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ABSTRACT 

 

Air-sea CO2 flux variability in the North Atlantic has been found to be small in a variety 

of ocean biogeochemical models and at least one atmospheric CO2 inversion study, yet 

the mechanisms that damp variability in this region of large net carbon uptake are poorly 

understood. A biogeochemical general circulation model was used to assess the impact of 

climate variability from 1980-2006 on the CO2 flux and surface pCO2 in the North 

Atlantic.  Results show a strong correlation between flux and pCO2 variability.  Two 

distinct mechanistic regions are found explaining general pCO2 variability: temperature 

driven versus dynamics (mixing) driven.  Model output pCO2 was separated into its 

influences from dissolved inorganic carbon (DIC), alkalinity (ALK), phosphate, silicate, 

sea-surface temperature (SST), and sea-surface salinity (SSS) to assess the mechanisms 

driving pCO2 variability.  These pCO2 influences were regressed onto the North Atlantic 

Oscillation (NAO) index and onto the first principal component of the pCO2 to assess the 
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effects of the main modes of climate and carbon variability in the region on the carbon 

system.  The NAO regression shows that while the effects of SST and ALK on pCO2 

variability balance each other in the eastern subtropical gyre, DIC and SST effects 

balance in the subpolar gyre, such that the overall variability of pCO2 is small.  

Regression of the pCO2 components on the first PC shows that horizontal advection may 

also be important.  Driving forces behind pCO2 variability are evaluated with regard to 

limited data from transect and time series observations.  
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1. INTRODUCTION 

Since the Industrial Revolution, there has been a marked increase in the concentration of 

CO2 in the atmosphere.  Human activities, such as the burning of fossil fuels, the 

production of cement, and changes in land use, have all led to a change in atmospheric 

CO2 concentrations from about 280 ppm in 1850 to values of about 380 ppm in 2007 

(Keeling & Whorf, 2005).  This increase, however, has been moderated through 

terrestrial and oceanic sinks that have assimilated roughly half of the total CO2 emitted 

from anthropogenic sources (Sarmiento & Gruber, 2002).  While the overall sink of 

anthropogenic CO2 is primarily driven by the terrestrial biosphere, changes in land use 

and biomass burning have led to a terrestrial flux of CO2 from the land to the atmosphere, 

such that the oceans have served as the only “true” sink for anthropogenic CO2 over the 

past 200 years, and were it not for oceanic uptake, atmospheric CO2 would be 55 ppm 

higher than present levels (Sabine et al., 2004). 

 The oceanic sink is an important factor in the long-term mean concentration of 

atmospheric CO2, and it also exhibits a strong interannual variability.  On the global 

level, the growth rate of atmospheric CO2 varies considerably more than estimated 

anthropogenic CO2 emissions (Conway et al., 1994, Sarmiento and Gruber, 2002), 

suggesting that interannual variability of CO2 sinks have a strong impact on the overall 

variability in the atmosphere.  For the ocean, year-to-year changes in climate forcing can 

have profound impacts on ocean temperature, chemistry, and circulation, all of which 

impact the ocean carbon cycle.  Since atmospheric pCO2 is nearly constant (yet 

increasing), air-sea flux variability is primarily driven by surface ocean pCO2 variability.  

Aside from the prominent role of ENSO variability, the causes of interannual variability 
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in the mid to high latitude ocean sink is poorly understood, with estimates of sink 

magnitudes and variability largely inconsistent (McKinley et al., 2004; Gurney et al., 

2002; Keeling et al., 1996; Peylin et al., 2005).        

There is also significant spatial variability in the ocean sink.  Due to differences in 

ocean circulation and chemistry, each basin has its own inherent ability to absorb 

atmospheric CO2.  The Atlantic Ocean plays a significant role in the uptake of 

anthropogenic CO2.  Takahashi et al. (2002) estimated that the Atlantic accounts for 41% 

of the global flux of CO2 into the ocean.  The North Atlantic (north of equator) is 

particularly important in the global CO2 flux.  While this basin comprises only 15% of 

the global ocean surface, it has absorbed 23% of the anthropogenic carbon stored in the 

oceans (Sabine et al. 2004). 

 

1.1 Ocean Carbon Cycle Chemistry 

The amount of CO2 that fluxes into/out of the ocean is fundamentally driven by the 

difference between the partial pressures of CO2 in the surface ocean and the atmosphere 

(∆pCO2=pCO2ocean-pCO2atm).  If the pCO2 in the atmosphere is higher relative to the 

surface ocean, then the net flux of CO2 will proceed from the atmosphere to the ocean, 

and vice-versa.  In other words, regions where ∆pCO2<0 are considered undersaturated 

waters and regions with ∆pCO2>0 are considered supersaturated. Since pCO2atm is 

relatively constant in space due to rapid atmospheric mixing (yet increasing over time), 

spatial variability in ∆pCO2 is driven by changes in surface ocean pCO2. 

 Other controls on surface ocean pCO2 include changes in temperature, salinity, 

alkalinity (ALK), and dissolved inorganic carbon (DIC).  For a given pCO2 (salinity, 
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ALK, and DIC held constant), Takahashi et al. (1993) experimentally found the 

following relationship to explain the connection between temperature and pCO2:  

! 

1

pCO
2

"pCO
2

"T
=
" ln pCO

2

"T
# 0.0423̊ C

$1 

Thus, an increase in SST causes an increase in sea surface pCO2.  A similar directly 

proportional relationship exists for salinity, but does not have as strong an impact on 

pCO2 as temperature. 

 After dissolving into ocean water, CO2 acts as an acid/proton donor to form H+, 

HCO3
-, and CO3

2- according to the following chemical equation (where H2CO3
* is the 

pre-dissociation dissolved CO2): 

 H2O + CO2(g)  CO2(aq)  H2CO3
*  H+ + HCO3

-  2H+ + CO3
2- 

The variable used to describe the overall state of this carbon cycle is dissolved inorganic 

carbon (DIC), which is defined as the sum of the concentrations of all dissolved carbon 

species, or: 

DIC = [H2CO3
*] + [HCO3

-] + [CO3
2-] 

Clearly, as DIC increases, the overall amount of carbon in the system increases, along 

with pCO2, so regions with elevated DIC will exhibit a decreased (or reverse/outgassing) 

air-sea flux. 

 Another chemical property of seawater that affects the pCO2 near the surface is 

alkalinity (ALK).  Alkalinity is defined as the measure of the excess of bases over acids 

(Sarmiento and Gruber, 2006) and is often best understood by the following equation: 

 ALK = [HCO3
-] + 2[CO3

2-] + [OH-] - [H+] + [B(OH)4
-] + minor bases 
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Clearly there is some relationship between DIC and ALK through the carbonate and 

bicarbonate ions, and hence ALK is also an important property defining the chemical 

balance of the carbon in seawater.  However, DIC and ALK affect pCO2 in different 

ways (where k0, k1, k2 are chemical equation rate constants): 

 

! 

pCO
2
"

k2

k0• k1
•
(2•DIC # ALK)

2

ALK #DIC
 (Sarmiento and Gruber, 2006). 

The equation above shows the directly proportional relationship between DIC and pCO2 

and an inversely proportional relationship between ALK and pCO2. 

The physical carbon cycle is further complicated through the effects of 

temperature on surface ocean dynamics.  As discussed above, changes in ocean 

temperature have an immediate impact on the pCO2 of the surface ocean, with colder 

waters less able to hold pCO2.  However, colder waters are also denser, driving increased 

mixing which brings high DIC waters from depth to the surface to balance a required 

conservation of mass, thus increasing pCO2.  (Deep waters are typically higher in DIC 

from the accumulation of carbon sinking through the “biological pump,” discussed next).  

These opposing impacts on the surface pCO2 drive some regions to be dominated by 

mixing (dynamics-driven) and other regions dominated by temperature (temperature 

driven).     

The discussion thus far describes the inorganic carbon cycle pathway, and while 

the focus of this thesis is not on the biological uptake of CO2, it is important to note that 

biological processes can have regionally large impacts on the distribution of carbon.  

Through photosynthesis, carbon is incorporated into biological material at or near the 

surface.  This biological material can be remineralized (i.e. redissolved) into surface 



 5 

waters, transported downward and remineralized at depth, or transported to the seafloor 

and incorporated into sediments.  The downward transport removes DIC from the 

surface, and the subsequent remineralization below the mixed-layer drives the high 

concentrations of DIC in the deep ocean.  This downward transport of carbon is referred 

to as the “Biological Pump.”  

