the PV inversion techniques of Davis and Emanuel (1991) and Arbogast
and Joly (1998).

To document how these techniques have been extended, Chapter 2 provides an overview of the
methods used while carrying out the research, including brief descriptions of the WRF model, the

warping technique, the PV inversion technique, and the test cases used during development of the
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techniques. The PV inversion technique is by far the most complicated, so Chapters 3—5 document
the pieces that go into that technique in detail. Chapter 3 covers the nonlinear imbalance operator,
including its derivation as well as the derivation of its tangent linear and adjoint cousins. Chapter
4 describes the PV operator and its tangent linear and adjoint versions, and Chapter 5 presents
the preliminary results of putting these pieces together in an attempt to invert PV.
Unfortunately, the PV inversion technique is not yet robust, meaning that it often produces
unphysical results. Chapter 6 discusses the implications of this, and offers prospects for the future,
while Chapter 7 concludes the main body of the dissertation. Since a complete presentation of
the procedures used to invert PV would be too lengthy, an appendix is included that contains the

PV-inversion Fortran code in its entirety, including brief annotations.
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Chapter 2

Methods used

The goal of this work is to be able to modify the initial conditions of a numerical weather prediction
(NWP) model through the warping and inversion of that model’s initial PV field. This requires
three main ingredients: an understanding of the NWP model’s formulation, a warping technique,
and a PV inversion technique. In addition, test cases need to be used to ensure the accuracy of
the various techniques. The salient features of these ingredients are described in this chapter, to

be expanded upon in the chapters that follow.

2.1 Structure of the WRF model

The NWP model chosen for use is the Weather Research and Forecasting (WRF) model using the
ARW (Advanced Research WRF) core (Skamarock et al. 2005). This model was chosen for the

following reasons:

e It is designed to be used by both the research and operational communities. Thus, research

done using the WRF model may be more easily transferred to operations.

e It is superior to the widely used MM5 model by just about any benchmark, and is now

considered “research ready.”

e It can be run on readily available machines at reasonable speed.
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The WRF model is formulated in a terrain-following coordinate that is closely related to traditional
sigma coordinates. In the horizontal plane, Arakawa C staggering is used, while Charney-Phillips
staggering is employed in the vertical plane. Figure 2.1 shows how the basic variables of the model
are distributed amongst the gridboxes and also indicates the indexing convention used in this paper.

Recently, the Nonhydrostatic Mesoscale Model (NMM) core of the WRF model has been re-
leased, and it is this core that is now being used operationally at NCEP. Since the NMM core uses
different coordinates and grid staggering schemes, the techniques developed herein will not transfer

to the NMM core without additional work.

2.1.1 Streamfunction calculation

The PV inversion process uses the streamfunction of the mass-weighted flow as one of two dependent
variables (geopotential being the other). Values of streamfunction must be specified along the
lateral boundaries of the domain, and interior values of streamfunction serve as a first guess. The
technique used to compute the streamfunction is derived from the algorithm of Bijlsma et al. (1986).
Their algorithm uses a horizontal staggering similar to the WRF, except an additional half grid
box is added to the north and east sides of the domain such that the northern (eastern) edge of
the domain contains values for the x- (y-) component of the wind.

If we were using a global domain, the Helmholtz theorem tells us that any vector field can be
decomposed into two unambiguous components, one that is nondivergent (defined by the stream-
function), and the other that is irrotational (defined by the velocity potential). However, on a
limited-area domain, such as the WRF, there is a third component, commonly called the harmonic
component (e.g., Loughe et al. 1995), that is both nondivergent and irrotational. There are an
infinite number of ways to assign the harmonic component, in whole or in part, to the nondiver-
gent and irrotational wind components. The method described here assigns all of the harmonic
component to the nondivergent component, since the inverted PV should capture as much of the
total flow as possible.

The method works as follows. First, let us identify the mass-weighted wind as 9. (This wind
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Figure 2.1: Schematic of the WRF-ARW grid. (a) The horizontal grid. The circle indicates the
collection of grid points assigned index (i,j), and the inner square represents grid box (i,j). (b) The
vertical grid.
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is more explicitly defined later.) This wind can be partitioned as
M = My + M, = k x Vo + Vx, (2.1)

where 1 is the streamfunction and y is the velocity potential. From Eq. (2.1), the Laplacian of
the streamfunction (velocity potential) can be equated to the vorticity (divergence) of the mass-

weighted wind, and the following boundary conditions may be derived:

. oY Ox
§-M = B +—53 (2.2)
" Y —_— — — —X
n-M = 35 + 3’ (2.3)

where § and 7 are unit vectors in the directions tangential and normal to the boundary, respectively,
and s and n are distances along those directions. The discrete forms for the relationships between

1, X, the vorticity ¢, and the divergence © are:

2
(mfa')

(A.’L‘)2 (wi—l,j + ¢i+1,j + "l)i,j—l + 'lpi,j+1 — 4’(/)2’]) S C’L,J (24)
2

mi :

((Al:)){ (Xi-1,j + Xi+1,5 + Xij-1 + Xij+1 — 4Xi5) = Diy) (2.5)

where m¥ represents map factor values at the vorticity points, and Az is the nominal grid spacing.
Using these equations to solve for ¥ and x on the interior of the domain requires knowledge of ¥
and x along the boundaries, that is, when i =0, i = nx, j =0, or j = nx. (Refer to Fig. 2.1 for a
depiction of the grid discretization.) However, the values of M are known along the boundaries, so
the discrete versions of Egs. (2.2) and (2.3) may be used to determine ¥ and x along the boundaries.

Putting it all together, then, we begin by setting ¢ and x to zero everywhere and then solve
Eq. (2.2) to determine values for ¢ around the boundaries, keeping 10,1 = 0 always. This is followed
by solving Eq. (2.4) for interior values of % using successive over-relaxation for one iteration only.
Boundary values of x are maintained at zero so that all of the harmonic component is assigned to the

nondivergent flow. Eq. (2.5) is then solved (again for only one iteration) for interior values of x. This

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



12

\

_— — T

i W Y N R A

SN
e U g FEVAN G
=Ny 4 d S e
= 44 7
KN ) d S>>
N T A QIR
R N R S N g
R N T T S IR N N
Ul B N O 7 o7 v T

oo s I
SASAESSS S SN

ELALS AL =N
fESAESASSAS) AN

e

/
EEL EL L LSS — N

A\A\\Xm—\ﬁ/\\»/\\\/\»/\v/\s/\\/\y

A O O (O S S N o o A B

(C T FFFFEEFTI T/~
FFFFFFFEFF T/ /—N

FE/L /S FAFAS~—=——[ [ X))

/
[ 7 F
FFE
FFE

W W W W v o o o o o o

Figure 2.2: The initial data for the mass-weighted wind at around 500 hPa. The area displayed
has been zoomed into an area of interest. Wind barbs represent magnitudes of 50 m s™! for each
flag, 10 m s for each full barb, and 5 m s! for each half barb.

ends one step of the procedure, which may be repeated (by solving Eq. (2.2) again) as many times as

necessary. The solution is deemed converged when the metric \/ SO — M) + T (9, — My)?
is less than 104 m s™!, where the primed quantities represent the wind components reconstituted
from the fields of ¢ and x according to Eq. (2.1). The process of updating the boundary conditions
as 9 and x are being solved for leads to good convergence properties (Bijlsma et al. 1986).

As a test, the process above was carried out using the initial field of 9 shown in Fig. 2.2.
The dominant features in this example are a closed low near the center of the domain and a

ridge downstream. Figure 2.3 displays the results of this test. The closed low and downstream
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Figure 2.3: Results of partitioning the wind field in Fig. 2.2 in terms of (a) streamfunction (contour
interval 5 x 108 m? s'1), (b) velocity potential [contour interval 5 x 105 m? s, positive (negative)
values solid (dashed)], (c) nondivergent wind, and (d) irrotational wind. The barb convention is
as in Fig. 2.2.
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ridge are captured very well by the streamfunction in Fig. 2.3a. The velocity potential (Fig. 2.3b)
indicates divergent flow downstream of the trough and convergent flow further upstream. Since
this example uses data from approximately the 500 hPa level, this makes sense synoptically. The
bottom panels (Figs. 2.3c—d) clearly show that the nondivergent wind captures the bulk of the
flow, with a small residual given by the irrotational wind. Again, this is not unexpected in typical
large-scale midlatitude flow.

Calculations were performed for many different fields of DIl (for instance, using different levels
and/or times in one model run) that are not shown here. All produced good results. As a check,
the velocity and divergence fields were derived from the reconstituted wind field and compared
against their original values. The maximum errors at any given gridpoint rarely exceeded 10! s’
for vorticity and 101° s! for divergence. As an additional check, the divergence of the nondivergent
wind and the vorticity of the irrotational wind were both computed. The maximum absolute value

of these quantities, which should be identically zero, rarely exceeded 1020 51

2.2 'Warping technique

The technique used to warp the PV distribution is based on that of Beier and Neely (1992). The
first step in this technique is to define two images. Since we are warping PV, one of the images,
known as the source image, will be an original distribution of PV in the form of a contour plot
on an isentropic surface (or in a layer) that intersects the tropopause in the midlatitudes. The
particular surface chosen will vary based on the season and situation, but typically a value around
315 K is used (e.g., Demirtas and Thorpe 1999). An example of such an image is given in Figure
2.4, which shows the near-tropopause PV distribution as analyzed by the Global Forecast System
(GFS) model at 12 UTC 8 November 2005.

