Chapter Thirteen

Instabilities,
Fronts,
and the General Circulation

siroduction
%

ley's (1686) idea of the atmospheric circulation, with hot air rising in the
und cooler air descending at higher latitudes, was presumably based on
mce with nonrotating fluids. In a nonrotating system, however, a zonally
{1ic distribution of heating and cooling would give us no eastward or westward
_und it was in this respect that Halley’s scheme was deficient. The importance
illon was later recognized by Hadley (1735), who showed that the tendency to
¢ ungular momentum can explain the eastward component of the trade winds
ugh he wrongly used conservation of angular velocity rather than angular
{um). Subsequent developments of models of the circulation are discussed
1enz (1967). In the nineteenth century, these were largely attempts to construct
Iu that were qualitatively consistent with the observed surface distributions
ith principles such as those outlined by Hadley. A rather different approach

s attempt by Vettin (1857) [see Fultz et al. (1959)] to model the circulation

_ng a rotating vessel that contained air as the working fluid and sources and
(such as ice) of heat to driv

e the motion. This approach was promising, but
14 not to have been followed up until nearly a century later.

major obstacle to progress was the lack of appreciation of the role of instabilities
ol the transient and nonaxisymmetric motions that develop thereby. Helmholtz

) saw that instabilities could be important, but he placed most emphasis on
311 that gives rise to billow clouds and thereby aids vertical mixing. The insta bility

was later utilized by V. Bjerknes (1937) [see Lorenz (1967)] to develop a picture
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| energy that is available for conversion into other forms. Itis of great interest
Ine the behavior of small disturbances to such equilibria to see whether the
¢ constraints allow the disturbances to draw on this supply of available
ul energy. If they can, such disturbances will grow spontaneously anq bcgomc‘
oitant feature of the flow. If not, the behavior of the disturbances is still of
L und it is useful to consider why potential energy is not r§leased. .

gin with, the problem will be studied in a uniformly rotating system ( /'plane)
nplications due to the beta effect will be ignored. The fluid will .be assumeq to
wehed an equilibrium state in which the temperature © has a umfo.rm gradlcpl

the v (horizontal) and z, (vertical) directions. It will be convement. to refer
 direction as northward, although the significance of this direction is due to
iperature gradient rather than to the beta effect. Because of the hori.zonlul
lure gradient, the system has available potential energy, as dlscussed'm Sec-
_und this energy could be released if the isotherms could be ‘made horlzgnlzll.
(e thermal wind equation (7.7.10), the x component of velocity U has uniform
-S. the vertical that is related to the horizontal temperature gradient by

in close accord with present ideas. He concluded that the circulution whd
different if it were forced to be zonally symmetric, and that such u mnall"
flow would be unstable to small longitude-dependent disturbunces Hen
served circulation contains fully developed disturbances that tuk e the o+
and anticyclones.
Mathematical models of the instability that leads to cyclone develius
developed by Charney (1947) and Eady (1949), and these are discussed i
13.4 and 13.3, respectively. The process that they studied is called biro i
ity, and the source of energy for the disturbances is the available potemih
(see Section 7.8) of the original zonally symmetric flow. The mere prossine
able energy does not, however, imply instability, as the counterexumple uf
13.2 shows. In fact, certain conditions are necessary for instability to e g
and these are considered in Section 13.5. E
Another form of instability of geophysical interest is called burotiopie i
In this case, the source of energy is associated with horizontal variations i th
of the mean flow. The example that is chosen (in Section 13.6) to illustiute s
is based on Rayleigh’s (1880) study of parallel-flow instability. Ax well §
directly applicable to the barotropic instability problem, the muthemibi s
example is very similar to that of the Eady problem studied in Section |44
The instability theories deal only with the initial development of sl
ances, whereas the role of eddies in the general circulation depends o Hisk
effect over a life cycle. The life cycle of a baroclinic disturbance i dliu el
tion 13.9 for a model pertinent to the atmospheric circulation. The il
cyclones and anticyclones) transport heat poleward, as expected (1o the §
they take available potential energy from the mean flow. However, they ulie
port zonal momentum poleward, apparently because planctary wiyis |
upward and equatorward from the seat of the instability and tend (o b o
in the equatorward side of the jet stream. The eddy momentum transporis i
consequences for the surface wind distribution because of the anpulir i
balance requirement. This is discussed in Section 13.10 along with other napis
circulation problem. An important feature is that the zonal flow s ¢l i
in hydrostatic and geostrophic balance, as realized by Ferrel (1859 | Mol (4
tion 7.6). !
Baroclinic eddies are a prominent feature of the ocean as well as of (1o il
and these are discussed in Section 13.7. Although they are dynamically sl &
atmospheric counterparts, their horizontal scale is about a tenth of (hut fi i
mosphere (100 km instead of 1000 km) and their time scale is much lonper A
phenomenon of great interest is that of fronts. In the atmosphere, they e i
associated with developing baroclinic disturbances, and an example ol i [t
ing through nonlinear development of an Eady wave is considered i Sec i l