 

1.2 North Atlantic Carbon Cycle Variability 

While the overall uptake of CO2 by the North Atlantic has been found to be relatively 

important on a global scale, the significance of North Atlantic flux variability is less 

clear.  Atmospheric inverse models (Bousquet et al., 2000) and spatially extrapolated 

timeseries data (Gruber et al., 2002) suggest North Atlantic flux variability range to be on 

the order of ±0.3 Pg C year-1, a significant fraction of the global ocean CO2 flux 

variability of ±0.5-1.0 Pg C year-1 (Le Quéré et al., 2000; Bousquet et al, 2000).  Other 

forward modeling studies, however, have suggested that global ocean flux variability is 

smaller (less than ±0.5 Pg C year-1) and that the North Atlantic does not play a significant 

role in this variability (McKinley et al., 2004; Obata and Kitamura, 2003; Le Quéré et al., 

2000).  Biogeochemical ocean models do tend to under-represent surface physical 

variability (McKinley et al., 2004; Peylin et al., 2005; Le Quéré et al., 2000), but even if 

one assumes forward model output to be a lower bound, there is still a discrepancy in the 

understanding of flux variability in the North Atlantic.            
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1.3 North Atlantic Climate Variability and the North Atlantic Oscillation  

The prominent mode of climate variability in the North Atlantic region is the North 

Atlantic Oscillation (NAO).  The NAO is a redistribution of atmospheric mass between 

the Subtropical and Northern North Atlantic (Hurrell & Dickson, 2004).  It is most often 

operationally defined as the difference between surface pressures of the Azores high-

pressure center and the Icelandic low-pressure center.  Most pronounced during Northern 

Hemisphere winter months, the variability in this meridional pressure gradient drives 

significant climate variability in the atmosphere and the underlying ocean, accounting for 

one-third of the variance in sea level pressure over the North Atlantic (Hurrell et al., 

2003).  During a positive phase of the NAO, a large meridional pressure gradient drives a 

number of climatic changes: enhanced westerly flow bringing warm moist air across the 

mid-North Atlantic and into Europe, enhanced warm southerly flow over the eastern 

United States, and enhanced cold northerly flow over Greenland and the western Atlantic 

(Hurrell et al., 2003).  Such anomalous flow drives a northeastward shift in Atlantic 

storm activity, with more intense and frequent storms near Iceland and the Norwegian 

Sea (Hurrell et al., 2003).   

These changes in atmospheric climate have an impact on surface ocean 

variability.  Most pronounced is the typical tripole pattern of the leading mode of SST 

variability in the North Atlantic, with anomalously cold SST in the subpolar region, 

anomalously warm SSTs in the mid-latitude Atlantic off of Cape Hatteras, NC, and 

anomalously cold SSTs between 0-30˚N (Visbeck, 2001).  Due to the strong link between 

surface wind and surface ocean circulation, numerous studies have also shown significant 

impacts of the NAO on ocean circulation (Bersch, 2002; Marshall et al., 2001).  Finally, 
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changes in atmospheric circulation and pressure associated with the NAO influences 

overall storminess and precipitation over the ocean (Bojariu and Reverdin, 2002; Mariotti 

and Arkin, 2007).  Such changes in cloud cover and freshwater input have a strong 

impact on surface salinity, temperature, and alkalinity (Mignot and Frankignoul, 2003). 

  

1.4 Interannual Variability as a Path to Carbon Cycle Mechanisms 

This thesis aims to understand the effects of interannual variability in atmosphere and 

ocean physics on the North Atlantic carbon sink.  Looking at interannual variability is 

useful because it can aid in developing an understanding of the mechanisms that drive the 

ocean carbon cycle. A mechanistic understanding of ocean carbon cycle will allow for 

better prediction of future change in an environment of increasing atmospheric CO2. 

Through the use of the MIT ocean-biogeochemical general-circulation-model, the 

effects of climate variability from 1980-2006 on the air-sea flux of carbon and surface 

pCO2 in the North Atlantic is assessed.  Since the NAO is the main mode of variability 

within the North Atlantic, this well-known index of climate variability is used to help 

interpret variability in the model output.  Other modes of ocean pCO2 variability that 

arise through other climate variability are also discussed using Empirical Orthogonal 

Functions (EOFs) also known as Principal Component Analysis (PCA).  This analysis 

helps indicate other mechanisms driving carbon cycle variability aside from those due to 

changes in the NAO. 
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2.  METHODS 

2.1 Model 

The MIT Ocean General Circulation Model (Marshall et al., 1997a,b) was regionally 

configured for the North Atlantic between 20˚S and 81.5˚N, with a horizontal resolution 

of 0.5˚ latitude and 0.5˚ longitude.  The model is set up to have 23 vertical levels with a 

resolution of 10 m thickness at the surface increasing to 500 m thickness for depths 

greater than 2200 m.  The Gent-McWilliams (Gent & McWilliams, 1990) eddy 

parameterization and the KPP boundary layer mixing scheme (Large et al., 1994) are 

employed to represent sub-gridscale processes.  The general circulation model is forced 

with daily wind stress (10 m), net heat flux (Qnet), and freshwater (evaporation minus 

precipitation or EmP) flux, using 1980-2006 reanalyzed output from the National Centers 

for Environmental Prediction (NCEP) reanalysis I (Kalnay et al., 1996). 

 

2.2 Sponge Layer 

To address rigid boundary issues in this regional model, a “sponge layer” is included to 

dampen accumulation of tracers along false boundaries that would in reality flow out of 

the North Atlantic into other ocean basins.  A sponge layer acts to relax values along the 

boundary to climatological values, such that grid cells closest to the boundary have the 

biggest weight, with influence dropping off away from the boundary as described by the 

following equation: 

   

! 

"(tracer)

"t
=
"(tracer)

"t
# $

(tracer # tracer_obs)

%
RELAX

, 



 9 

where applied values of 

! 

"  decrease nearly exponentially away from the boundary, 

tracer_obs is based on monthly climatological values, and 

! 

"
RELAX

 is the relax timescale 

(how often the model relaxes back to climatology).  The decrease in 

! 

"  away from the 

boundary results in a stronger forcing back to the climatology for grid cells closer to the 

boundary and a weaker relaxation back to the climatology away from the boundary (thus 

a bigger influence by model dynamics).  For temperature and salinity, the sponge layer is 

implemented along the southern boundary and at the Mediterranean inflow of the Strait 

of Gibraltar.  For nutrients of the biogeochemical model, the sponge layer is only 

implemented along the southern boundary.  Attempts were made to include a sponge 

layer along the northern boundary (north of 81.5˚N), but tests comparing the effects on 

circulation, temperature, and salinity show that a sponge layer along this boundary is 

inconsequential and therefore can be discarded.  Similarly, differences in biological 

production between the Mediterranean and the eastern basin are small, suggesting that 

nutrient inflow from the Mediterranean is insignificant (Béthoux et al., 1998).  Therefore 

the nutrient sponge layer at this boundary was not included.       

 

2.3 Biogeochemical Model 

Also included in the total model is an ecosystem model of intermediate complexity 

(Figure 1) as developed by Dutkiewicz et al. (2005), modeling a pelagic ecosystem with 

one zooplankton class and two phytoplankton classes: diatoms and “small” 

phytoplankton.  This ecosystem is limited by the coupled cycles of phosphorus, silicon, 

and iron.  Biological iron cycling is modeled following Parekh et al. (2004), using an 

aeolian dust input (Mahowald et al., 2003; Luo et al., 2003).  The phytoplankton classes 
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differ in their maximum growth rate, nutrient requirements, and edibility by the 

zooplankton (the larger diatoms are less palatable).  The small phytoplankton are limited 

by phosphorus and iron only, but the diatoms are limited by phosphorus, iron, and silicon.  

Nitrogen cycling is not incorporated because of its higher complexity and because it is 

less of a limiting nutrient in the North Atlantic than in other basins (Sarmiento & Gruber, 

2006).  Both phytoplankton classes are also limited by light, prescribed in the model by 

defining the photosynthetically available radiation (PAR) as a percentage of the amount 

of shortwave radiation reaching the surface ocean (from NCEP forcing).  PAR decreases 

vertically in water column factoring attenuation coefficients for the water itself and the 

biological abundance increasing the turbidity.  During winter months, the amount of light 

reaching the surface is also dependent on the amount of ice cover (assuming high-albedo 

ice cover blocks shortwave radiation from reaching the upper ocean).  This ice-cover is 

also prescribed by data from the NCEP reanalysis I (Kalnay et al., 1996). 