The second image to be defined, known as the destination image, contains information showing
what the first image (i.e., the PV) should look like to some degree. There are a number of satellite
images or products available that could be used to suggest what the PV distribution should look

like, including the water vapor channel, ozone, and the specific humidity product of Wimmers and
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Figure 2.4: Potential vorticity in the 315-325 K layer (contour interval 1 PVU, 1 PVU =
10m2 K kg~'s™1) as derived from the GFS model initialized at 12 UTC 8 Nov 2005.

Moody (2001). For instance, Davis et al. (1999) have shown that a correlation exists between
PV and ozone anomalies!, particularly near the polar jet. This correlation exists because both
ozone mixing ratio and PV have considerably larger magnitudes in the stratosphere relative to
the troposphere (ozone action days excepted). In addition, they both act as passive tracers to a
good degree. As a result, features and especially gradients in these fields are frequently co-located.
As another option, upper-level specific humidity can be derived from (and is presumed to be an
improvement upon) water vapor imagery. Upper-level specific humidity is similar to ozone in that it
is of much different magnitude in the stratosphere than in the troposphere; the frigid temperatures
at the tropopause effectively dehumidify the stratosphere. The difference is that specific humidity
is inversely correlated to PV. In this work the specific humidity product of Wimmers and Moody
(2001) is used due to its ready availability. The specific humidity product is a modification of

the water vapor channel observed by geostationary satellites that aims to show the distribution of

1A correlation exists between the actual values of PV and ozone, but the correlation is strengthened when
anomalies in PV and ozone are considered. This removes such effects as the climatological gradients in PV and
ozone that exist between the poles and the equator.
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Figure 2.5: Distribution of specific humidity near the tropopause as derived from satellite imagery
at 12 UTC 8 Nov 2005. Warmer (cooler) colors indicate greater (lesser) moisture content.

vspeciﬁc humidity in the upper troposphere and lower stratosphere (roughly from 200 to 500 hPa).
Figure 2.5 shows an example of the specific humidity product valid at the same time as the PV
distribution shown earlier. Notice that similar features appear in both figures.

Using the control line form of warping, we specify linear features that correspond in each image.
In the case of PV and specific humidity, these features will typically be gradients. The features
are identified as latitude/longitude pairs, and the warp takes place on a cylindrical equidistant
grid. Figure 2.6 shows how the algorithm works in general. In this figure, two control lines have
been specified, P1Q; and P,Q> in the destination image, and the corresponding P{Q} and PQ)
in the source image. This indicates that, for whatever reason, line 1 (and the feature it specifies)
should be rotated counterclockwise and shortened, and line 2 should be be rotated clockwise and
displaced upward. The algorithm then proceeds as follows. For every point X in the destination
image, perpendiculars are dropped to every control line. In the figure, these segments are denoted

v1 and va. Additionally, the relative distance between @ and P along each control line where the
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Figure 2.6: A schematic of the warping algorithm. From Beier and Neely (1992) Figure 3.

perpendicular intersects is measured and denoted by u; and us. Then, for each control line, a new
value for X is computed using the values of @', P’, u, and v. With two pairs of control lines, as
shown in the figure, two new values for X, X| and X}, are determined. Since these points are in
general not coincident, a weighted average of all of the X, points must be undertaken to arrive at

a single point X’. In the original algorithm, the weights are computed using the formula

oe (2 2

where [ is the line’s length, d the distance from X to the line, a, b, and p are tunable parameters, and

lengths are determined in terms of degrees latitude/longitude (equivalent to pixels on a cylindrical
equidistant grid). The tunable parameters effect the weighting function as follows. The first
parameter, a, is given in the same units as distance and determines how much of a factor distance
to a control line is in determining the weight. A value of 0 for a maximizes the effect distance has
on the weight, whereas a > maxd eliminates distance to the line as a factor. The parameter b
accentuates the weight in the case where the point is close to a long line, while penalizing points

that are far from a short line. A value of 0 for b assigns all lines equal weight; as b increases from
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0, the accentuation becomes more and more prominent. Finally, the parameter p determines the
degree to which the length of a control line effects its weight. A value of 0 for p eliminates line
length as a factor, and increasing values increase the degree to which line length is important. Once
X' has been determined, location X in the destination image is assigned the value at location X’
in the source image.

Let us now examine the behavior of the Beier and Neely (1992) algorithm as applied to warping
meteorological variables on a limited-area domain. In this example, geopotential heights are used
with no rationale for the choices of control lines other than to show the effects of the algorithm.
Figure 2.7 shows the 500-hPa geopotential heights analyzed at 12 UTC 7 June 2004 along with
sets of control lines. Two primary features have been identified for warping. The first is the cutoff
low over Oregon, and two line pairs have been associated with it. These line pairs have been set
in an attempt to change the orientation of the low from the original east-west orientation to one
that is more north-south. This is accomplished by moving the height gradient on the west side of
the low eastward while bringing the southern portion of the height gradient further to the south.
The second feature is the trough/ridge couplet over Manitoba and Ontario. In this case, the height
field is rotated cyclonically in an attempt to increase the amplitude of the trough/ridge couplet.
The six long lines placed in a hexagonal pattern around the region of interest are identical line
pairs, which are used in an attempt to prevent the warp from changing the geopotential height
distribution far afield.

Having set the control lines and provided an initial field of data (in this case, of geopotential
heights), the warping algorithm is applied. The tunable parameters are set to a = 3, b = 2, and
p= %, although the results are relatively insensitive to the exact values chosen. The choices used
here allow the control lines to reshape the PV in a region close to them (in a synoptic sense), while
attempting to reduce their effect far afield. The result of the warp is shown in Figure 2.8. Notice
that the cutoff low over Oregon now has a more north-south orientation, and the trough/ridge

couplet north of the Great Lakes has been amplified, both of which we intended to accomplish via
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Figure 2.7: 500-hPa geopotential heights (pink, contoured every 6 dam) analyzed at 12 UTC 7 Jun
2004, along with control line pairs. Lines in dark orange identify features in the original geopotential
height distribution, and corresponding lines in blue identify the locations to which those features
should be moved. Yellow-orange lines indicate identical line pairs used in an attempt to localize
the warp.
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b

Figure 2.8: Warped 500-hPa geopotential heights (pink, contoured every 6 dam) valid at 12 UTC
7 Jun 2004, showing final control lines in dark orange and yellow-orange.
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Figure 2.9: 500-hPa geopotential height perturbation [contour interval 3 dam, positive (negative)
values solid (dashed)] introduced by the warping algorithm described in the text.

the warp?. However, closer inspection reveals that features quite distant from the control lines have
also been warped slightly. In general, all features far afield have been rotated cyclonically to a small
degree, with the exception of those features in very close proximity to the long, fixed control lines.
For example, the cutoff low south of Iceland has been warped slightly to the north-northwest. This
subtle shift in position is more apparent when the height perturbations associated with the warp
are examined. Figure 2.9 shows these perturbations. Although the perturbations are concentrated

in the areas intended, notice that a 3-dam contour is present east of Newfoundland, indicating that

2The gradient along the West Coast is not as smooth as it should be, probably because the control line was drawn
too long. Since this section is primarily devoted to developing and testing the warping algorithm, an attempt to
improve the warped shape has not been made.
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heights were raised 3dam in that area as a result of the warp. Clearly, such large perturbations
far afield are undesirable.
To limit the warped field from changing in areas far from control lines, the weighting function

in Eq. (2.6) was modified to

2.7)

This modified weighting function was then used to warp the PV field previously shown in Fig. 2.4,
and the results are displayed in Fig. 2.10. The top panel combines Figs. 2.4 and 2.5, making it easy
to compare how the potential vorticity field matches up with the specific humidity field derived
from satellite observations. In general, drier air (the cooler colors) matches higher PV values, as
expected. However, there are some notable differences. In the Gulf of Alaska, for instance, a PV
maximum is displaced to the east of a minimum in specific humidity. Further to the south, an axis
of higher PV appears too straight relative to the curvature apparent in the nearly co-located axis
of dry air. Turning our attention to eastern Canada, the PV axis is displaced to the north of the
axis of dry air.

In an attempt to better match the PV distribution to the satellite observations, control lines
were drawn (not shown), focusing on the PV maximum off the California coast and the axis across
eastern Canada. The mismatch over the Gulf of Alaska was ignored because that region intersected
the boundary of the domain, where any warp would be ill-defined. The revised warping procedure
was applied, and Fig. 2.10b presents the results. Notice how the shape of the PV axis now better
matches the structure visible in the specific humidity field over both the West Coast (in particular
the California—Oregon border) and eastern Canada. Also note that, in contrast to the earlier
warping test, contours far from the warped areas are unchanged. This is confirmed in Fig. 2.10c,
which shows the perturbations made to the PV field due to the warp.

The distribution of these perturbations is much more complex than those used in studies such
as Roebber et al. (2002) while being easier to perform compared to the process used in Demirtas

and Thorpe (1999) and Swarbrick (2001), demonstrating the advantage of using a warp to alter
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Figure 2.10: Warping a PV field using the revised weighting function. (a) An overlay of Fig. 2.4 on
top of Fig. 2.5. (b) Same as (a) except after the warp has been applied. (¢) The PV perturbations
introduced by the warp [contour interval 2 x 10~7 PVU, positive (negative) values solid (dashed)].
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fields of PV. One disadvantage of warping, however, is that it is difficult to change the magnitude
of PV extrema. If the PV does not exceed, for example, 5 PVU, no amount of warping can
produce a region where the PV is 6 PVU. For the application of morphological data assimilation,
this is not a major concern, since information about PV magnitudes (as opposed to PV gradients)
cannot easily be determined based on satellite observations alone. Nevertheless, an extension of
this method to include the third dimension would be useful, especially for applications in which
what-if experiments are being performed (as in Roebber et al. 2002), since the stratospheric PV

reservoir could be tapped in that case to, say, double the value of PV at a certain level.