fdUldz, = —a.g 00/dy, (13.2:1)

/s the Coriolis parameter, g the acceleration due to gravity, and o, the effective
son' coefficient defined by (6.17.21). The fluid is assumed to be incompres-
W0 the scale height H_ is infinite), log-pressure coordinates will be used, and
Iisi-geostrophic processes will be considered. . J .

gquations satisfied by small perturbations to this basic stqte are given in
|29 and have an especially simple form in the present case in which f = 0,
. {s uniform, and the frequency N, is constant. In fact (12.9.1) and (12.9.2)

o
ik I R

L (1322)
B 0y? +Ni 0z2

hecomes Laplace’s equation if the stretched vertical coor.dingte Z. = N WZal
I K.25)] is used in place of z,. Solutions exist that are wavelike in the horizontal

il time, and have a form such as
@ = @, sin ly sin(k(x — ct)) exp(—z,/Hy), (13.2.3)

0 (k. 1) is the horizontal wavenumber and c is the phase speed of the d%sturbancc
W + direction (i.e., in the direction of surface level isotherms). The s.olutllon.decuys
ultitude on the scale [see (8.7.22)] of the Rossby height Hy, which is given by

Hy = /N ky, (13.2.4)

0 iy = (k* + )2 is the horizontal wavenumber. The associated potential
13.2 Free Waves in the Presence of a Horizontal Temperature Gradient puriture perturbation 0 is given by the hydrostatic equation (6.17.20), i.c., by

g0 = 0¥'/0z, = —@'/Hy. (13.2.5)
In Chapter 7 it was found that a rotating fluid adjusts to a geostrophic cop i

rather than to a state of rest, and this equilibrium state is characterized hy Ii§ fsr perturbations that decay upward, cold is associated with high geopotential
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(1.9, with high pressure on level surfaces) and warm is associinted wi
Lines of constant phase are vertical.,
E) . . 1 =
Laplace’s equation does not allow solutions that are wavelike i

| m — \‘\_//

so the only possible form of wave is a “surface” wave trapped npain L it :
such as a degp.-water surface gravity wave. For such a wave (0 exint, | i "M o i
surface copdltlon must be satisfied. In the present case, the condil [l '
at the horizontal boundary z, = 0 is Wy =0, ie., by the temperuiiig f
(129.6)] : I
& I I
(6/ot + U 0/0x)0 + v0®/dy =0 at z, = () . I
where v is the perturbation velocity component in the y direction Llnlig » %o i s ' i g
; : (b)

v and (13.2.5) for @ in terms of 6, this becomes

d0/ot + (U(0) + Hy dU/dz,) 00/0x = 0 at z, =0

z,/Hg

showing that the wave translates at a speed ¢ given by

¢ = U(0) + Hy dU/dz,,

Le, at the wind speed one Rossby height (or one e-folding scale) ulhve
This level, where phase speed equals wind speed, is called the “steering ot
The str}lcture of the boundary wave is shown in Fig. 13.1 in a frume uly
that 1s stationary relative to the wave. At ground level, the stream|ins ne
and air is warm for its latitude when displaced furthest poleward, ( 'nméq '
(13.2..5) the surface pressure is low, and this is consistent with {he strenmil
only if the flow is easterly as shown in Fig. 13.1d. At the steering level (here I
flow relative to the wave, so the motion is purely “coldward” cast ol the |
purely “warmward” (.., in the direction of the mean horizontal temperi i il
west of the low. This is just the situation found in model A of Section .g
consequently rising motion is expected in the “coldward” jet and dosventk
“warmward” jet. Such is indeed the case. The value of w, is givc1| by (1298
(13.2.3) and (13.2.8), with the result (for ¢ = 0) : b