While the ecosystem is confined to the surface layers, nutrient cycles are 

computed over the entire water column.  Nutrients are carried in the modeled plankton 

species and through pools of particulate organic matter (POM) and dissolved organic 

matter (DOM).  Both zooplankton and phytoplankton contribute to the pools of DOM and 

POM, but among phytoplankton, diatoms contribute more to POM due to their larger 

size.  While DOM remains suspended in the water column, POM sinks at a constant rate, 

simulating the “biological pump” of organic matter and nutrients to the abyss.  Both 

POM and DOM are affected by ocean circulation and remineralize into an inorganic and 

bio-available pool of nutrients.  Nutrients at depth can be recirculated to the surface 

through advection and convective upwelling. 
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Carbonate chemistry is modeled using values of DIC, ALK, phosphate, silicate, 

temperature, salinity, and pH to calculate the surface pCO2 (Follows et al., 2006).  The 

air-sea gas exchange for CO2 is modeled as a function of temperature, the square of the 

wind-speed, and the difference between pCO2 in the surface water and pCO2 in the 

atmosphere following relationships described by Wanninkhof (1992).  Atmospheric pCO2 

levels were prescribed following the time-varying curve from Mauna Loa observations 

(Keeling & Whorf, 2005), which include the seasonal cycle and the increasing trend over 

time.  Changes in carbon and oxygen due to changes in biology are calculated using the 

fixed Redfield ratio, expressing the ration between oxygen, carbon, silicate, and 

phosphorus as 170:120:25:1 (Anderson & Sarmiento, 1994). 

 

2.4 Model Spin Up 

The physical model was spun up through three 27-year cycles of varying daily forcings 

from 1980-2006 (total of 81 years spin up).  In order to curb drift throughout the spin up, 

potential temperature and salinity were relaxed back to climatology from the World 

Ocean Atlas (WOA, Locarnini et al., 2006; Antonov et al., 2006) on timescales of every 2 

and 4 weeks respectively.  This relaxation to climatology reduces the overall variability 

in the model output but aids in the reduction of unrealistic model drift.   

 Next, the biogeochemical model was spun up for ten years of 1980-1989 daily 

forcing with a constant atmospheric pCO2 fixed at 345 ppm (roughly the 1980 level) with 

temperature/salinity relaxation included as before.  This spin up was repeated for another 

10 years with the same forcing to eliminate any drift still in the biogeochemical system 

after the first 10 years.   
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During the last 27-year cycle of the spin up, the relaxation terms (i.e. modeled 

value minus climatological value, or the amount that the model uses to correct back to 

climatology at each time step) were extracted from the output.  A daily climatology of 

these relax terms was created from the 27-years of output.  This relaxation climatology 

was then incorporated back into the forcing files of net heating and freshwater fluxes 

(Qnet+Trelax; EmP-Srelax).  In this way, the relaxation needed to keep the model stable 

was incorporated into the forcing itself so that the relaxation step could be eliminated and 

the overall variability enhanced (no longer limited each time step by the relaxation).  

Preliminary tests of this method show that temperature and salinity in the model do 

indeed remain relatively stable, but the overall variance in the data increases appreciably, 

which is advantageous when studying interannual variability in the ocean system.  Figure 

2 shows the seasonal cycle and anomalies from a ten-year test run to compare output with 

the relaxation turned on versus output with relaxation terms incorporated into the forcing.  

While there are small differences in the overall mean cycle, there is a considerable 

increase in the overall variability present in the anomalies when the relaxation is turned 

off.   The final run used the full biogeochemical model with relaxation turned off, 1980-

2006 daily forcings that incorporated the climatology of the relax terms, and the time-

varying atmospheric pCO2 field.  

 

3. RESULTS 

3.1 Model Validation: Gulf Stream Flow 

One of the main reasons for modeling the ocean is due to a lack of observational data.  To 

empirically sample the ocean with the spatial and temporal resolution to competently 
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assess its complex mechanisms would be so prohibitively expensive, it would be 

impossible.  Models help to fill in the gaps of the puzzle where the pieces are unavailable.  

The limited data that is available, however, is necessary to validate that the model is 

within the realm of reality.  (Of course, the acquisition of more data always helps to 

further constrain the models, adding more pieces to the puzzle and shrinking the gaps to 

be filled in by the model). 

 

Table 1: Transport comparisons in Sverdrups (1 Sv = 106 m3/s) 

LOCATION MODEL OBSERVED SOURCE 
Gulf Stream at Cape 

Hatteras 
50.6 Sv 70-100 Tomczak and Godfrey 

(1994) 
Gulf Stream at 65˚W 28.6 Sv 90-150 Sv Tomczak and Godfrey 

(1994) 
Gulf Stream at 40˚W 20.9 Sv 37 Sv Worthington (1976) 

Florida Strait at 26.5˚N 
 

Florida Strait at 26.5˚ N 
(extended) 

15.0 Sv 
 

26.3 Sv 

 
31.5 Sv 

 
Cunningham et al. (2007) 

 

Table 1 compares the model transport of major ocean currents in the North Atlantic with 

published observations.  All of the Gulf Stream model estimates integrate the current 

velocity over a span of 15˚ wide and 985m deep to calculate the transport.  All estimates 

of the Gulf Stream are considerably less than the observed estimates.  It appears as 

though the model is poorly representing the recirculation in the north, a characteristic 

problem for the MITgcm and similar non-hydrostatic models (McKinley et al, 2000).  

Such recirculation would intensify the western boundary current.   

Upon further investigation of the location of the Gulf Stream, our model shows a 

northward displacement of the location of the Gulf Stream relative to observation.  
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Because the initial spin up relaxes to the observational mean of temperature and salinity, 

this relaxation may also cause a damping of the transport in this current. 

The Florida Strait is typically strong and narrow current confined between the 

coast of Florida and the Bahamas.  Because our model does not resolve the Bahaman 

Islands, some of this flow in the model extends past the width of the observed width of 

the Florida Strait.  If the extended width of the flow is included in the calculation 

(“extended” estimate, in Table 1), then the modeled transport compares favorably with 

the observations. 

 

3.2 Mixed Layer Depths 

Another way to measure the overall skill of a physical ocean model is to look at its mixed 

layer depths (MLDs).  MLD is dependent on the density stratification of the ocean and 

thus a function of salinity (S) and temperature (T).  Comparing MLDs between model 

results and observations is useful because it integrates both of the physical parameters 

affecting density.  MLD is also a crucial variable for comparison due to its importance 

with regard to the carbon cycle.  Changes in MLD can affect the amount of DIC and 

nutrients reaching the surface, and MLDs are driven in part by changes in T, all of which 

affect the air-sea carbon flux.  For the purpose of this study, MLDs have been calculated 

as the depth at which potential density exceeds that of the surface by 0.125 kg/m3 

(following Monterey & Levitus, 1997).  

Figure 3 compares seasonal MLD output from the model with observed 

climatology from the WOA database (MLD calculated from salinity and temperature 

climatology; Locarnini et al., 2006; Antonov et al., 2006).  The model captures the 
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magnitude and spatial distribution of mixing fairly well, particularly in summer months, 

when the water column is more stratified.  During the winter months, however, the model 

overestimates deep mixing in high latitude regions such as the Norwegian Sea and the 

waters off the southern coast of Greenland.  Much of this has to do with high variability 

in regions of deep winter mixing, but the depth resolution of this model is also coarse 

below 1000m depth (up to 500m resolution), such that small changes in the 

temperature/salinity structure can result in significant MLD overestimates.  Also, the 

observational record of these high latitude regions is more limited in winter months due 

to rough seas and sampling difficulty, suggesting that there may be a higher degree of 

uncertainty in the climatological estimates of MLDs in the North Seas. 

 The seasonal climatology comparisons of MLD also highlight differences in the 

location of the Gulf Stream.  This difference is particularly strong in the winter months 

with evidence of a weaker Gulf Stream.  This weaker transport of warm subtropical 

waters limits the warming of these waters off of Newfoundland, which subsequently 

drives relatively deeper mixing in the model.  The MLD differences near the Gulf Stream 

in the summer months shows a dipole of deeper/shallower MLDs, suggesting a 

displacement in the location of the Gulf Stream between the model and observations, 

with the location of the model’s Gulf Stream displaced southward (light blue regions, 

centered at approximately 35˚N, 60˚W in Figure 3). 

 

3.3 Interannual Variability of Mixed Layer Depths 

There is a limited observation record of MLD variability available from the Bermuda-

Atlantic Timeseries Station (BATS, 31˚40”N, 64˚10”W, [Bates, 2007]), providing 
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monthly-resolved Conductivity-Temperature-Depth (CTD) instrument data since 1988.  

The model matches the observed seasonal climatology at BATS quite well (Figure 4), 

with an overestimate of about 50m during February and March, times of deep mixing.  

Comparing the MLD variability shows that the timing of the mixing in the model also 

matches the data, but the magnitude of the winter mixing in the model goes from too 

shallow in the early 1990s to too deep in the 2000s.  There appears to be a deepening 

trend in the model MLDs over the time period from 1991 to 2006, while the observations 

appear to have the opposite trend.  