2.3 PV inversion

Once a distribution of potential vorticity has been determined via warping, it must be inverted
to provide new values for the WRF state variables (e.g., geopotential, wind, temperature). One
might think that the popular DE method would be well suited for this purpose. This is prob-
lematic, however, for a variety of reasons. First, the DE method is carried out in Exner function
(i.e., pressure) coordinates, whereas the WRF model uses a terrain-following vertical coordinate.
Although interpolation to pressure coordinates is possible, it is not optimal since some loss in ac-
curacy is inevitable, and the forecast domain will include mountainous terrain such as the Rocky
Mountains, making the lower boundary perhaps difficult to handle. It should be noted, however,
that some authors have used the DE method over highly variable terrain (e.g., Chang et al. (2000)
over China) with no apparent problems. The author’s personal experiences with using the DE
method in areas of steep terrain suggest, on the other hand, that fields such as the geopotential
heights derived from the inversion can oscillate wildly in an exaggerated diurnal cycle, as can be
seen in Fig. 3.44 of Decker (2003). An additional problem with the DE method is that it frequently
does not converge when the grid spacing is less than about 100 km. Since modern NWP is per-
formed at grid spacings on the order of 10 km, this would result in additional interpolation, this
time between small-scale and large-scale grids.

In an attempt to avoid these issues, the approach taken here is to extend the variational
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approach of Arbogast and Joly (1998) to Ertel PV on the three-dimensional WRF domain. With
this approach, a potential vorticity operator is defined such that, given a state vector X containing
values of streamfunction and geopotential at every gridpoint in the model domain for which they are
defined (recall that, according to Fig. 2.1, streamfunction and geopotential are staggered relative
to each other), the application of the PV operator on X results in a new vector representing the
value of the potential vorticity in each WRF grid box. A second operator, the nonlinear imbalance
operator, is also defined that operates on X. Application of this operator on X results in a new
vector representing the degree to which each grid box is in nonlinear balance. A cost function is
then defined to be

J= % <ﬁx _P,PX - 15> + %s <§x, §X> , (2.8)

where P is the PV operator, P is the given PV distribution (i.e., the PV to be inverted), € is a
constant to give each term in the cost function equal weighting, and B is the nonlinear balance
operator. The inner product is taken to be a simple dot product. The gradient of J with respect

to the state vector X is then
vJ = p* (ﬁx _ P) +eB*BX, | (2.9)

where the asterisks denote the adjoints of the linearized operators. This gradient is then used to
minimize J using the method of steepest descent, or, more generally, any quasi-Newton method.
Further derivations and details regarding these operators and the minimization process are con-

tained in subsequent chapters.

2.4 Test Cases

Throughout the development of the techniques discussed herein, multiple test cases, ranging in
complexity from an idealized run to a CONUS-scale high-resolution run, have been utilized, and

they are summarized in this section.
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2.4.1 WRPF idealized baroclinic wave

The simplest test case (hereafter called Test Case 1) is distributed with the WRF model under the
name “em_b_ wave.” It simulates a baroclinic wave growing on a baroclinically unstable jet on an
f-plane. Periodic boundary conditions are used along the east and west boundaries, with symmetric
boundary conditions along the north and south boundaries. 100-km grid spacing is used, with 41
grid boxes in the zonal direction, 81 grid boxes in the meridional direction, and 64 vertical layers.
All map factors are identically one in this test case, so any errors in the implementation of the
various operators with respect to the map factors will not be apparent. Furthermore, with no
terrain in the model, each terrain-following coordinate closely approximates an isobaric surface.

Figure 2.11 shows how the baroclinic wave grows exponentially during the simulation. What is
a hardly noticeable perturbation up to 33 h into the run (Figs. 2.11a-b) becomes a strong shortwave
by hour 75 (Figs. 2.11c-d) before becoming an extremely potent closed low only 42 hours later
(Figs. 2.11e-f).

Test Case 1 was used to provide input data for the wind field partitioning test described in

Section 2.1.1.

2.4.2 North Pacific system

For a more complicated test case (hereafter called Test Case 2), a real-world domain was chosen
over the North Pacific Ocean, centered on 40°N, 150°W. This area of the world is known for
frequent cyclones, yet the absence of topography allows for further testing to be performed in a
simplified environment. Again the grid spacing was set to 100 km, and a relatively small domain
of 34x26 grid boxes was used, with 20 equally spaced vertical levels. This small domain reduces
the amount of computation time needed during testing and implementation of the PV inversion
technique.

The WRF model was initialized at 1200 UTC 5 Apr 2006, and a 24-hr forecast was produced.
The initial time (Fig. 2.12) was characterized by a large-scale trough at 500 hPa along the northern

portion of the domain. Within this larger trough, smaller shortwaves and absolute vorticity maxima
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Figure 2.11: 500-hPa geopotential heights (contour interval 6 dam, solid) and absolute vorticity
(contour interval 5 x 107° s’1, starting at 15 x 1075 s, dashed) at (a) 12 h, (b) 33 h, (c) 54 h,
(d) 75 h, (e) 96 h, and (f) 117 h into the WRF model’s “em_b_ wave” idealized simulation. The
northern and southern portions of the domain are excluded to focus on the baroclinic wave.
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were evident. Near the surface (Fig. 2.12b), a cyclone was located along the northern boundary
directly below the 500-hPa height minimum. This fact, along with the lack of temperature contrast
along the trough extending southeastward from the 1000-hPa height minimum, indicated that the
cyclone was well-occluded. The triple point was located just north of 40°N, 140°W (Fig. 2.12b),
and its location just east of a 500-hPa vorticity maximum (Fig. 2.12a) suggested that a secondary
development could occur in that area. Trailing southwest from the triple point was a cold front
and broad baroclinic zone, marked by a height trough especially in the southwest.

Twelve hours into the forecast (Fig. 2.13), the westernmost vorticity maximum at 500-hPa
started to become dominant (Fig. 2.13a), while at 1000 hPa (Fig. 2.13b), the primary cyclone filled
as the secondary development almost became closed off at the peak of the warm sector. A long cold
front continued to extend towards the southwest, and although the temperature gradient remained
strong in the immediate vicinity of the front, the broad baroclinic zone to the north began to
diffuse. All subsequent references to Test Case 2 will focus on this forecast time.

By the end of the forecast period (Fig. 2.14), the vorticity maxima associated with the 500-hPa
low had become consolidated (Fig. 2.14a), and the secondary development had become the primary
cyclone at 1000 hPa (Fig. 2.14b). The cold front continued to push toward the southernmost
portions of the domain, and it retained a remarkably strong temperature gradient along its leading

edge considering the oceanic nature of the domain.

2.4.3 Continental United States

A final test domain has been created that covers the continental United States with 24-km grid
spacing. This domain consists of 210 grid boxes in the zonal direction, 136 grid boxes in the
meridional direction, and 49 vertical layers. It is intended that the pronounced topography and
relatively-high resolution of this domain will serve as a stringent test of the various techniques
described below. One forecast (Test Case 3) has been run on this domain, initialized at 1200 UTC

24 Mar 2006. However, it has not yet been used extensively.
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a)

b)

Figure 2.12: Test Case 2 at 1200 UTC 5 Apr 2006. (a) 500-hPa geopotential heights (contour
interval 6 dam, solid) and absolute vorticity (contour interval 4 x 1075 s, starting at 12 x 107° 51,
dashed). Vorticity maxima are marked by X. (b) 1000-hPa geopotential heights (contour interval
3 dam, solid) and temperatures (contour interval 2°C, dashed).
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Figure 2.13: As for Fig. 2.12, but at 0000 UTC 6 Apr 2006.
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b)

Figure 2.14: As for Fig. 2.12, but at 1200 UTC 6 Apr 2006.
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Chapter 3

The nonlinear imbalance operator and

its adjoint

3.1 Balance equation in WRF vertical coordinate

3.1.1 Expansion of divergenée equation

The WRF vertical coordinate is defined as

Dd — Dt
=2 — 3.1
K Ps — Dt ( )

where pg is the dry hydrostatic pressure, and p, and p; refer to values of the dry hydrostatic
pressure at the surface and model top, respectively. The dry hydrostatic pressure is a measure of
the weight of the dry air in an atmospheric column above a given point. In particular, 4 = ps — p:
is directly proportional to the weight of the dry air in an atmospheric column above a surface grid
box.