141 Properties of a wave trapped against a horizontal boundary in a uniform shear flow in a uniformly
vhvitonment. Isotherms are uniformly sloping in the y—z plane as shown by the solid lines in (e). (a) Stream-
i coincide with isobars and isotherms) in the horizontal for the flow relative to the wave at a high level
disturbance is weak. As at all levels high pressure (or high geopotential) is associated with cold air. The
In due to the air being displaced upward. (b) Streamlines of the ageostrophic flow (i.e., of the disturbance
¢, plane. Ascent is associated with a “coldward” flow, coldward meaning that there is a horizontal com-
i the y-direction, i.e., toward the direction where the mean temperature at a given level is colder (see
11.10), (¢c) Contours of v, the y component of velocity (solid) and of potential temperature in the x-z, plane.
W e air is warmest (isentropes most depressed), there is no poleward flow, and where the poleward flow is
I, the temperature perturbation is zero. Thus there is no poleward heat transfer by the wave. (d) Surface
lines relative to the wave. The flow is easterly, and high pressure (where streamlines are displaced furthest

tward) is associated with cold air, the coldness being due to the equatorward displacement. (e) Particle
Jles (arrows) in the y—z, plane relative to the isentropes (solid sloping lines). Near the ground, where the
ili s large, the slope of these trajectories is more nearly horizontal than are those of the isentropes, so
iwatd-displaced air is cold. At high levels where the amplitude is small, the slope of the trajectories is greater
1hal of the isentropes, so equatorward-displaced air is warm because of its relatively large downward dis

anent,

W, = OoN k(dU/dz,) sin ly cos kx (z,/Hy) exp(—z,,/Hy)

Stregmlines of the ageostrophic motion in the east—west vertical plane g
in Flg..13.1b and are obtained by integrating (13.2.9) with respect to v, | HN '
shosys isotherms (dashed lines) and contours of meridional velocity in the susl r
vertical plane. Where isotherms are depressed the most, the air at that leyvel (s w
but 'th_e meridional velocity is zero. Figure 13.1e shows particle trajectorion |
merldlona] plane. These can be calculated from (13.2.9), (12.9.3), and (13,20}
give

W, 1z, dU= z,, 00/dy

= = (L

g NoHy a A 00/oz,’

Thg last f:quality makes use of the definition (6.17.24) of N i The formulin shows
trajectories are less steep than are isotherms below the steering level nind i
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Light

above. Because trajectories are steeper than are isotherms above the slest
poleward-displaced particles are cold relative to their surroundings, us "
13.1a and c.

A similar analysis can be done for an interfacial wave on a horizominl
at which there is a discontinuity in N?. This provides a model of the ¢
the high value of N, is above the interface. The geopotential anomuly 4 s
at the interface and decreases exponentially away from the interfnce, Il
the temperature perturbation changes sign at the interface and Ilwwl'ul".
tinuous! This is possible because the isotherm slope changes discontinm
interface and the particle trajectories in the meridional plane have i wlope m
the two isotherm slopes. If the value of N, above the interface is very lipe ¢ ‘
with that below, the tropopause behaves as a solid boundary and the solut
same as that in Fig. 13.1, but with the signs of w,, z,., v, U, and ®' revermml
0 and x being unchanged. .

Another variant of the solution arises when the boundary slopes i the y tik
Waves propagate relative to the flow at the boundary, provided there is i teim
gradient there. The solution has a form similar to that found above [ it (s e
priate to give the solution in terms of (9@/dy), rather than of d U /dz, , wherg

Equatorward side
Poleward side

Heavy

is the temperature gradient along the boundary| even if the lsolhcl mil s
horlzo.ntal and the boundary slopes. In that case the waves are those thil were T |+-H‘|’mmm| [
by Rhines (1970) not only for the quasi-geostrophic case but also for [ Heany

- (b

small compared with f.
lllustration of displacements associated with rearranging a fluid with sloping isentropes (a) to a