 Because MLDs in the BATS region are mostly temperature dependent (this 

demonstrated in T dependence on MLD over seasonal time scales), it is useful to look at 

temperature independently of salinity to understand what might be causing this trend in 

our model results. More interannual varying SST data is available from satellite 

observations since the early 1990’s.  The Pathfinder program uses an Advanced Very 

High Resolution Radiometer (AVHRR) to measure the skin temperature (upper 1mm or 

less) of the ocean (Kilpatrick et al., 2001).  The model dynamics, however, deal with a 

layer of the upper 10 m of the ocean.  Since the skin temperature heats up much more 

rapidly than the upper 10 m during the exposure to daytime shortwave forcing, nighttime 

satellite measurements are ideal when trying to compare Pathfinder SST with the model 

SST.  The Pathfinder data is useful because it provides SST variability from 1985 to the 

present.  Even with nighttime data, however, one must be mindful that these 

measurements reflect the skin temperature only and not the temperature of a layer of 

water with any kind of considerable depth.  To get around such issues, Reynolds and 
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Smith (1994) developed an algorithm to correct satellite data to account for temperature 

in the upper 10 m as opposed to that confined to the skin layer.  

To look at the model’s ability to capture SST at BATS, Figure 5 compares SSTs 

as measured by the BATS timeseries, Pathfinder nighttime skin temperature, the 

Reynolds algorithm, and model output. The Pathfinder and Reynolds measurements 

match those at BATS quite well, with some negative bias by Pathfinder for winter SST, 

which is consistent with the understanding of a thermally responsive nighttime skin 

temperature. This plot confirms that the model SSTs are too warm in the early 1990’s and 

too cold in the end of the run, i.e. a decreasing trend.  Since colder surface water helps to 

drive deeper mixing, these differences in SST probably are driving the anomalously deep 

MLDs in the model.   

But what is causing this anomalous negative SST trend in our model?  The net 

heating forcing (Qnet) in the model has the most direct impact on surface temperature.  

Figure 6 shows the decreasing trend in annually-averaged Qnet (negative values indicate 

loss of heat from atmosphere forcing, thus cooling of ocean surface) in line with the 

cooling effect in SST (R=0.61; lag-1 year R=0.66).  The change in Qnet from the early 

1990’s to the late 2000’s amounts to about -23.8 W m-2.  This decrease in Qnet acting 

over a column of water with depth 200 m for 5 years would result in a decrease in SST of 

4.4˚ C.  The decrease in SST observed in the model at BATS over the same time period is 

roughly 4.0˚ C.   

Clearly the cooling trend in modeled SST is responding to a trend in the net heat 

flux forcing.  For some reason however, this trend is not manifest in the observations, 

suggesting that the model is missing an important warming mechanism needed to 
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accurately model SSTs in the region around BATS by offsetting the cooling caused by 

the atmospheric forcing.  The two mechanisms driving SST change at BATS are the net 

heating and any form of heat convergence from transport into the region.  It is possible 

that the NCEP Qnet term is incorrect for this region, but it is more plausible that the 

model may not be capturing the heat convergence.  This hypothesis is supported by the 

underestimate of recirculation/transport along the Gulf Stream north of Cape Hatteras 

(discussed above).  Perhaps the act of restoring to an invariant WOA climatology along 

the southern boundary limits the variation in global meridional overturning circulation 

(Zhang et al., 2007), thus limiting the advection of warm equatorial water that would 

otherwise compensate for the atmospherically forced cooling.  This as an important 

limitation in the model results that leads to a significant caveat in the findings of this 

thesis.  Because of these discrepancies, our model is able to show the effect of the 

atmospheric forcing within the North Atlantic, but overall patterns in the real world may 

be damped by mechanisms not included in the model.  Nevertheless, a better 

understanding of the links between the atmospheric forcings and the ocean is still useful 

information in understanding the overall picture in the ocean carbon cycle.      

 

3.4 Carbon Cycle Climatology 

Since the focus of this thesis is ultimately on the carbon cycle, it is useful to compare 

surface pCO2 observations with the model output.  As shown by Takahashi et al. (1993), 

pCO2 values can be separated into temperature-driven and non-temperature-driven 

components.  Figure 7 compares modeled seasonal pCO2 differences with climatological 

observations (Takahashi et al., 2002) by showing the overall pCO2 and its temperature 
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and non-temperature components for model output and observations.  The model is able 

to capture much of the spatial variability in the total pCO2 seasonality.  The model shows 

the characteristic total seasonal pCO2 difference tri-pole pattern of similar magnitude as 

seen in the observed climatology.  Despite the inaccuracies in mean SST related to 

potential issues of heat flux convergence the model, the model does particularly well in 

describing the climatological temperature component of the pCO2.  However, the model 

does not seem to fully capture the non-temperature component in the subtropics, due to 

underestimation of biological activity in these oligotrophic waters, a problem common to 

this type of model.  Any inaccuracies in the overall pCO2 field are driven by 

discrepancies in the non-temperature component of the pCO2, but despite these 

shortcomings, the model is doing reasonably well in capturing the mean seasonal cycle of 

pCO2 and its components (Bennington et al., in prep), a challenging task as illustrated by 

recent work in the North Pacific (McKinley et al., 2006).   

Aside from a few limited timeseries data sets, these climatological observations 

are the only carbon data available for the global oceans.  Complete verification of the 

carbon cycle is restricted because of the lack of variability data, but indeed, this is a key 

reason for modeling the carbon cycle. 

 

3.5 BATS Carbon Cycle  

One timeseries for DIC and pCO2 has become available from 1983 through 2006 at 

Bermuda (Bates, 2007).  The modeled pCO2 matches the observed timing of the seasonal 

cycle, but the modeled summer magnitudes overestimate observations for most of the 

timeseries (Figure 8a).  These results are related to the temperature and DIC controls on 



 20 

pCO2.  As discussed in 3.3, modeled summer SSTs are too high for the time period of 

1990 to 2000 (Figure 8b).  After 2002, summer and winter SSTs are low with respect to 

observations.  These aberrations in temperature have a direct impact on pCO2 for 1990-

2000, as summer pCO2 is related to the elevated SSTs.   

 During 1990-2000, modeled DIC matches the timing of the seasonal cycle with 

some overestimation of summer DIC (Figure 8c), most likely related to the biological 

cycle (Bennington, in prep.).  These differences in DIC summer magnitude combine with 

high SSTs to create a significant overestimate of summer pCO2.  After 2002, mean model 

DIC is consistently higher for all seasons.  This elevated DIC offsets the low SST during 

this period, resulting in a pCO2 curve that matches observations.  A similar relationship 

exists before 1990.  The model appears to be correctly capturing the total pCO2 

variability, but it does so for the wrong reasons, with opposing inaccuracies in 

temperature and DIC. 

 

4. TRENDS IN NORTH ATLANTIC CARBON CYCLE VARIABILITY 

4.1 General Variability in pCO2 and Influencing Parameters 

As described in the introduction, the pCO2 of the surface ocean is influenced by a number 

of factors.  Many of these factors have opposing impacts on pCO2, such that an 

understanding of what drives the overall pCO2 variability is far from straightforward.  In 

order to better understand the interannual variability in the results, all of the data has been 

linearly detrended and deseasonalized (using a 12-month smoother).  Such steps remove 

seasonal variability and any trends in the data, such as increases in SST or anthropogenic 

carbon.  The remaining variability is considered the interannual variability in the system.  
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Although the CO2 flux is most relevant for understanding the variability of the ocean as a 

carbon sink, this analysis will focus on pCO2 as the carbon variable of choice because 

SST, DIC, and ALK directly impact pCO2.  Aside from the difference in pCO2 between 

the air and the sea, the only other parameter to impact the CO2 flux is the square 

dependence of the wind speed/stress (Wanninkhof, 1992).  However, other analyses have 

shown wind variability has a small impact on the flux variability and that the flux 

variability is mainly driven by patterns in pCO2 variability (Takahashi et al., 2002; 

McKinley et al., 2006; Bates, 2007; Omar et al., 2007)   

To assess the main modes of variability within the carbon system, a principal 

component analysis (PCA) was conducted on the pCO2 and CO2 flux output to determine 

the first empirical orthogonal function (EOF1) and associated principal component (PC1) 

over 1981-2006 (first year of variability removed as a shock year).  The first EOFs of 

pCO2 and CO2 flux explain similar amounts of the overall variance (32% and 26%, 

respectively) and show similar spatial patterns (Figure 9a, b), suggesting that much of the 

flux variability is driven by similar variability in the pCO2.  Therefore, the surface pCO2 

can be used as the main driver to describe the CO2 flux.  As seen from Figure 9c, this 

choice is acceptable as the main modes of temporal variability in pCO2 and the CO2 flux 

(i.e. the PC1s) are highly correlated (r=0.97). 