Using this vertical coordinate and setting the vertical velocity to zero, the horizontal momentum
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equations can be written as (Skamarock et al. 2005)

_k om _9m
_m(f+u6y vam>v (3.2a)

2 (2) e (52) e (2 + & () 1y 2 1220

In these equations, u and v are the zonal and meridional winds, respectively, on the computational

grid, n = %’tl, a is the specific volume of dry air, p is the total pressure, ® is the geopotential, and
Ax
Distance’

where Az is the constant horizontal grid spacing. Finally, x = (14+ ¢, + ¢+ ¢+ ¢ +.. .)_1 ,

z and y are the computational coordinates. The map-scale factors are given by m = gt

where gy ¢r; are the mixing ratios for water vapor, cloud, rain, ice, etc.
The use of indicial notation (i.e., the Einstein summation convention) greatly simplifies the
derivation. See Kundu (1990) for details regarding this notation. Egs. (3.2a) and (3.2b) can be

combined into one equation using indicial notation, resulting in

0 (pu; 0 [puju; 0 [ unu; Op Opdd om\
ot ( m )+m8mj ( m )+8n ( m +'uax<9x,~ +X8n dr; m f+€k13uk8xl €ij3t, (3.3)

where ¢;;; is the permutation symbol, the indices can take values of 1 or 2, uy = u, u2 = v, 1 = 7,
and zo = y. We can clean this equation up in a few ways. First, we’ll normalize the equation, and
then we'll eliminate o and p. We’ll also make use of the continuity equation, which can be written

as

O | 2 0 (B, 0 (k) _
5 +m azj(m)+man 1) —o. (3.4)

As a first step, we divide both equations by the constant py — p;, and multiply Eq. (3.4) by u;.
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The resulting equations are

ot\ m mamj m oM\ m Xaxi X u On Ox;

M om
= R— (f -+ €k13’uka—zl) €;i3U;j (3.5)

and

OM | o O (My; O (Mi) _
U; 5 +m u1axj( — )+mu18n(m)_0’ (3.6)

where M = ﬁ = ﬁ and pyg is a reference pressure (say, 1000 hPa).

Now the hydrostatic equation can be written as

foL)
o = —ap. (3.7

In addition, using Eq. (3.1) we have the identities %ﬁ = ﬂ% =u+ %:71 and g% = 7)% + %;L';,
where p, is the vapor pressure. Substituting these identities and Eq. (3.7) into the LHS of Eq. (3.5)

and simplifying results in

?_ Mu; + i Muju; +2 Mryu;
ot\ m max,- m on\ m

169 ou  Opy M Opy 0 M om\
+M< ;6n>x<n6mi+6mi>+xu (#-l— 377) . m f+fkl3ukaml €i53U;

2 M'u,i + i Muj-u,- +2 M’ITU,,
ot ma:cj m i\ m

m
1 Opy 0 OM  Mop,\ 02| M om\
(i) v () o)~ (o) @9

In obtaining the balance equation, we’ll first consider a Cartesian frame (m = 1) for simplicity.

Later, we will transform our result to the WRF grid. With m = 1, Egs. (3.8) and (3.6) simplify to

0 0 0 .
5 (Mui) + Bz, (Muju;) + n (Mnw;) — M feijau; = —F; (3.9)
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and

WML 0 0 i
p gy (Mug) +uig. (Mi) =0, (3.10)

respectively, where P, = x [(1 + %%) M g—fi — (77‘324 + A: am,-) %‘};] . Note that in the dry case,

P=Mz- a n‘?T‘D%M The balance equation is derived by subtracting the divergence of Eq. (3.10)
from the d1vergence of Eq. (3.9) and defining M; = Mu;, ® =V -9M, and ¢ = k- V x M. The

result is
) (am) 9 (Mu@g) 2 [ ) @) - 8 (uiasmj)
oz \ 0t ) 0z \ M ot )" oz |6z Bz; \ " bz,
+ [ 2 o] - % i ()| = - (et = =52 (3.)
This equation can be simplified as follows:
7 () o (mgone) + o [+ 2 - o7 (“i%”i?)
o (ﬁ%’% +m§—2) — (sm Z—Z) ~ fein Tt My (fegs) = —5
leads to
% %mgtl M - My (gtlnM) +ai2- (mjg—Z) +8%(77?%)
ffsz;(?;m + €34;M; g—;: = —Zf:,

which can be simplified to

90 ) P 0 Ou; on oM .0 (M
5 ~ DI M- imva +3—xi(97‘95;j)+axi 6n+6n(3xz)
Cfeak-stnvr= -2
Oz;
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o0 0 0 0 Ou; oM [o49)
8t 98 InM — mva lnM+8(m‘78 >+V a—+7}8
P
—fC-Hc imef— 9 . (3.12)
ox;
The term 3% (ij g%) can be expanded as
0 3114' ﬁﬂﬁj Bu, 82ui 827)‘( 6uz 32uj
— — ) = — —— Mu; , 1
oz ( ’azj> Bz 92 V9 Bmdm; 2T By By T “iBgom, T2 (3.13)
where indices have been swapped in the second term on the right-hand side, and
0o — Bu oM Bu] oM tu 6uJ oM Buj OM  w;u; OM OM Ul OM OM
2= Yo 0x; 0z 0m; | Oz, Om;  Oz; 0m; | M Oz; 0z; M Og; Ox;
M M

+ u;

Thus, Eq. (3.13) can be rewritten as

KA m% _ Ou; OMy | W OM oM 8u] oM . o*M t s M
Ozx; ]8xj - Oz; Ox; M Ox; 8.7:] axz Bx] t Jaxia ; ¢ J@ziazj
M OM Ou; tu OM Ou; + My, 0%u,; _ uu; OM OM BM Ou;
Oz; Ox; “ 8z Ox; Ba:iax] M 8z; dx; 6x, bz
, 1 oM 1 8u;\ M o’M
= VV: Vﬂn — Muy; (—ng—iuj + Ma_m,) 5; — u’u’—aziamj

i 0 <8M +M%) 3 (6_]\/[_uj+M8u]> u; OM

U — U .
7 8£E2'81L‘j J Bxiaxj

oz; ozx; 7 Ox; Ox; dz; ) M Oz;
- ‘Z_V von, + aa_v VM, — Mu; ai-( )‘ZZ uiuj%
+uza3 (8692 ) — %_Z?Uiaia;ilnM
= g: th1+?9—‘y/ - VM — ;‘i (%Z—Z)+uig—i—©uz'%lnM
- ‘?)‘; Vﬂﬁ1+g—v VN, — 9 - v(v v1nM)+V VO - DV . Via M.
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Collecting everything together, Eq. (3.12) can be written as

A1+ A2+ A3+A4+A5+B1+B2+B3+C+D=E, (3.14)
where
o9
.0D
. oM
A4=—,’DglnM
o ot
A5E—93't-v%1nM
BlEa—V-Vm1+a—‘{'v9ﬁz
Oz Oy

Bzz—z)ﬁ-v(V-va)

B3=V.VD-9V.-Vih M

=-f¢
DEI:J-.‘ﬁIXVf
E=-V.-{x (1+13p”)MV<1>— (nVM—I—%VpU) 6—‘1’]}.
© on u on

3.1.2 Scale analysis

Many of the terms in Eq. (3.14) can be neglected based on scale analysis, following Sundqvist
(1975). To begin, we will find a scaling H for 7 that is valid over level ground. The starting point

is the scaling over level ground for w = %%, the pressure velocity, that Sundqvist (1975) gives:

% ~ 108571, (3.15)
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The pressure velocity can be related to 7 as follows:

_Dn_ D (pa—p\ _pEE-wa—p) B _wi pa—ps (O
~ Dt Dt L u? L u? B8t

wy P4 — Pt oM ]
g uM(po—pe) [(po Pt) B¢ ot (b0 —p0)V

+7.90)

Pd — Pt wd 1 8M)
= 1y om-_LM
B (pd—pt M M ot
Wq 1 1 oM
= _——_— M T e~ '1
" (pd—pt %M (3.16)
By definition, 0 < 1 < 1. In addition, m—“’_dp—t ~ o~ ~ 1078571 using Eq. (3.15). As

shown in Figure 3.1a, M = 1 and varies on the order ¢ = 10_2 when topography is not an issue.

Thus, 2 ‘o’T ~ %%ﬁ—’f £ = e% = feRo, where the time scale 7 is given by 7 = %, S is the horizontal

T

scale, C is the velocity scale, and the Rossby number, Ro, is defined as Ro = ?% Using values

of 10~*s! for the Coriolis parameter and 10~ for the Rossby number, 94 ~ LM . 10-75-1,
Finally, MV VM ~ — = feRo ~ 1077s7! as well. Given these scalings, Eq. (3.16) implies that
H~10"%s571,

Let us now reconsider the continuity equation, Eq. (3.10), divided by wu;:

oM 0
E%—@-ﬁ—a—(MT)) 0.

The previous analysis has already shown that %AT’I ~ 1077s71. Furthermore, the third term,
% (M7) , is on the order of (1)(1)(1076 s71) ~ 1076571 since 7 lies in the range between zero and
one. Thus, we know that ® ~ 1076571,

All of the scalings made so far are equally valid whether topography is present or not. However,
in performing a scale analysis on Eq. (3.14), topography must be taken into account. Therefore,
let us assume that pressure variations crossing mountainous terrain (i.e., fluctuations of M) will be
on the order of 10% (e, ~ 1071), equivalent to about one kilometer of altitude. Figure 3.1b, which
provides an example from Test Case 3, verifies that this is the case. Topography may also impose

a horizontal scale on the flow that is on the order of the scale of the topography itself. Since our
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Figure 3.1: Plot of M 12 hours into the respective simulations for (a) Test Case 2 (contoured every
0.05 units) and (b) Test Case 3 (contoured every 0.5 units).
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model will ultimately have a grid spacing on the order of 10 km, this imposed horizontal scale may
also be on the order of 10 km, or about ﬁ times the synoptic horizontal scale S. Thus, we use
Ro ~ 10 in the scaling that follows.