The above solution (i.e., that depicted in Fig. 13.1) is interesting beciuse i : 1.2,
ances do not grow despite the availability of potential energy in the menn Mo Wi energy condition with horizontal isentropes (b). The fluid has been divided into six layers, each treated
some reason, the dynamic constraints do not allow the disturbances (o up Y 'h()mogeneous. The solid circles denote the cerftter of gravity of each layer and the arrows in (b) show
source, and it is worth investieating why. Fieure 1 . . i o displicement of these centers that is required to achieve the state of minimum potential energy. Heavy (cold
of avai’lable potential o (gs Sg i y 7 8g ¥ }3'2 is a reminder of (e § - imuves downward and equatorward, whereas light (warm) fluid moves upward and poleward. Consequently,
gy (see dection /. ) in the form of an exu II||D|t‘ I It 1 net poleward transfer of heat. One layer is shown hatched and another stippled for ease of identification.

isopycnals are sloping (Fig. 13.2a). For simplicity, it is assumed there nre sis

geneous layers as illustrated, the large dots indicating the center of grivity Hf ]
[ escape from the consequences of (13.2.5), it must be possible for the v and 0

layer. Figure 13.2b shows the minimum potential energy configuration ol {h
with the new positions of the centers of gravity and arrows indicating the ¢l lo be phase-shifted relative to each other. This can happen in various ways.
position of these centers. This illustrates the principle that release of aviiluhle ¥ Iy confining the disturbance between two horizontal boundaries or between the
tla! energy is associated with heavy (cold) fluid moving equatorward and liphi | Juee and tropopause as shown in Eady’s (1949) celebrated paper, for then there are
fluid moving poleward. J solutions in the vertical, one decaying away from the upper surface and one from
In the wave solution above, the dynamic constraints do not allow this (ol ' lower surface. If the two surfaces are many Rossby heights apart, the waves on
' {wo boundaries affect cach other only slightly, so no new effects are found. For

wiives to have a large effect on each other, the Rossby height must be comparable

The mean poleward heat flux over a wave is proportional to
the height of the model tropopause, i.e., the inverse wave number must be com-

— 130 1 00 o0
Hi = F b gl On G5 (144 tiuble with the Rossby radius based on the tropopause height (i.e., N/f times the
g i Jpopause height, or about 1000 km). The phase shift can have different signs,
vyhere the overbar denotes an average over a wavelength in the x direction | e 14 | ndmg on the relative positioning of the waves on the upper and lower boundarics.
tion (13.2.5), however, requires this to be identically zero at all levels, beciime i sign that gives release of potential energy can be seen from the last expression
(13.2.11) because if phase lines tilt westward with height (as in Fig. 12.10, for in-

proportional to @', and so

fee), @ increases with x when it increases with z,, so the poleward heat flux is
Juitive. When the two waves are able to coexist with this phase shift, it will be shown
Nection 13.3 that they grow spontaneously. Conversely, if the phase shift results

sustward tilt with height, the disturbances decay.

00 oc O 0d'/ox = (3D'?)/ox = 0. (Al

Thus no heat is carried poleward and no energy is released.
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13.3 Baroclinic Instability: The Eady Problem ., d imaginary part ¢, i.e.,

=G e (13.3.8)
Now consider the same problem as that in Section 13.2, but with i iy ; :
ary provided by the tropopause. To simplify the mathematics, the Hi ‘lltudes B wy edoas (DA te
taken for which the value of N; above the tropopause is large, so (he Hjy : cos ly exp(ik(x — c,t)) exp(ke;t). (13.3.9)

behaves as a solid boundary. Then the symmetry of the problem cin b
taking a frame of reference fixed in the flow at the level z, « O, midwi
the two boundaries that are located at z, = + H. The flow is thus piven

U =z, dU/dz,,

W positive, disturbances grow spontaneously, whereas ¢; < 0 corresponds to a
i disturbance. Formula (13.3.7) shows that both types of disturbance exist,
i prowing one will soon dominate because of its exponentially growing ampli-
I fact, there will be a wavenumber selection in favor of the fastest-growing
hince. Figure 13.3 shows the growth rate ¢ = kc; as a function of wavenumber
{ 18 small for long waves because (13.3.7) gives

o = ke, ~37'2kH dU/dz,, (13.3.10)

where dU/dz,, is a constant satisfying (13.2.1). The solution of (13.2.2) fo it
of fixed horizontal wavenumber k;; can now be written in the form

@' = A(x, y, t) sinh(z,/Hy) + B(x, y, t) cosh(z,/H),
5 (13.3.5) shows that growth occurs only when