For an initial sense of the overall variability in the carbon cycle and to see what is 

driving this variability in a first order approximation, it is useful to look at the standard 

deviation of the surface pCO2 and the variables effecting carbon chemistry in the surface 

ocean (SST, surface DIC, and ALK).  As seen from the standard deviation of pCO2 

(Figure 10a), high variability is seen in the subtropical gyre, particularly centered at two 
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locations in the eastern and western sides of the basin along 30˚N, with the highest 

variability located in the western subtropical gyre.  Incidentally this bulls-eye of 

heightened variability is near BATS (31˚40”N, 64˚10”W), suggesting the importance of 

this timeseries in understanding a location of high pCO2 variability in the North Atlantic.  

The eastern region of high pCO2 variability is roughly centered at 10˚N, 25˚W. 

These locations of high pCO2 variability appear to be collocated with regions of 

high SST variability (Figure 10b), suggesting the importance of temperature variability 

driving pCO2 variability in these regions.  The center of moderately high pCO2 variability 

in the eastern subtropics (roughly 30˚N, 25˚W) is also collocated with enhanced 

variability in surface ALK (Figure 10d).  Since temperature and ALK affect pCO2 in 

opposing directions, the ALK variability appears to damp the effect of SST variability on 

the overall pCO2 variability at this location. 

There is also high variability in the surface DIC and ALK fields (Figures 10c and 

10d) in the western tropics (roughly 15˚N, 60˚W) and near the Grand Banks (45˚N, 

50˚W).  This high variability, however, does not appear to manifest in the overall pCO2 

variability.  As discussed in the introduction, DIC and ALK also have opposing impacts 

on pCO2, and the locations of high standard deviation in DIC and ALK are collocated, 

suggesting that the effects of large DIC and ALK variability on overall pCO2 variability 

have a canceling effect on each other.     

 

4.2 Temperature versus Dynamical Controls on Surface pCO2 

By correlating various surface parameters in the North Atlantic from model output, some 

general trends in the carbon cycle’s response to ocean physics become apparent.  
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Following the argument of LeQuéré et al. (2003), the two major physical controls on 

surface ocean pCO2 are temperature and dynamical mixing.  For example, increased 

mixing brings older DIC-rich waters to the surface to drive an increase in pCO2, but this 

increased mixing is also related to lower SST, driving a decrease in the pCO2.  Much of 

pCO2 variability is dominated by one or the other of these controls (temperature vs. 

dynamics), as can be seen from the correlation of pCO2 and SST (Figure 11a).  Regions 

exhibiting a negative correlation between pCO2 and SST are considered “dynamics-

dominated,” such that a decrease in SST drives an increase in mixing, bringing more DIC 

to the surface, and thus increasing the pCO2.  Regions exhibiting a positive correlation 

are “temperature-dominated,” such that an increase in SST directly forces an increase in 

pCO2 through the thermodynamic controls on gases in seawater.  Regions exhibiting zero 

correlation are neither temperature- nor dynamics-dominant.  As seen in Figure 11a, the 

dynamics-driven controls on pCO2 are confined to the subpolar gyre, and temperature-

driven controls dominate the entire basin south of 45˚N (consistent with the findings of 

LeQuéré et al., 2003).   

That the carbon cycle is driven by dynamics in the subpolar gyre is consistent 

with the deep mixing of this region (see MLD plots in Figure 3).  Subpolar SST cooling 

drives mixing that is much deeper than in much of the rest of the North Atlantic, driving 

the upwelling of DIC-rich waters to alter pCO2 more than by the gas solubility effects 

due to changes in temperature. Figure 11b shows that the subpolar pCO2 is indeed 

positively correlated with deeper mixing, and this mixing draws increased DIC to the 

upper 100m.  South of 45˚N, temperature dominates the surface pCO2, resulting in a 

negative correlation between pCO2 and DIC (Figure 11c) that would otherwise be 
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counterintuitive.  Finally, the correlation between the Air-Sea CO2 flux and MLD show 

that changes in mixing dominate the CO2 flux in the subpolar gyre, but the subtropical 

CO2 flux is driven by opposing temperature effect (Figure 11d).  (Note: comparing 

Figures 11b and 11d also show the strong negative correlation between CO2 Flux and 

surface pCO2). 

 

4.3 Mixing and the Vertical Supply of DIC 

In general, deeper mixing brings more DIC to the surface, and thus MLD is typically 

positively correlated with the vertical supply of DIC.  In the real world, it can be difficult 

to measure the vertical supply of DIC, but the model is useful because it can calculate 

this term at each time step as the amount of DIC that is transported vertically between 

grid cells.   

Upon looking at the correlation between MLD and the DIC vertical supply 

(Figure 12a), the relationship between the two parameters is not so straightforward.  

Instead of the correlation being strongly positive across the entire basin, there are 

localized regions that show a negative correlation (south of 15˚N and eastern subtropical 

gyre centered at 25˚N, 40˚W).  Depth profiles of DIC for winter and summer months 

(Figures 12c and 12d) show that unlike other locations in the ocean where DIC is at a 

minimum within the mixed layer, the eastern subtropical gyre location (green profile) 

shows a negative vertical gradient of DIC in the surface layer above 100m (particularly 

strong in summer), such that deeper mixing taps into lower concentrations of DIC, 

reducing the overall concentration of DIC vertically supplied to the surface, thereby 

driving the negative correlation between MLD and DIC vertical supply.  This profile 
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seems to indicate heightened productivity and uptake of DIC below the immediate 

surface layers related to the existence of a subsurface chlorophyll maximum, common in 

subtropical waters (Mann & Lazier, 1996).   

The region south of 15˚N, however, does not show the same DIC minimum at 

depth to suggest the same mechanism of the negative correlation between MLD and DIC 

vertical supply (black profile in Figures 12c and 12d).  Instead, this negative correlation 

appears to be related to the vertical velocity of this region (Figure 12b).  Vertical velocity 

is highly correlated with DIC vertical supply, suggesting that the vertical velocity drives 

the vertical supply of DIC more than the mixing.  In this region, vertical transport 

supplies DIC to the surface layer while pushing denser waters upward, causing an 

increase in the stratification of surface waters and a shoaling of the MLD (upwelling 

prohibits mixing).  In this way, MLDs are negatively correlated with DIC vertical supply. 

This regional analysis of the relationship between MLD and DIC vertical supply 

shows that values of subsurface parameters can have a profound impact on surface 

carbon chemistry when using a time-varying 3-D model.  A 2-D box model, for instance 

may only consider one type of DIC vertical profile, leading to the basic understanding of 

a DIC minimum at the surface.  This model, however, helps to demonstrate that more 

complicated states of DIC vertical distribution can indeed exist. 

While the strong negative correlation between MLD and DIC vertical supply 

exists in the eastern subtropical gyre, however, the effect of this subsurface chlorophyll 

maximum on the total carbon cycle of the region is small.  The negative gradient in DIC 

is consistent such that it drives the negative correlation, but it is small in magnitude, with 

the summer DIC subsurface minimum only 10 mmol/m3 less than surface values 
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(pertaining to a percent difference in DIC concentration of less the 0.5%).  Similarly, 

MLDs in this region and areas south of 15˚N are consistently small throughout the year 

(Figure 3), such that upwelling-induced changes in the MLD do not cause a great impact 

in the depth of mixing.  Overall, the existence of these negative correlations between 

MLD and DIC vertical supply has a small effect on the overall CO2 flux variability of the 

basin. 

 

5. CARBON CYCLE RESPONSE TO CLIMATE VARIABILITY 

5.1 Calculation of pCO2 Components 

As described by Takahashi et al. (1993), pCO2 of the surface ocean can be separated into 

influences from DIC, Temperature (T), ALK, Salinity (S), Phosphate (PO4), and Silicate 

(SIL) according to the following equation: 
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Each component was estimated by calculating the pCO2 with the carbonate chemistry 

equilibrium constants of the model (Follows et al., 2006), using the detrended and 

deseasonalized variability of the component of interest and setting the values of the 

remaining parameters to their long-term means (LeQuéré et al., 2003; McKinley et al., 

2004, 2006).  The sum of each of the components matches reasonably well with the total 

pCO2.  An attempt to conduct this decomposition using monthly output did not match 

well with the overall pCO2 because of the intramonthly variability lost in the monthly 

averaging.  Therefore, daily output was used in the decomposition. 
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5.2 Regression of pCO2 Components onto the NAO 

Because the variability of each component only includes the variability from the 

parameter of interest, the overall magnitudes of variability can only be compared if 

regressed onto a common index of variability.  As discussed in the introduction, the main 

mode of climate variability over the North Atlantic is the North Atlantic Oscillation.  

This thesis uses the monthly-mean NAO index, operationally defined as the difference 

between surface pressures of the Azores high-pressure center and the Icelandic low-

pressure center.  This data is provided from 1950 to the present from the Climate 

Prediction Center (http://www.cpc.noaa.gov/products/precip/CWlink/ 

pna/nao_index.html).  The NAO is moderately correlated with the PC1 of the pCO2 

(r=0.41), suggesting that the NAO has a significant relationship to the carbon dynamics 

in the North Atlantic.  