Considering each term, we have:

Al ~ ﬁ ~ fRO (10—6 S—l) ~ (10—4 S—l) (10) (10—6 S_l) ~ 10—9 S—2
T

A2~ H(107%s71) ~ (107%s71) (107571) ~ 10712572

A3~ %C ~ HfRo ~ (1076s71) (10™*s71) (10) ~ 107%s72

A4~ (107%s71) (1077s71) ~ 10718572

A5~ < (1077s71) ~ fRo (107"s71) ~ (107*s71) (10) (1077 s7) ~ 10710572
C

n

Bl ~ —=. 5~ F?Ro? ~ (1078572) (100) ~ 1076572

: %em ~ f*Ro%em, ~ (1078572) (100) (1071) ~ 1077572

(107%s71) + (107%s71) %em ~ % (1078s7) (1 + €m) ~ fRo (107571) ~ 1079572

C~ f% ~ f?Ro ~ (1078572) (10) ~ 1077572

B2 ~

B3 ~

w QWM Q W]

Drv%fwlﬂqs_2

E ~107%s72 (so that the LHS is balanced)

As a check to see how accurate the above scalings are, each term has been plotted for Test Case
1 at hour 117 for n = 0.5129, which is roughly 500 hPa to correspond with Fig. 2.11f. For each
plot, two metrics were computed, the maximum absolute value of the term at any grid point (to
be referred to as the maximum value for short), and the average absolute value of the term over
all of the grid points (to be referred to as the average value for short).

Terms A1-3 are displayed in Fig. 3.2. The first term (Fig. 3.2a), the time derivative of mass-
weighted divergence, is fairly noisy, with the highest magnitudes in the vicinity of the cutoff low and
along the connected vorticity strip. The average value of this term was found to be 4.115x10~105~2,

with a maximum value of 6.799 x 10~9s~2. It should be noted that, because output from Test
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Figure 3.2: Terms from the balance equation for Test Case 1 at hour 117. (a) Al [contour interval
1079572, positive (negative) values solid (dashed)]. (b) Same as (a) but for A2. (c) Same as (a)
but for A3.
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Case 1 was only available every hour, the true magnitude of this term (using the model’s time step
instead) is likely higher. The second term (Fig. 3.2b), related to vertical advection of divergence,
is generally quite small, except near the vorticity strip. Its average value was 9.858 x 10~ 572
with a maximum value of 4.929 x 107°s™2. The third term (Fig. 3.2¢c), involving vertical shear,
was quite similar in shape to Term A2. Its average value was 1.067 x 10719572, with a maximum
value of 3.494 x 1079572, All three of these terms agree quite well with the scale analysis.

Terms A4-5 are displayed in Fig. 3.3. Both terms are difficult to interpret physically, but both
terms are also small. Term A4 (Fig. 3.3a) varies on a relatively small scale, whereas Term A5
(Fig. 3.3b) has a quite large scale. Both terms have greatest magnitudes in the vicinity of the low,
but Term A4 tends to be focused around the edges of the low (where the height gradient is largest),
while Term A5 has a maximum generally co-located with the low. Term A4 has an average value
of 3.180 x 10712572 at this level, with a maximum value of 1.168 x 1071%s~2, Term A5 has an
average value of 2.624 x 10~ 572, with a maximum value of 4.546 x 10719572, Term A5 is in line
with our scale analysis, but Term A4 is not as small as the scale analysis suggested.

The B terms, which generally represent curvature in the flow (an analog to the centripetal force
in the gradient wind balance), are shown in Fig. 3.4. Term B1 (Fig. 3.4a) is of relatively large
scale, and its comma shape is again reminiscent of the vorticity distribution. This makes sense
given the connection between this term and curvature, and the connection between curvature and
vorticity. The average value of Term B1 at this level is 7.990 x 10719572, and its maximum value
is 1.849 x 10~8 52, This is much smaller than the magnitude estimated above, but becomes closer
to our estimate if we realize that this domain has no topography. In that case, Ro = 0.1, and the
scaling becomes 1078 s~2. Term B2 (Fig. 3.4b) is negligible compared to the other B terms, with an
average value of 1.200 x 10711 s72, and a maximum value of 6.615 x 1071952, For the same reason
as for B1, these values are much less than expected based on the scale analysis. Term B3 (Fig. 3.4¢)
is the noisiest of the three, with numerous dipole structures in close proximity. The magnitude of

105-2 and a

this term is close to that of the scale analysis, with an average value of 2.365 x 10~
maximum value of 7.165 x 10~9s72,

Terms C and D are Coriolis terms. Since Test Case 1 is carried out on an f-plane, Term D
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a)

Figure 3.3: Same as Fig. 3.2 except for (a) A4 (contour interval 2 x 1071*s72) and (b) A5 (contour
interval 6 x 10~11572),
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Figure 3.4: Same as Fig. 3.2 except for (a) Bl (contour interval 4 x 1079s72), (b) B2 (contour

interval 10~10
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rTerﬂ Test Case 1 | Test Case 2 | Test Case 3 T
Al [412x107 05 2] 135 x107 9572 | 3.39 x 107952
A2 (989 x107 1152|187 x10" 1052 1.09 x 107952
A3 [1.07x10719s2[207x10710s2 | 2.19 x 107952
A4 [318x107Ps2]1.28 x 10712572 | 4.02 x 10712572
A5 [262x1071s2[969x101%s2]1.34x 10" s~
Bl [ 799x1070s 2] 1.34 x1079s 2 | 1.42x 107 9s~
B2 [1.20x1071s2{1.32x107 s 2] 1.39 x 10775~
B3 [237x107 052 | 1.76 x 1079572 | 6.05 x 10~ s~
C 1.95x 107952 | 535 x 1079572 | 2.66 x 107952
D 0s—2 3.61 x 10~105=2 12,18 x 10-1052
E 234x109s 2 | 456 x107 952 | 1.15 x 107852

45

Table 3.1: The average absolute magnitudes of various terms in the balance equation.

is identically zero, and Term C closely matches the distribution of vorticity (Fig. 3.5a). Term
C has a maximum value of 1.914 x 10852, and an average value of 1.949 x 10~9s72, both of
which are again less than what the scale analysis suggests. Term E is essentially the convergence
of the pressure gradient force, and thus tends to be positive near troughs and negative near ridges
(Fig. 3.5b). Term E is also less than anticipated due to the lack of topography, with an average
value of 2.339 x 1079572, and a maximum value of 3.145 x 108572

Similar checks were performed for the other test cases, and the results are summarized in Table
3.1. Notice that many of the terms that had magnitudes smaller than those suggested by the
scale analysis do increase in magnitude as the topography increases and grid spacing decreases.
However, the resultant magnitudes are still overestimated by the scale analysis, suggesting that
the adjustments made for the presence of topography were too much. Nevertheless, the general
patterns in the scale analysis do hold up overall. It is worthwhile to note that the terms deemed
small based on scale analysis were generally noisier than the presumably larger terms. If small
wavelengths had been filtered out of the numerical solutions (and the WRF, being nonhydrostatic,
contains small-scale features such as sound waves), the disparity in magnitude between terms would
likely have been accentuated. Thus, the scalings presented above will be used to help simplify the

balance equation.
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Figure 3.5: Same as Fig. 3.2 except for (a) C (contour interval 6 x 107?s72) and (b) E (contour
interval 6 x 1079572).
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3.1.3 Balance equation

If we neglect all terms at least three orders of magnitude smaller than E (according to the original
scale analysis), Eq. (3.14) reduces to
ov av

.Vm’t1+_

= ay-VSﬁg—Sﬁ-V(V-VInM)—f(+k-9ﬂfo

16pv> ( M )3(1)]}
=_V. 14+= MV®— (nVM+=Vp, | —1| %, (3.17
{x[( o n VP ) 5 (3.17)

or, using indicial notation,

(3.18)

a’Uq: Bimj 15} (’U.j 6M> . f€3ij Bﬁﬁj T 63ij9:ni

- M3z, 5

0 of 0P

5_; - Ox;’
According to Fig. 3.6, this reduction in complexity of the LHS of the balance equation does not
radically alter its value, except on the smallest scales, as has already been alluded to. The top panel
(Fig. 3.6a) shows the sum of all of the terms A through D, whereas the middle panel (Fig. 3.6b)
shows the LHS of Eq. (3.18). The original LHS tends to be a bit noisier, but there are no important
extrema that are not reproduced in the proper locations by the simplified version. The bottom
panel (Fig. 3.6¢), which shows the sum of the terms neglected, verifies that this is the case.

It appears that, at least in the ideal case, simplifying the left hand side of Eq. (3.14) does not
carry any ill effects on the large scale. Is the same true in the real world? To check, the same test
was repeated for Test Case 2, and the results are displayed in Fig. 3.7. The pattern does appear
to hold. The simplified LHS (Fig. 3.7b) is smoother than the full LHS (Fig. 3.7a), indicating that
again the simplification is basically a matter of removing noise from the imbalance equation. That
noise (Fig. 3.7c), however, has a greater magnitude relative to the full LHS in this real-world case.