BH Hy) < Hy, 1€, H < 1.1997Hy or N kgH < 119971 (13,3.11)

where Hy is given by (13.2.4). The boundary condition of no verticul nl
gives rise to the temperature condition (13.2.6), now applies on the twir b
at z, = + H. The alternative form in terms of @ is (12.9.6) with w, « (. Kul \

(13.3.2) and taking odd and even parts give 1.2.4). Maximum growth is achieved when

=0 and H=08031Hy, ie, N,kH =08031f, (13.3.12)

04 dU H 0B 4
Tt dz, - tanhH—R =iy o O ximum value being given by
0B dU H 6,0, = 0.3098( f/N, ) dU/dz,. (13.3.13)
— +-—| Hcoth— — Hy a—A=0. % '
0t i iz, Hy 0x
'

1000 4 SNV O Wt 2 Ol o 0l o o e LT

Solutions exist in which 4 and B are proportional to

cos ly exp(ik(x — ct)), 1.0 ol ol

where the wave speed ¢ is given by i oy 9z

¢* = (dU/dz,)*(H tanh(H/Hy) — Hg)(H coth(H/Hy) — I,) (

o
o
L
{R T T = N R O

: i 03 03
This is one of the results obtained by Eady (1949). < n m [\ K
In the limit, in which the two boundaries are many Rossby heights apuit z 5 U U
H » Hg [by (13.2.4), this corresponds to the shortwave limit], the tunl il | U U
functions both tend to unity and (13.3.5) gives i5s

¢ ~ +(dU/dz,)(H — Hy). (4

BRI it e

=% L e B R T

o
I

In other words, ¢ is equal to the wind speed one Rossby height from the bl
i.e., these are the boundary waves found in Section 13.2.

In the long-wave limit, where the boundaries are a small fraction of 1 Wi
height apart, i.e., H <« Hg, (13.3.5) gives

TR AR | R PR T T B TR 0 P
-1.0 -05 0] 05 1.0
NHk /f

183, Growth rate o of an Fady wave as a function of wavenumber (k, /). Contours are shown in units of
Uiz, Valyes are zero on k = 0 and when the magnitude k;; of the wavenumber equals 11997, The maximum
‘ B H 1

10 0A098U/N) dU/dz, is achieved when | = 0 and N,Hiy, /[ = 0.8031, For fixed ratio k/I, the maximum is at the
value of K. The maximum for a fixed [ (corresponding to a baroclinic zone of fixed width) is at a value of

2 ¥ —{H*dU/dz,)?, (1A%

Le, ¢ has become purcly imaginury. In general, if ¢ is UXDI'CNSC(I in terms ol e I docroases as [ increases (longer unstable waves for narrower baroclinic zones).
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For this value, (13.3.3) shows that y  High High
A _ (Hyg — Htanh(H/Hy) L 1 502 4 . N o
B \Hecoth(H/Hy) — H,)] (h o .
3 0] T 2w kx

This gives the general formula for A/B. For the fastest-growing mde .
equal to coth(H/Hy), and thus the solution (13.3.2), taking the real puit M(
has the form

' sinh(z,/Hy) | . cosh(z, /Hy) 1
® =|coshkx——* = 4 Joxx S0 2wl TTR) | o ot
[ sinh(H/Hy) S cosh(H/Hy) Ml E
cosh(z,/Hg) . , sinh(z,/Hy) (l
o gH 0 = |:C()s kxg—*i + k B .. R " p
R snb(H/Hy) | ™' cosh(H/Hy) |

. Figure 13.4 shows the structure of this fastest-growing mode solution i a
similar to that in Fig. 13.1. Near the lower boundary, the Fady wave is viiy
like the boundary wave except for the very important phase shift of *1° hatw
positions of isotherms and isobars, i.e., the warmest air is just aheud (eust
the surface trough. Conversely, the Eady wave is similar to a (rapped wise &
upper boundary at that boundary. For the growing wave, the highs wind fi
displaced 90° to the west on the upper boundary relative to the lower houidisy
the phase lines for the @’ field tilt westward with height and the s .s|u||"d
which is proportional to the x derivative of ®. The same is also (iue lor e &
strophic field because u, is proportional to U dv/dx by (12.2.24). 'The plise I
temperature, however, do not tilt westward, but are displaced about 48 sk
between the lower and upper boundaries. At the middle level, the witiiesd
actually the air that is moving most rapidly poleward, so v and () are perloctly
lated at this level. The heat flux v0 at any level can be found by substituting the
tion (13.3.2) in (13.2.11). This gives