 Following the method in McKinley et al. (2006), each component was regressed 

onto the NAO index for overall comparison.  The influences of salinity, phosphate, and 

silicate on the pCO2 were found to be marginally significant for overall pCO2 variability 

and are therefore excluded from subsequent analysis.  Figure 13 shows the regression of 

pCO2 and the SST, DIC, and ALK components onto the NAO.  The overall pCO2 

regression shows a similar “tripole” pattern traditionally associated with the NAO 

(Hurrell and Dickson, 2004).  Compared to each of the components, the total pCO2 shows 

relatively low variability associated with variability in the NAO.  Each of the 

components, however, shows localized centers of high variability influenced by the 

NAO, but these centers partially cancel each other out in the overall pCO2.  In the 

subpolar gyre, the NAO seems to drive a significant increase in pCO2 variability due to 
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DIC, but this is balanced by a decrease in pCO2 due to SST.  Overall, the variability in 

total pCO2 with respect to the NAO is small in the subpolar gyre.  Similarly in the eastern 

subtropics, the variability of the SST component associated with NAO variability is 

balanced by that of the ALK component.  The positive signal from the SST component 

seems to dominate in the overall pCO2 regression, but the SST component is partially 

compensated by the ALK component.    

 

5.3 Regression of pCO2 Components onto the El Nino Southern Oscillation Index 

Another dominant index of global climate variability is El Nino-Southern Oscillation 

(ENSO).  Numerous studies have shown some teleconnection impact of ENSO on the 

climate over the North Atlantic particularly in the tropical and subtropical regions (Bates, 

2001; Gouirand et al., 2007; Huang et al., 1998).  Regression of pCO2 and its major 

components onto the Multivariate ENSO Index (Wolter and Timlin, 1993, 1998), 

however, does not produce any patterns with significant amplitudes in this model, aside 

from some small influences in the equatorial (Figure 14).  This suggests that ENSO is 

only marginally important in the carbon cycle of the North Atlantic.  Further analysis in 

this thesis will focus on the NAO as the main index of climate variability in the North 

Atlantic.       

 

5.4 Mechanisms driving pCO2 variability related to the NAO 

As discussed in the introduction, the NAO impacts pressure, winds, temperature, and 

precipitation, all of which impact the surface pCO2 and CO2 flux.  So, the mechanisms of 

variability in the NAO may be important drivers on the carbon system.  From this 
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model’s results, the two important regions of high pCO2 component variability are in the 

subpolar gyre (where pCO2-SST and pCO2-DIC dominate the carbon system and balance 

each other) and in the eastern subtropical gyre (where pCO2-SST and pCO2-ALK 

dominate and balance).   

 In the subpolar gyre, pCO2-SST and pCO2-DIC variability dominate overall pCO2 

variability related to the NAO.  As discussed in section 3.2, this is a region where 

dynamics dominates the carbon system.  This mixing is driven by changes in temperature 

related to the net heat flux.  Variability of the net heat flux forcing used in the model is 

strongly related to NAO variability in this region (Figure 15a).  Thus, the mechanism for 

carbon cycle variability in the subpolar gyre is as follows: (1) changes in the net heat flux 

of the model are in part driven by changes in the NAO; (2) These changes in the heat flux 

drive changes in the temperature of the surface waters, which has a direct impact on the 

pCO2-SST component of this region; (3) Because this region is dynamics-dominated, the 

changes in temperature also drive changes in the mixing and surface supply of DIC from 

depth, which controls the total pCO2 response.  This temperature-driven mixing and 

supply of DIC is evident in the pCO2-DIC.  Due to the sign in the overall pCO2 

regression matching that of the pCO2-DIC regression in this subpolar region, the supply 

of DIC is clearly dominating the overall pCO2. 

 The forces driving pCO2-SST and pCO2-ALK in the eastern subtropics, however, 

are a bit more complex because the mechanisms driving these two components are 

different.  Although the signal is not quite as strong as in the subpolar region, pCO2-SST 

is still driven by changes in Qnet in the eastern subtropics (Figure 15a), suggesting a 

similar mechanism driving the pCO2-SST component as seen in the subpolar gyre.   
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ALK is not affected by temperature, but freshwater input/removal from changes 

in evaporation and precipitation related to variability in the NAO can drive ALK 

variability.  To confirm that freshwater variability is indeed the mechanism driving 

subtropical ALK variability, Figure 15b shows that surface salinity variability also 

exhibits a similar spatial structure when regressed onto the NAO.  Indeed, freshwater 

climate forcing has a strong impact on the surface ocean in this region.  In a study of the 

ocean precipitation and the NAO using the same NCEP forcings as this model, Mariotti 

and Arkin (2007) find a significant negative correlation between precipitation and the 

winter (December, January, February) NAO index in the eastern sub-tropical North 

Atlantic in a region, spatially coincident with the structures seen in the regressions of 

model pCO2-ALK and SSS onto the NAO.  Thus, the following mechanism is inferred: 

increases in the NAO index drive a decrease in precipitation over the ocean; this decrease 

in surface freshwater input increases ALK, which increases the concentration of HCO3
- 

and CO3
2-, decreasing the concentration of H2CO3

*, causing a decrease in pCO2.    

Because the NAO index is defined as the difference between point-location sea 

level pressure measurements at the Icelandic Low and the Azores High (Hurrell & 

Dickson, 2004), it would seem plausible that the locations of high correlation between 

pCO2 components and the NAO index would be a function of the location of the NAO 

measurements (i.e. highest correlations at the Icelandic Low and Azores High 

measurements).  Not surprisingly, those locations closest to the NAO measurement 

locations should be highly correlated.  But does this mean that the relationships discussed 

above are not physical and only have to do with point location effects?  Indeed, regions 

of high correlation between pCO2 components and the NAO are nearly spatially 
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coincident with measurement locations, especially the eastern subtropical gyre region, 

which is centered nearly on top of the Azores, with correlation tapering off evenly away 

from the center.  There is less prominent a “bull’s-eye” in the subpolar region, suggesting 

that the relationships are more due to regional influences of the NAO on climate forcing 

than due to point-location effects.   

The subtropical “bull’s-eye” is more prominent suggesting that point-location 

effects may be an issue.  However, as discussed in section 3.1, this region is also a center 

of high overall variability for SST and surface ALK (Figures 10b & 10d), the two 

variables of interest in this region.  Thus, while point effects may be an issue, the high 

variability of this region suggests that the strong signals relating pCO2-SST and pCO2-

ALK variability to the NAO are robust. 

There is some evidence for regional NAO effects on carbon variability, 

particularly in the subpolar region, but point-location effects in the subtropics suggest 

that the NAO index is not perfect and does not always explain basin-wide variability.  

Bakalian et al. (2007) suggest that the Icelandic Low and Azores High are not stationary 

features, but exhibit considerable north-south displacement.  The current convention used 

to define the NAO index does not include such displacement.  As shown in this 

discussion on the possibility of point-locations effects, the displacement of the index 

points may be important when considering basin-wide pCO2 variability. 

 

5.5 Other Modes of Variability and EOF analysis 

So far the overall pCO2 variability has been explained in the subpolar and subtropical 

regions as a balance between pCO2 components.  A closer look at the regression of the 
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total pCO2 onto the NAO yields a local maximum at the interface between the subpolar 

and subtropical gyres, near the Grand Banks (Figure 13a).  On first analysis, this 

minimum appears to be due to an unbalanced pCO2-SST component that may be 

dominating the variability of this region, but as discussed above, the NAO only 

moderately correlates with the first mode of variability in the model (PC1).  Could there 

be other modes of variability within the model results that account for this structure or 

other structures more dominant than what is seen with respect to the NAO?  

 Using PC1 as the main mode of temporal variability in the data, each of the 

dominant pCO2 components was regressed onto PC1 (Figure 16).  These regressions 

result in a pattern of variability with different regions of dominance and greater 

amplitude.  The overall magnitude of these regressions is larger than that seen in the 

NAO regression.  Values in the regression onto the PC1 range from below -20 to nearly 

20 µatm/1σ PC1 are greater than values in the regression onto the NAO ranging from 

about -10 to 15 µatm/1σ NAO, suggesting that the PC1 regressions are more robust 

features.  