Note that, by making this simplification, all terms involving ®©, the divergence of the mass flow,
have vanished. Thus, we can rewrite the mass flow M in terms of the streamfunction % using the

definition 9t = k x Vi, or, using indicial notation, IM; = €3ji%%. We apply this substitution term
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Figure 3.6: Examination of the left-hand side of the balance equation for Test Case 1 at hour 117.
(a) The sum of the left-hand side of Eq. (3.14) [contour interval 6 x 107%s™2, positive (negative)
values solid (dashed)]. (b) Same as (a) but including terms B1, B2, C, and D only. (c¢) The
graphical difference of panels (a) and (b) [contour interval 3 x 10™9s72, positive (negative) values
solid (dashed)].
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Figure 3.7: Same as Fig. 3.6 but for Test Case 2 at hour 12, and with (a-b) contour interval
4 x 1079572, and (c) contour interval 2 x 1079572,
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by term to the LHS of Eq. (3.18) as follows:

%mj . Buk 393%
6:27]' axi o 3.’1,‘1 6:1:k

_ o (1 O\ O ( O
- Ox; M63”°azl oz 63ﬂaxj

k
2y 9 (1 6y
= €;3 kl3m3$i (Mz) (3.19)
0 (wOMY_ 0 (woM
A (MaT) = Mg (M axk)
00 5 (1 0uoM
T g, bz \ M2 by Bz,
.9 1 9 0 (1%
~ 3y 0z; Oz; calk M 0z .0z Oz, \ M Oz
0% 0 0 (169 M _,
= 5z, 0m; " | 9z \ M Bz, U Srrdz;
_ oy 02 1 8y
= €ij3€kI3 7 Py D202, (M &vl) (3.20)
OM; of 0 oY op 8f
—fesij—/— oz, L+ €3, — 92, = _f€3ijT (€3kja_‘) +63'L_753kza 8:1:]
b2 oY 0
51]353kjfa a,(/) + (61.k5]z 6115]k) a"[) a;:
. 8%y o Of 31[) of
= (8055 — Surdyg) fawiaa:k + Ox; Ox; - 8_9:;(9_2:]
%y . 0%y _ oy of
P _ovor
_ 0 o
= 52, (fax,) , (3.21)

where the relations €g;j€xim = 6i10jm — dimdji and d;; = 2 have been used. Substituting Egs. (3.19),
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(3.20), and (3.21) into Eq. (3.18) and multiplying by —1 give

O (Y e 0 (10w 06 & (10v)_0A
oz; \" Oz; ij3€kI3 0z ;0xy, Ox; M 8:1: #j3€kI3 Oz 0z;0x, \ M Ox; oz;

o (;00\_, . 8 [3 0 (18] _ 0~
6-771' 8.’1:2 3 kl36xk axj 3:1:1 Mazl 6:&5’

which can be expanded to

V- (fVY)
{8[&/)6(161/1 oY 0 1 0y 88¢6(18¢ 6¢8(16¢
"oz oy or m—y)—m—y (Ma?)]*a—y[m—y M%)‘a—m m—)]}

18p,,) ( M )8@}}
=V. 1+~ MV® — [nVM + =Vp, )| —|$. (3.22
{XK u On K u ) By (3.22)

The nonlinear imbalance, then, is defined as the LHS of Eq. (3.22) minus the RHS of Eq. (3.22).

A flow in perfect balance thus has a nonlinear imbalance that is identically zero. The greater the

imbalance, the further the flow is from obeying the nonlinear balance equation.

3.2 Discretization

To compute the imbalance, we need to discretize it. To simplify the presentation, the nonlinear
imbalance will be written as

IMB=1l —lp— I3 —r, (3.23)

where IMB is the imbalance, I; = V - (fV¢), b = £ [6y s (ﬁay) - (Alxlaiy)] Is =
% [%—f% (ﬁaz) - %’5% (ﬁ ‘1)] ,and r =V (MV<I> nVM ‘I’), ignoring contributions from
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water substance for the time being. The following discrete operators are used:

ko K
(6a0). = Pirss i34
=Plij = Az
ko k
(6,0 = Pig+i ~ ¥Yig-1
vPlij = Az
k+3 k—1
)ty = DT
! M+l = M1
k k
7:7j - 2
k k
(——-fg)k _ Soiaj—% + soi,j+%
@), = Vi-gi=g " Pty TP gy T Pingieg
¥ i = 1 :

where ¢ is any discrete variable and fractional indices are replaced by integers according to the
discretization scheme in Fig. 2.1. Similar interpolation operators are also defined for the vertical
direction.

Considering /;, we find that it can be discretized as

L=m2lé szy ?y—u_zy
1=m" (6 [ ~om 0 ) + 0y meoy1p . (3.24)

m‘l)

Here, m" represents the map factor valid at u-points, and m" represents the map factor valid at
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v-points. Expanding Eq. (3.24) on any 7 surface gives

m2,

f.,. + f 1,j
(ll)ij =8 (Az:)z{ =] m}‘f : [m;),j—l (¢i,j—1 - wi—l,j—l) + m;)+1,j—1 ("/’i+1,j—1 - wi,j—l)

f"—-l, . + f., .
+mi; Wi — Yim1) +mibay (s —vig)] — T2 M g (Bim-1 — Yim2-1)
i—1,7
+mi i (Yig-1 — Yim15-1) Fmi_qj (Yim1j — Yi-25) +m; (Y — Yi-15)]
f.,. + f.,. 1
+ LB (o1 — Yie1,g-1) + by (g — i)
z,]
+miy g1 (Yim1,541 — Yim1,5) + M (Vi1 — Yij)]
_ g1t figp

mv_ im1,j—1 (Yim1,j-1 — Yi—15-2) + M1 (Yij-1 — Yij-2)
(2
+mi g (Wi-15 — Yim1,5-1) +mi; (Yig — Yii-1)]} (3.25)
The discretizations for the rest of the terms follow.
1 z z 1 ——
lo = md, [(m“)2 Oy Py (Mm"éyz/) ) — MY ym"éy (Wm"éyw )] , (3.26)
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and its expansion is

. 1 1
(12); =3 (Al:)4 < mit{mi; i — Yij-allmi; (m - M_”) (i — ij-1)
m:‘ . me .
T (= i1 1) — ——L (i1 — Bim1o1)] — [mfj—1 (¥ij—1 — Yi-1,5-1)
M1, M;;

+miyy o1 (bigri—1 — Y1) +mi; (ig — Yio1,5) + Mt Wivrg — Pig)]
[cij (M1 (i1 — Yig) + M (Yig — Yij-1))
— cij—1 (m¥; Wiy — ijo1) +mi;_q (Yij-1 — ¥ij—2))]}

1 1
—mi_y j{miy jli-1 — Yi-1,-1][mis (M— T M, ) (Yi-1,j — Yi-1,-1)
2y t—1,7

u
m;_

+ 77 L (Pimaj — Pimag-1)] — [mP_y ;1 (Wic1,jm1 — Yic2im1)
1

mg;
Mi,j (d’m ¢w—1)

1—4,
+mY g (ij—1 — im15-1) +Mi_q; (Yim1 — imaj) + MY (Wig — Yi-1,5)]
i1, (Mg i1 Wic1g41 — Yic15) + misy j (Yim1 — Yio1,5-1))

— ci—15-1 (M1 (Wic1y — Yim15-1) + Mg jo1 (Wim1-1 — Yim15-2))]} >, (3.27)

where ¢;j = (M; j + Miy1,; + Mij41 + Mi+1,j+1)_1'

Y 1 —_— —
l3 = m5y [(m )2 (Sz’(/)(sy (va(sm,‘/}y> — mu(sy’tl) m 6:5 (Wm 59;1/) )] s (3.28)

and its expansion is similar to that of l5. Refer to Part 10 of the Appendix to see it. Finally,

Y

r=m? [6, (L8 — 06, M5:8") + 8, (5@M" - n6,M5,8")] , (3.29)
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and its expansion is

k

" 2(A’])2{ [( i~ O+ Py - ‘I’f,j) (M;; + Mit1,5)

- (‘I’f,jl &5+ B — @ 11) (Mi—1,j + M)

i—-1,7

+ (q)f.ﬁl-l - q’k L+ @f G+l ‘I)f,j) (Mi; + Mj,j41)

(<I>’C Poofl +of - ok, 1) (Mij—1+ M) + #{_ (Miy,; — Mi5)
(@F; — @kt + @k — Oh L) + (Miy — Mimay) (@hy, — 0k, + 0F; — @)
— (Mij41 = Mi ) (‘I’i — o+ @f ‘I’f+11])

+ (M — M;j_q) (<1> —@F1 4+ 9k, — ok 1)]}. (3.30)

These discretizations were then applied to Test Case 1 to determine the degree of imbalance
in the flow at hour 117. Figure 3.8 shows the results. The top panel (Fig. 3.8a), showing the
combination of terms [, ls, and I3, should be compared to Fig. 3.6b. The difference between these
two figures is small, and is due to the fact that, in the current case, the streamfunction is being
used rather than the original wind data. [Note that Eq. (3.22) has been multiplied by —1 relative
to Eq. (3.14).] The impact of this is that the results are smoother when the streamfunction is used.
The center panel (Fig. 3.8b) shows term r, and the lower panel (Fig. 3.8¢c) shows the imbalance,
which is quite reminiscent of Fig. 3.6¢, as expected.

