The Global Carbon Cycle

Cape Grim Tasmania CO₂

CO2: 398.710 (ppm) - February 2016

Cape Grim Tasmania CH₄

Cape Grim Tasmania N_2O

Nitrous Oxide (N2O): 327.710 (ppb) - January 2016

CO₂ Jan 1, 2006

1 Pg = 1 Petagram = 1×10^{15} g = 1 x 10^{12} kg =1 x 10^9 metric tonnes = 1 gigatonne = 1 Gt

1 kg carbon (C) = 3.67 kg carbon dioxide (CO₂) 1 Pg C = 3.67 Gt CO₂

The numbers in boxes indicate the size in GtC of each reservoir. On each arrow is indicated the magnitude of the flux in GtC/yr.

Global Flows of Carbon

Observed Emissions

Closing the Global Carbon Budget

Fate of Anthropogenic CO₂ Emissions (2002-2011 average)

Source: Le Quéré et al. 2012; Global Carbon Project 2012

Fate of anthropogenic CO₂ emissions (2014–2023)

60°S

150°W

120°W

90°W

60°W

30°W

0°

30°E

60°E

90°E

120°E

150°E

Process models suggest that increasing atmospheric CO₂ drives the land and ocean sinks while climate change reduces the carbon sinks; the climate effect is largest in tropical and semi-arid land ecosystems. Globally during 2014– 2023, climate change reduced the land sink by \sim 27% and the ocean sink by 6%.

0.16

0.08

0.04

0.02

0.01

0.005

-0.005

-0.01

-0.02

-0.04

-0.08

-0.16

0

Atmospheric Growth Rate (G_{ATM})

b

Historical cumulative fossil CO₂ emissions since 1850

© Global Carbon Project

Major flows from Production to Consumption

Start of Arrow: fossil-fuel consumption (production) End of arrow: goods and services consumption

Source: Peters et al 2012b

Previous CO₂ emission reductions

Without climate policies, some countries have reduced emissions at 1-5%/yr Repeating with modern low-carbon technologies can "kick-start" mitigation

Grey areas are: World War I, Great Depression, World War II, oil shocks

Source: Peters et al. 2012a; CDIAC Data; Global Carbon Project 2012

Ocean Acidification

Quantities of Gas in Air and Seawater

Gas	In Dry Air (%)	In Surface Water (%)	Water-Air Ratio
Nitrogen (N ₂)	78.03	47.5	0.6
Oxygen (O ₂)	20.99	36.0	1.7
Carbon Dioxide (CO ₂)	0.03	15.1	503.3
H ₂ , Inertgases (He, Ar, Ne)	0.95	1.4	1.5

Column Anthropogenic CO_2 (Sabine et al. 2004)

∆ sea-surface pH [-]

The Biological Carbon Pump

Ratios of concentrations

Ocean acidification and species composition

Chaetoceros costatus (Diatom)

Emiliania huxleii (Coccolithophorids)

Distephanus speculum

(Silicoflagellate)

Trichodesmium

(Cyanobacterium)

Export of particulate organic carbon (POC) to deep ocean.

Export of SiO_2 to deep ocean by diatom ecosystem.

Export of CaCO₃ to deep ocean by coccolithophore ecosystem.

Observed emissions and emissions scenarios

GLOBAL

CARBON PROJECT

The emission pledges submitted to the Paris climate summit avoid the worst effects of climate change (red), most studies suggest a likely temperature increase of about 3°C (brown) Data: CDIAC/GCP/IPCC/Fuss et al 2014

Change in Surface Temperature

Change in Precipitation

Figure 1 Atmospheric release of CO₂ from the burning of fossil fuels may give rise to a marked increase in ocean acidity. **a**, Atmospheric CO₂ emissions, historical atmospheric CO₂ levels and predicted CO₂ concentrations from this emissions scenario, together with changes in ocean pH based on horizontally averaged chemistry. **b**, Estimated maximum change in surface ocean pH as a function of final atmospheric CO₂ pressure, and the transition time over which this CO₂ pressure is linearly approached from 280 p.p.m. A, glacial–interglacial CO₂ changes¹³; B, slow changes over the past 300 Myr; C, historical changes¹ in ocean surface waters; D, unabated fossil-fuel burning over the next few centuries. Caldeira 2003

GAS HYDRATES

GAS HYDRATES

Map showing location and inferred thickness (in meters) of hydrates within sediments in the high concentration area off North Carolina and South Carolina.

Distribution of organic carbon in Earth reservoirs (excluding dispersed carbon in rocks and sediments, which equals nearly 1,000 times this total amount). Numbers in gigatons (10¹⁵ tons) of carbon.

Future Climate Change Experiments

	atmosphere – ocean – ice sheets – vegetation – ocean biogeochemistry	control run
•	CO ₂ concentration increased from pre- industrial (280 ppm) to 2 x, 3 x, or 4 x pre- industrial concentration with an increase of 1% per year	2 x CO ₂ 3 x CO ₂ 4 x CO ₂

Change in surface air temperature

Average over years 300 to 399 relative to climate of control run

9Ø-

6Ø-

30-

Ø

-3Ø-

-6Ø-

-9Ø-

-1'8Ø

-120

-6Ø

Ø

2 x CO₂

18

60

120

Ø

2

3

4 5

6

4 x CO₂

3 x CO₂

Change in glaciervolume (m sea level equivalent)

-200 -100 -50 30 50 100 -30 -10200 10