 Similar to the NAO regressions, the total pCO2 regression shows spatial 

variability in a tripole pattern with centers of variability in the subpolar region, near the 

Grand Banks, and in the subtropical region (a fourth center of variability could also be 

considered south of 15˚N, somewhat seen in the NAO regressions as well).  Also like the 

NAO regressions, the total pCO2 shows relatively low variability compared to each of the 

components, such that opposing components show regions of high variability that 

partially cancel each other out in the overall pCO2.   
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The spatial arrangement of pCO2 component variability is different from that seen 

in the NAO regressions, particularly in the subpolar gyre where there is little to no signal 

of balancing variability between pCO2-DIC and pCO2-SST.  Most variability in the 

components is confined to the subtropical gyre south of 50˚N.  However, because the 

EOF is finding the first mode of area-weighted variability, the variability in the 

subtropical gyre should stand out due to the larger area of grid cells at lower latitudes.  

Similarly, the NAO should have a larger impact on subpolar components because of the 

index’s definition (discussed above).  The correlation between the NAO index and PC1 is 

only 0.41, and these subpolar distinctions may drive much of the difference in the 

indices. 

 Overall pCO2 variability is mostly dominated by the pCO2-SST component, with 

high variability in the eastern subtropical gyre and along the eastern U.S.  The pCO2-SST 

component is strongly balanced by the pCO2-DIC component with a spatial pattern 

similar to that of the pCO2-SST.  The eastern subtropical variability maximum in the 

pCO2-SST is also balanced by a local maximum in pCO2-ALK, similar to the pattern in 

the NAO regression, suggesting that a freshwater forcing is a robust signal in the overall 

climate forcing and carbon cycle response at this location.    

 One location where total pCO2 variability is not dominated by the pCO2-SST 

component is near the Grand Banks (location centered at 45˚N, 30˚W).  Here, pCO2-SST 

variability is insignificant, but pCO2-DIC variability is moderately strong, dominating the 

overall pCO2 variability.  This region, however, is located right at the interface between 

the temperature-dominant and dynamics-dominant regions, such that neither temperature 

nor mixing changes can serve as a mechanism to explain the pCO2 variability of this 



 34 

region.  The shape of the pCO2-DIC regression does seem to indicate some amount of 

horizontal advection of DIC following the location of the Gulf Stream with high values of 

pCO2-DIC along the eastern U.S. slowly decreasing to the northeast.  Similar to the 

model parameter of DIC vertical supply discussed in section 3.3, the model is also able to 

output the horizontal supply of DIC as the size of the flux of DIC between lateral grid 

cells.  Regression of this term onto the PC1 (Figure 17) shows that the DIC horizontal 

supply in this region is strongly related to changes in the PC1.  Clearly changes in the 

pCO2 related to the PC1 near the Grand Banks are driven by variability in the horizontal 

supply of DIC to this region.  In addition, changes in pCO2 and DIC concentrations in the 

top 100m are strongly correlated with the horizontal supply at this region of interest 

(Figure 18), further suggesting that variability in horizontal transport drives much of the 

carbon dynamics of this region. 

 Despite issues discussed in section 2.7 about introduced trends in the data related 

to a lack of horizontal transport from the south, this horizontal supply of DIC to the 

Grand Banks does relate well to recent research and observational reports.  The 

increasing trend in the detrended pCO2 PC1 from 1995-2006 (Figure 9c) means that the 

patterns seen in the regression plots have intensified during this period, suggesting that 

the horizontal supply of DIC to the Grand Banks has increased.  Hatun et al. (2005) show 

that subpolar gyre deceleration is accompanied by stronger advection of subtropical 

waters by North Atlantic Current extension.  Autonomous glider data (Hakkinen & 

Rhines, 2007) have verified this increase in advection of subtropical waters.  The trend in 

the PC1 also seems to match the decrease in sea-surface-height-derived geostrophic 

velocity (satellite data) in the subpolar gyre since 1994 (Hakkinen & Rhines, 2004).  
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Therefore, the model results support the notion of an increase in DIC horizontal supply to 

the Grand Banks region, potentially from the stronger advection of subtropical waters, 

due to a weakening of the subpolar gyre. 

 Assuming that this trend in the North Atlantic is real (as verified by this thesis and 

other sources), it is important in understanding the carbon system as such changes in 

horizontal advection of DIC may confound other carbon findings in the North Atlantic.  

For instance, Schuster & Watson (2007) report on volunteer ship track data between the 

Caribbean and the U.K. (a useful dataset that spans the regions of interest with respect to 

increased horizontal supply of DIC).  They report on a decreased sink of atmospheric 

CO2 through an increase of 21 µatm in surface pCO2 from 1994/95 to 2002/2005.  

Certainly there has been an increase in atmospheric CO2 during this time period, and such 

an increase will drive more CO2 into the surface ocean, limited by the buffering capacity 

of seawater (i.e. the Revelle Factor).  The results of this thesis, however, show that some 

of this regional increase in surface pCO2 may be attributable to enhanced horizontal 

transport of DIC from the subtropics.  This example is highlighted to stress that the ocean 

carbon cycle is a four dimensional entity (time included) and that limiting this view to 

two dimensions may be drastically oversimplifying the system, such that important shifts 

in the dynamical transport may be improperly neglected.    

 

6. SUMMARY AND CONCLUSIONS 

6.1 Summary 

The main goal of this thesis was to develop a better understanding of the mechanisms that 

drive carbon cycle variability in the North Atlantic.  Results show that high interannual 
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variability in pCO2, SST, DIC, and ALK is mainly confined to the subtropics.  This is a 

region where temperature effects dominate pCO2 variability.  Subpolar gyre pCO2, 

however, is dominated by variability related to dynamics, where changes in temperature 

control the deep mixing and upwelling of DIC. 

 Overall pCO2 variability is constrained through opposing effects related to SST, 

DIC, and ALK.  Such a “balancing act” of pCO2 components and their variability has 

been shown here in regression onto the NAO index and the PC1 of the pCO2.  SST is 

important in subtropical waters where the pCO2 variability is “temperature-dominated.”  

SST is also important in subpolar NAO-driven pCO2 variability in that it is a major driver 

for mixing variability in this region.  DIC impacts on pCO2 variability are also seen 

throughout much of the basin, with strong DIC variability related to horizontal advection 

in the subtropics and mixing in the subpolar gyre.   ALK impacts on pCO2 variability 

seem to be confined to the eastern subtropical gyre, where freshwater/evaporation 

influences are particularly strong.  The influences of ALK variability on overall pCO2 are 

balanced by SST variability in this region.       

 

6.2 Total Basin CO2 Flux Variability 

The results of this thesis have focused on regional mechanisms driving carbon cycle 

variability, but how does all this fit together in potential impacts on the global flux 

variability?  As discussed in section 1.2, one of the debates in North Atlantic carbon 

cycle research relates to estimating the total basin-wide flux variability.  The basin wide 

CO2 flux interannual variability magnitude was calculated by finding the root mean 
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squared (RMS) of the area-weighted sum of the detrended and smoothed (12-month) flux 

field.  RMS results for various bands of latitude range are displayed in Table 2.       

 

Table 2: Basin wide area-weighted sum of CO2 flux interannual variability RMS. 

LOCATION LATITUDE RANGE RMS (Pg C yr-1) 
Subpolar 50N – 80N 0.01 

Subtropical 14N – 50N 0.03 
Tropical -14N – 14N 0.02 

Subpolar + Subtropical 14N – 80N 0.03 
Total North Atlantic -14N – 80N 0.05 

  

These results are in line with previous forward model estimates (McKinley et al., 2004; 

Obata and Kitamura, 2003; Le Quéré et al., 2000).  The total North Atlantic variability is 

small relative to global flux variability, suggesting that the North Atlantic does not play a 

substantial role on the global flux variability.  These findings further contradict the 

extrapolation estimates of Gruber et al. (2002) and inverse modeling results (Bousquet et 

al., 2000) that put the North Atlantic flux variability near ±0.3 Pg C yr-1.  Much work was 

put into the setup of the model used in this thesis to maximize variability (turning off 

relaxation terms), yet overall flux variability is still an order of magnitude smaller than 

extrapolated and inverse modeled estimates.  While this model does not capture the 

physical variability due to mesoscale eddies and boundary conditions, the flux variability 

found in this thesis and in other forward model results in the North Atlantic suggests that 

it is insignificant in the global flux variability.      
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6.3 Future Work  

This thesis has produced some interesting results with regard to the carbon cycle 

mechanisms in the North Atlantic and their response to climate variability, but the work 

is not done.  As discussed in the introduction, these results are limited by a lack of heat 

flux convergence into the western subtropics, resulting in a climate-forced cooling trend 

not manifested in observations due to reduced simulated southerly flow supplying warm 

water to this region.  Future work with this model should look to improve the temperature 

discrepancies by finding ways to enhance the transport and modify the temperature 

relaxation techniques.  

One idea to improve the circulation along the southern boundary would be to 

create an open boundary (the run in this thesis used a closed southern boundary with 

sponge layer), using velocity fields from output of another high-resolution general 

circulation model not limited to the North Atlantic.  One possibility would be to use 

output from the Estimating the Circulation & Climate of the Ocean (ECCO) Project.  