Turning our attention now to Test Case 2, the same procedure was carried out, and the analo-
gous results are displayed in Fig. 3.9. In this real-world case, regions of relatively high imbalance are
more widely dispersed throughout the domain, with hints that areas near the boundaries tend to be
less in balance (possibly reflecting the imbalanced nature of the WRF boundary conditions rather
than any boundary effects from the imbalance computation itself). In both cases, the imbalance is

on the order of 107952,
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Figure 3.8: Determination of imbalance for Test Case 1. (a) I; —ls—I3 [contour interval 6 x 1079572,
positive (negative) values solid (dashed)], (b) same as (a) but for r, and (c) nonlinear imbalance
(I3 — lg — I3 — 1) [contour interval 3 x 10~s2, positive (negative) values solid (dashed)].
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Figure 3.9: Same as Fig. 3.8 but for Test Case 2.
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3.3 Tangent linear and adjoint

This calculation of the imbalance can be thought of as the result of multiplying a giant m x n
matrix (where m is equal to the number of ¢ points in the domain plus the number of & points
in the domain and n is equal to the number of grid boxes in the domain) by a vector of length m
containing the values of ¢ and ® at all of their respective grid points. It is not strictly a matrix
multiplication because of the nonlinear nature of the calculation; some values in the “matrix” are
dependent on the values of 1 and ¢ at various locations in perhaps complicated ways. Instead, we
call this pseudo-matrix the nonlinear imbalance operator, and denote it as B. However, if we take
the derivative of IMB with respect to each v and ®, we can construct the tangent linear matrix
related to B. Left multiplying a perturbation vector of values for d% and §® by the tangent linear
matrix produces an output vector of SIMB corresponding to a change in the imbalance at each grid
point. B*, the adjoint of B, is the transpose of this tangent linear matrix.

To illustrate, consider the following example, adapted from one given by Kalnay (2003). Sup-

pose the state vector consists of X = v and the imbalance operator is defined as
P2
IMB = BX = ¢ sin (¢3) + cp¥1. (3.31)

The tangent linear version of this operator tells us how the imbalance changes (5IMB) as a result

of changes to the dependent variables (§¢/; and d1)2). This can be written as

6IMB = (sin (1/)%) + cp) d1h1 + 21h11h9 cos (7,[1%) 1o, (3.32)

where the general formula

SIMB
SIMB =" S (3.33)
—~ Ot

has been used. The key here is that all of the % must be derived (or in the case of imbalance,
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gMB) Fq. (3.32) is th rted to matrix form:
5x,)- Eq. (3.32) is then converted to matrix form:

s
0IMB = ( sin (¥3) + ¢, 29192 cos (¢3) ) 5://:1 (3.34)
2

Implicit in this equation is the fact that the dv are left unchanged. To reflect this, and to more

easily derive the adjoint, the matrix form is expanded to

511 1 0 0 51
e | = 0 1 0 Ss |- (3.35)
SIMB sin (¢¥3) + ¢, 2¢1%p2cos (¥3) 0 SIMB

The 3 x 3 matrix in Eq. (3.35) is the tangent linear matrix for this case. To determine the adjoint

of B, the tangent linear matrix is transposed, resulting in

€Y (0)

8*ehy 1 0 sin(vd)+c 8*ay
8% =1 0 1 2¢ntpycos(¢3) §*1o , (3.36)
6*IMB 00 0 6*IMB

where asterisks indicate adjoint variables. The adjoint can then be programmed using the assign-

ments

§*1 1= 6*¢y + [sin (¢2) + ¢p] 6*B
8*ahg 1= *tho + 24p19fo cos (¥3) 6*B
§*IMB := 0

where the values of the nonadjoint variables (¢ and 1)2) are taken from their current best guess.
(This is the basic state about which the operators have been linearized.)

Thus, in the case of the nonlinear imbalance operator, we must derive %%? for all k. These
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derivatives are then used in the tangent linear version to compute §IMB according to the pattern

k k k k k k k k k k
SIMBY; =al;60F 1 j_o + 0 j00%; o + cF 00 o5 1 +d 001 5 1 + el 0085
k k -k k -k k
+ 00 o1+ ol o R OYE 5000 + 00
k k k k k k k k— k k—
+ k0 g + 001 e + M8 + 00005 + 006

+pF 008t + gf ;60K L. + rf 608 + sE 0BT, + iF s0kH]

JY% 41,5 i,J+1 4,j—1 37 T i,j—1
E sqk+l , ok sak+l k sak+l
+ui 0% + Ui,j‘sq)i+1,j + wz’,j‘sq)i,j.;.la (3.37)
where the af . —w”. are derived from the full expansion of the nonlinear balance operator. (A
6,5 Wi j p P

computer algebra system assisted in deriving the coefficients.) In general, these coeflicients are too

lengthy for inclusion here. One of the few exceptions is nf, ’ which can be written as
2 ~k
k M 7 1 ]
ng ;= — M i 1—M;;)+ - (M -1+ M;)|. 3.38
W T T2 (A)? [n’“ —t (Mg = M)+ 5 (Mags + Mig) (3.38)

For the complete result, refer to Part 10 of the Appendix.

The tangent linear version of the imbalance operator can be tested by comparing how the
tangent linear version predicts a perturbation will affect the imbalance to the actual change in the
imbalance upon adding that perturbation. For Test Case 2, a perturbation of 5 x 108 m? s! was
added to the streamfunction at gridpoint (5,6), level n = 0.525. In addition, a perturbation of 50

2

m? s2

was added to the geopotential at gridpoint (5,6), level n = 0.55. The results of this test are
shown in Figure 3.10. The left half of the figure contains results for n = 0.525, whereas the right
half of the figure contains results for n = 0.575. The top panels (Figs. 3.10a-b) show the imbalance
(zoomed into the southwestern part of the domain). The introduction of the perturbations has
led to a large increase in the imbalance in their vicinity. Note how the patterns away from the
perturbation match those in Fig. 3.9c. The second row of panels (Figs. 3.10c—d) isolates the
perturbations themselves. The perturbations are not symmetric because the background fields of
geopotential and streamfunction vary from place to place. Finally, the bottom row (Figs. 3.10e-

f) displays the output from the tangent linear version of the imbalance operator. Although the
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1=0.525 1=0.575

a) - b N

Figure 3.10: Checking the tangent linear version of the imbalance operator for Test Case 2. (a)
Result of imbalance operator at n = 0.525 after adding the perturbations described in the text
[contour interval 3 x 107°s~2, with positive (negative) values solid (dashed)]. (b) Same as panel
(a) but for » = 0.575. (c) Same as (a) but showing the difference on the imbalance operator
between perturbed and nonperturbed input. (d) Same as (¢) but for n = 0.575. (e) Same as (a)
but showing output from the tangent linear version of the imbalance operator. (f) Same as (e) but
for n = 0.575.
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tangent linear output is only an approximation of the effects of the perturbations, the behavior
of the imbalance operator is apparently only weakly nonlinear, since the bottom two rows match
nearly identically. Similar checks were made in other locations, all of which showed very close
correspondence between the tangent linear estimated change in the imbalance, and the actual
change that resulted from the perturbations.

The adjoint version of the imbalance operator was then derived following the principles outlined
in the simplified example above, and its implementation is also shown in Part 10 of the Appendix.

One of the assignment statements in the adjoint routine is

2 i
xpk—1 ._ seqph—1 Mij n - ya Lo 3| s*IMBE

associated with the portion of the tangent linear routine shown in Eq. (3.38). The standard adjoint

check was performed following Kalnay (2003). The check makes use of the identity
(B6X)T (BsX) = (6X)T [B* (B8X)], (3.39)

where B is the tangent linear version of the nonlinear balance operator. If the adjoint is accurate,

both sides of the equation should agree to within machine precision, and this was indeed the case.
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Chapter 4
The PV operator and its adjoint

4.1 Derivation of operator

Potential vorticity is defined most generally as
q=a(V9-f), (4.1)

where { is the three-dimensional absolute vorticity vector. For large-scale flow, the dot product can

be simplified to use the vertical components of the associated vectors only; the result in Cartesian

80 B 8
qzag(f—i-———u). (4.2)

coordinates is

To transform this expression to the WRF terrain-following coordinate, the hydrostatic equation

and the chain rule is used, resulting in

18_@@(}0 v Onddov Odu 8n8<1>8u>. (4.3)

5z 090s0q 0Oy | 8% 0y on
This expression is still not ready for use in the PV inversion routine, since the only dependent
variables should be streamfunction and geopotential. This can be accomplished by replacing gg

with a new expression and using our definition of the streamfunction.
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A new expression for gg can be derived by equating geometric height with geopotential height

and then using the definition of geopotential height, giving

00 06

Next, the definition of potential temperature along with the thickness equation and the definition

of n allow us to write

(I)k _ (I)k—l cﬂ
o ~ e (p fo~k ) " (4.5)
't
R (u_,c_&pm - ) ¢ + 7op

where superscript k’s indicate the vertical level, water substance has been neglected, and 7* rep-
resents the value of 77 on a half-level.

Potential temperature is provided as output from the WRF model, so the degree to which Eq.
(4.5) accurately approximates the potential temperature can be quantified. Figure 4.1 compares the
potential temperature field with its approximation for Test Cases 1 and 2. Considering Test Case
1 (Figs. 4.1a,c), it can be seen that the approximation to the potential temperature is visually
indistinet from its actual distribution. The approximation is also quite good for Test Case 2
(Figs. 4.1b,d). However, careful inspection reveals that the approximated values of 8 are often
slightly higher than the values of 8 taken directly from the model output. This bias is an effect
of neglecting water substance (and in particular, the vapor pressure) in Eq. (4.5). By excluding
the vapor pressure from the computation, the (total) pressure used in computing the potential
temperature is slightly underestimated, leading to an overestimation of . This effect is most
pronounced near the surface, where vapor pressure is typically maximized, and decreases with
height. An implication of this is that the static stability, as estimated from geopotential, will tend
to be lower that it actually is. Introducing the vapor pressure into the approximation for 8 is left
for future work.

Now that the necessary ingredients are in place, the discretized form of the potential vorticity
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Figure 4.1: Potential temperature (contour interval 4 K) from (a) model output from Test Case 1,
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to Test Case 2.
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can be written as

Y = TY
g —n 1 1
q=— ;5,,@5@0 {f+6: [—_y zw] + 8, 7 yzp]

b0 [52870, (e ) + 58700 (=68 )| (46)

where 0" at level k is given by % (6”C + 0k+1) and 6F is given by Eq. (4.5). The expansion of this
equation is quite lengthy; the interested reader is referred to Part 10 of the Appendix for more
details.

The discretized version of the potential vorticity given by Eq. (4.6) was compared to a discrete
version of Eq. (4.3) to determine its accuracy. Figure 4.2 shows that, in general, the potential
vorticity based solely on 7 and @ is quite similar to the less approximated version. Upon closer
inspection, it can be seen that, in general, the magnitude of the PV is slightly less when based on
Eq. (4.6) in comparison to Eq. (4.3). For instance, the 1 PVU contour in the upper-right portion
of Fig. 4.2b is smaller than the corresponding contour in Fig. 4.2a. This is confirmed in Fig. 4.2¢c.
The reduction in PV is primarily a result of the reduction in the static stability introduced by

neglecting vapor pressure in the expression for potential temperature, Eq. (4.5).

4.2 Tangent linear and adjoint

The tangent linear version of the PV operator is derived in a manner analogous to that of the

imbalance operator. The level of complexity is increased somewhat, however, as the analogous
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Figure 4.2: (a) Potential vorticity calculated from Eq. (4.3) for Test Case 2 (contour interval 0.5
PVU). (b) Same as (a) but calculated from Eq. (4.6). (c) The graphical difference between (a) and
(b) (contour interval 0.05 PVU, zero contour omitted).
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expression to Eq. (3.37) is

k _ _k k-1 k k-1 k k-1 k k-1 k k
Ogi5 =a; 0%y 51 +bi 0% 1 + cig0iTy; + dii0vy; + e 0%y o

k k k k k k -k k -k k

+ Fi0%ij 2+ 9i0Wi—g i1 + hi 00y 1 + 8500551 + ;0% i
k k k k k k k k k k

+ kij0ig; + Ui 0%y 5 + mi 05 +ng 0% 5+ 07 ;001 541

k 5k k s k41 k s k+1 k s kbl | ok skt
+ 0500 1+ GO U+ 8L 0 + ti ;0% s

k k—2 k k—1 k k—1 k k—1 k k—1
+ ug ;0P + v 09550 + w6975 + w0955 + 450915

k k—1 k k k k k k k
+ 2509 511 + 050905 1+ B 0901 + 11,0905 + 05569540,

+ Tfj(sq)i,j+1 + U£j6¢k+1 (47)

i,j

where the aﬁ j—vf,j are derived from the full expansion of the potential vorticity operator.

As an example showing a typical form for some of the coeflicients,

P
m;_q._1Ci—1,5—1
N et TV g | ] k—1 k-1 k-2 k+1 k+1 k
er; = > (52’ [ni,j (<I>i,j — &} )—% (@M —@i,j)], (4.8)

where ¢; ; = Wﬁ\sz:ﬁ and nf,j = [pt_+7§72’?m_”] % [Rln (p;:—zk——_:nrzzi)]_l. For the complete result,
refer to Part 10 of the Appendix.

The same perturbations employed during testing of the tangent linear form of the imbalance
operator were used to test the tangent linear form of the PV operator. Figure 4.3 displays the results
of a test analogous to that displayed in Fig. 3.10. Evidently, the same perturbations that produced
a large change in the imbalance operator have a more muted effect on PV. At the 1 = 0.525 level,
shown in the left column of the figure, the perturbations change the PV on the order of 0.5 PVU.
Curiously, the changes in PV extend in a more pronounced way towards the southwest from the
central perturbed gridpoint, whereas the changes in the imbalance extended in that direction the
least. Changes to the PV at the n = 0.575 level are even more muted still (Figs. 4.3b,d,f). The

PV operator appears to be more nonlinear than the imbalance operator, since the tangent linear

prediction of PV (Figs. 4.3e,f) is more noticeably different than the actual §PV (Figs. 4.3¢,d)
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Figure 4.3: Same as Fig. 3.10 except showing the tangent linear version of the potential vorticity
operator [contour interval 0.25 PVU, positive (negative) values solid (dashed), except (b) contour
interval 0.25 PVU, and (d) and (f) contour interval 0.1 PVU]J.
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than was the case for the imbalance. As in the case of the imbalance, checks such as the one
shown above were made for different perturbations, and the results were similar, indicating that
the tangent linear version of the PV operator is accurate.

The adjoint of the PV operator, P*, was derived in a process analogous to the one described in
the previous chapter for the imbalance adjoint. One of the assignment statements in the adjoint

routine is

P
* * m-—l, _lcl—l,J—l — — — *
S PE ) s g =8 YE i o+ — QJ(AJ;)2 ["‘i’c,j ' (‘bi‘c,j - q)i‘c,j 2) - “ﬁl (@f}i-l - q’%)] Y Pi’fj’
(4.9)

and the complete routine can be found in Part 10 of the Appendix.
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Chapter 5

Putting the pieces together: PV

inversion

5.1 Review

Recall that we are attempting to minimize the cost function given by Eq. (2.8) using its gradient,
given by Eq. (2.9). Now that the adjoints of the nonlinear balance and PV operators have been

implemented and tested, we are ready to do so.

5.2 Procedure

The value of ¢ has heretofore been left undefined. However, based on our knowledge that PV has
values in SI units on the order of 1076 m? K kg'! s! and that the imbalance operator typically has
values on the order of 107° 572, we can make the following inferences. First, consider how accurate
the calculated PV should be relative to any given PV distribution in a typical grid box. If we set
this accuracy to 0.1 PVU, then the first term in the cost function will have a value of about 10~14
m?* K? kg2 s times the number of gridboxes in the domain when the solution has been reached.
On the other hand, the second term in the cost function will have a value of about 10718 s times

the number of gridboxes in the domain when the solution has been reached. This suggests that
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e should have a value on the order of 10* m* K? kg? s2. Values greater than this will enforce
greater nonlinear balance at the expense of a greater mismatch between the calculated PV and the
given PV distribution, whereas values less than this will more heavily weight the match between
the calculated and given PV distributions. During the work described here, £ = 5000 m* K? kg2
s2, giving the PV match a bit more weight.

The lateral boundary conditions are given by fixed values of ¥ and ® that match those in the
input data. In other words, only the interior values of ¢y and ® are allowed to fluctuate as the
minimization is carried out. At the lower boundary, ® is defined by the elevation of the earth’s
surface, and it is held fixed at the upper boundary. An alternative upper boundary condition
that could be implemented would be to set the temperature in the top layer to a fixed value
representative of the lower stratosphere (the WRF model top is usually 50 hPa), and set %:I;
accordingly. The streamfunction is only involved in horizontal derivatives, so it is free to vary
in the top and bottom layers. Finally, the mass of the atmosphere in each column serves as a
boundary condition that determines the pressure at each grid point. In other words, u is specified
for all i and j.

The cost function is minimized through the method of steepest descent. Starting from a first
guess, the gradient of the cost function, VJ, is computed. A line search is then performed in the
direction opposite to that of the gradient (given by Y = _]g_j[) until the vector AX = aY that
minimizes J along that line is found. The line search is carried out by considering a to lie in
an interval ranging from zero to some large real number. By subdividing this interval repeatedly,
while checking the value of the cost function for each trial AX, a reasonable value for & may be
found. The current implementation stops the line search when the width of the interval divided
by its midpoint is less than 10~5. The current guess for X is replaced by X + AX, and the process
is repeated until J is minimized. J is considered minimized when the value of J increases after an

iteration or after 10 000 iterations have been performed.
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5.3 Results

Three trials of the PV inversion technique have been carried out, all of which are based off of Test

Case 2.

5.3.1 Triall

In the first test, the first guesses for the streamfunction and geopotential match their “true”
values. Thus, the output of the inversion should nearly equal the input. Over the course of the
minimization, the cost function decreased from 1.62 x 10710 m* K2 kg2 52 to 3.76 x 10711 m* K?
kg? s2. The results of this inversion are shown in Fig. 5.1. The top panels (Figs. 5.1a-b) show
actual conditions diagnosed from the model output for Test Case 2. The geopotential heights are
shown rather than geopotential for familiarity, but geopotential is the field used during inversion.
The bottom panels (Figs. 5.1c-d) show the output of the inversion routine. These “balanced”
heights and streamfunction values are nearly identical to their original values, indicating that the

original fields were nearly balanced to begin with. (We already knew this based on Fig. 3.9c¢.)

5.3.2 Trial 2

For a more stringent test of the inversion technique, the streamfunction field was altered on the
interior, the intention being to use the boundary values of the streamfunction to determine a
plausible first-guess streamfunction field via interpolation. The interpolation was later found to be
improperly programmed, resulting in large gradients of ¢ along the boundary in the input field.
Nevertheless, a robust inversion routine should not be dependent on how good the initial guesses
are. When given the altered streamfunction field as an initial guess (the geopotential initial guess
was left identical to