ECCO combines a general circulation model (the same model as used in this thesis) with 

observational and remote sensing data to produce a high-resolution representation of the 

ocean state through time (http://www.ecco-group.org/).  Velocity fields along the 

southern boundary can be forced by ECCO output in hopes of producing a circulation 

state that is more like reality. 

 The other way to improve the issues with subtropical SSTs will be to find ways to 

enhance the heat forcing and relaxation directly.  The ECCO project also provides 

adjusted net heat flux fields that incorporate ocean observational data.  Preliminary 

results using this data show that there is less of a subtropical SST cooling trend from the 
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early 1990’s to the 2000’s (via correspondence with Dr. Stephanie Dutkiewicz at MIT).  

This seems to suggest that the NCEP heat flux forcing used in this thesis may not be 

entirely correct, and the use of ECCO heat flux forcings may be a step in the right 

direction. 

 Another opportunity for improvement in the model may come in finding ways to 

modify the relaxation techniques.  Indeed, T and S relaxation is necessary for model 

stability, but it removes much of the interannual variability in the model.  A limitation in 

the model setup of this thesis is that T and S were relaxed to climatological values.  WOA 

climatology is certainly the only data available for the ocean basin, but perhaps satellite 

SST data can be assimilated to create time-varying relaxation fields (at least for the 

surface layer).  This may limit the variability that is lost through relaxation to 

climatology. 

 All of this work supports the need for more observational data to constrain ocean 

carbon models.  Certainly, the timeseries data available from BATS has been invaluable 

in this thesis for model validation and understanding limitations in the results.  Much this 

work has shown that BATS is an apt location for studying carbon cycle variability in the 

North Atlantic, as it is situated in a region of high pCO2 variability (Figure 10a), such that 

understanding the long term trends at BATS may help to better understand basin-wide 

subtropical variability.  Another useful timeseries is the ESTOC station (European Time 

Series in the Canary Islands) (Santana-Casiano et al., 2003, 2007).  As shown in this 

thesis, the eastern subtropical gyre is a region of high ALK- and T-driven pCO2 

variability, and ESTOC is conveniently situated near this center of action.  Data from this 
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timeseries was unavailable for use in this thesis, but the importance of this region in 

understanding pCO2-component variability may spur future collaboration.       
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FIGURES 
 

 
Figure 1.  Schematic of ecosystem model from Dutkiewicz et al. (2005) showing the 
cycling of nutrients (Fe, P, Si) within two classes of phytoplankton, one class of 
zooplankton, and the two pools of dissolved organic matter (DOM) and particulate 
organic matter (POM).  The model includes both nutrient (P, Fe, Si) and carbon cycling. 
 

 
Figure 2. Comparison of SST climatology and SST anomalies (relative to climatology) 
for a ten-year test run with active relaxation back to observations turned on (solid line) 
and climatological relaxation terms incorporated into the forcing (dashed line).  At 3 
separate locations: Bermuda (BATS), Eastern Subtropical Gyre, and Subpolar Gyre.  
Plots show a minor difference in climatology, but considerable increase in variability as 
seen from the anomalies.    
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Figure 3.  Comparison of seasonal mixed-layer depths for model output and WOA 
climatology.  Winter season constitutes the mean of values in December, January, and 
February.  Summer season constitutes the mean of July, August, and September.  The two 
plots on the far right show the difference between the model output and the observations.  
Due to deeper MLDs in the winter, please note the difference in colorbar limits. 
 
 

 
Figure 4.  Observed (solid line) and Modeled (dashed line) mixed layer depths at BATS.  
The left plot shows the mean seasonal cycle and the right plot shows the variability for 
1981-2006. 
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Figure 5. SST from satellite observations (Pathfinder and Reynolds), in situ 
measurements (BATS), and model output.  There is good agreement among satellite 
estimates and in situ measurements but significant discrepancy between model and data.   

 

 
Figure 6. Model and data SST plotted on left axis, net heat flux on right axis.  High 
correlation between model SST and Qnet forcing shows that model is impacted more by 
net heating than what is seen in the observations. 
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Figure 7.  Seasonal cycle of pCO2 and its temperature and non-temperature components 
for observed climatological data (Takahashi, 2002) and model output.  Calculated by 
subtracting the mean winter (FMA) pCO2 values from the mean summer (ASO) values 
(seasonal average uses 3-month mean). Positive values indicate regions where summer 
pCO2 exceeds winter pCO2. (From Bennington et al., in prep.) 

 
Figure 8. Comparison of (a) pCO2, (b) SST, and (b) DIC between model results and 
observations at the Bermuda Atlantic Time-series Study (BATS)/Hydrostation S from 
1983 through 2006 (Bates, 2007). 
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Figure 9. EOF Analysis of detrended pCO2 and CO2 flux smoothed over 12 months, 
calculated using output from 1981-2006. (a) First EOF of pCO2 (explaining 32% overall 
variance). (b) First EOF of CO2 Flux (explaining 26% overall variance). (c) First 
standardized PCs corresponding to EOFs. The two PC1s are highly correlated (r=0.97), 
suggesting that nearly all the variability in the air-sea flux of CO2 is driven by the surface 
pCO2.  

 
Figure 10. Standard deviation of: (a) pCO2 (µatm), (b) SST (degrees C), (c) surface DIC 
(mmol/m3), and (d) surface ALK (mmol/m3).  All standard deviations were calculated 
from model output that was detrended and smoothed over 12 months to remove the 
seasonal cycle. 



 52 

 
Figure 11.  Correlation plots. (a) pCO2 and SST, (b) pCO2 and MLD, (c) pCO2 and 100m 
depth-weighted DIC, (d) CO2 Flux (positive to the atmosphere) and MLD.  Correlation 
coefficients were calculated from fields that were detrended and smoothed over 12 
months to remove the seasonal cycle.  White areas indicate those regions where the 
correlation coefficient is not significantly different from zero at the 95% level.  

 
Figure 12. (a) Correlation between MLD and vertical supply of DIC over the top 100m. 
(b) Correlation between vertical velocity averaged over the top 100m and the DIC 
vertical supply (top 100m).  (c) Depth profiles of DIC concentrations over the top 300m, 
winter climatology averaged over all January, February, and March months.  4 profiles 
are for the following locations: BATS, 32N 64W (red); Ocean Weather Station I, 59N 
18W (blue); Eastern Subtropical gyre, 25N 40W (green); Southern Subtropical gyre, 10N 
30W (black).  (d) Depth profiles of late summer climatology averaged over July, August, 
and September (profile colors pertain to the same locations as in plot c). 
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Figure 13. Regression of (a) total pCO2, (b) pCO2-ALK, (c) pCO2-DIC, and (d) pCO2-
SST onto the negative NAO index (negative so that patterns are of the same sign as 
Figure 16).  Units are µatm per 1 standard deviation of the NAO. pCO2 fields and 
components are detrended and smoothed.  Colored areas indicate regions were the 
correlation coefficient is significantly different from zero at the 95% confidence level. 
 

 
Figure 14. Regression of (a) total pCO2, (b) pCO2-ALK, (c) pCO2-DIC, and (d) pCO2-
SST onto the ENSO.  Units are µatm per 1 standard deviation of the ENSO.  Colored 
areas indicate regions were the correlation coefficient is significantly different from zero 
at the 95% confidence level. 
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Figure 15. Correlation between the NAO index and (a) Model net heat flux forcing (b) 
Sea Surface Salinity (detrended and smoothed).  Colored areas indicate regions were the 
correlation coefficient is significantly different from zero at the 95% confidence level.   

 

 
Figure 16.  Regression of (a) total pCO2, (b) pCO2-ALK, (c) pCO2-DIC, and (d) pCO2-
SST onto the first principal component of pCO2 (see Figure 9).  Units are in µatm per 1 
standard deviation of the PC1.   pCO2 fields and components are detrended and 
smoothed.  Colored areas indicate regions were the correlation coefficient is significantly 
different from zero at the 95% confidence level.  Note: plot (a) is, by definition, the same 
as the first Empirical Orthogonal Function (EOF1). 
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Figure 17.  Regression of detrended and smoothed DIC horizontal supply (depth-
weighted average over top 100m) onto the first principal component of the pCO2.  Units 
are in mol/m3 per 1σ of PC1.   Colored areas indicate regions were the correlation 
coefficient is significantly different from zero at the 95% confidence level. 
 
 

 
Figure 18.  Correlation between (a) pCO2 and DIC horizontal supply (b) DIC, depth-
weighted average over top 100m, and DIC horizontal supply.  All fields are detrended 
and smoothed. Colored areas indicate regions were the correlation coefficient is 
significantly different from zero at the 95% confidence level. 