134, Properties of the ,most unstable Eady wave, i.e, the most unstable wave in a uniform shear flow
11 lwo horizontal boundaries in-a uniformly rotating environment. The solution is independent of y. (a) The
\ i the upper surface and (d) the pattern on the lower surface, the solid line being an isobar and the dashed
1 (sotherm. The pattern on the lower surface is very similar to that of the boundary wave shown in Fig. 13.1d,
it that isotherms are now phase-shifted 21° to the east relative to the isobars. (The phase shift is exaggerated
anid (d) for clarity, but (b) and (c) are accurate representations.) The poleward flow is now on the warm side
s wuatorward flow is on the cold side so there is net poleward heat flux. At the furthest poleward point
otherm, the flow is still poleward because displacements are increasing with time. The pattern at the upper
 can be obtained from that at the lower surface by symmetry. (b) The stream function for the ageostrophic
Wi the x-z, plane. Ascent is associated with “coldward” flow and descent with “warmward"” flow as was found

{ion 12.10. The most unstable wave has wavenumber such that there are 16 Rossby heights Hg between
Wit horizontal boundaries. (c) Contours of normal velocity v (solid) and isentropes (dashed) in the x-—z, plane.
Hijws marked H (high geopotential) and L (low geopotential) are zero lines for v. The points marked W (warm)
{ it 0ld) on the boundary show where the air is warmest and coldest. At all levels, air going poleward is generally
Wi than air going equatorward, so there is a net poleward heat flux. The phase lines of the v field (as for @)
wntward with height, the total change in phase between the two boundaries being 90°.

o, fgHxv0 = A 3B/0x = —B 0 A/ox, i

which is independent of altitude for all waves and can be shown (o he prssiiis |
all growing waves by use of (13.3.3). Particle paths in the y—z, planc are el

expand with time. At the middle level z,, = 0, and (13.3.2), (12.9.3), and (1 * 2 6} '
that particles follow rectilinear paths along a line of constant slope el te 1 ]

times the slope of the isentropes. (It is of interest to note, before discussing ciums te Bady wave is 2'/2 times the value given by (13.3.13) and a typical value for
1.= 0, that the [ = 0 solution exactly satisfies the nonlinear quasi-geontiopilii ilmosphere is 2 or 3 days. ,
tlonls:.i) — . : . . . ‘ 4 I'hus the Eady problem provides a qualitatively plausible (and mathematically
gure 13.5 shows the structure in the horizontal of a square (A /1 Fudy & {ghtforward) model for developing disturbances. It explains how they can form
a't the steering level. Wgrm air is carried polewarq as shown and ascends ut (8 slancously through instability of the mean flow and draw on the energy avail-
t)li)nszsrvt:; SIOFC _Of 1h(ei "SGU.UOPCS: Th? ChafaCtel‘l'SthS are very .»\‘i“l”-" (o e {here. It also explains how a particular structure will tend to emerge by selection
el cyclonis an anticyclonic disturbances at the 700- or 600 b fevel ¥ ihe disturbance that grows most quickly. The properties of this disturbance also
e.g., Fig. 12.17). The zonal yvavelength of this wave is 2%/2 times (he valie piven ¢ well with observation, i.e., (a) there are growing waves of wavenumber 6, (b)
(13.3.12?, namely, 11.1NH/f~ 4000 km or about zonal wavenumber 6 af (e Lutiiul i¢ is usually a warm tongue a little ahead of the surface trough, (c) at the steering
where disturbances are generally found. The shortest e-folding time for piow iy | (located roughly midway between the surface and the tropopause) warm air

/
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B R RV R R

Col

by (12.9.4). The boundary condition w, = 0 on a horizontal boundary gives,
B8 substitution of the wavelike form (12.9.7) in (12.9.6),

(U — o)\p)oz, + wW/H) = @UJoz, ). (13.4.1)

Upurely baroclinic” instability problems, U is a function only of z, , so the partial
Wlives in (12.9.8) and (13.4.1) become ordinary derivatives. In the Eady problem,
Wils zero, so m? given by (12.9.9) was constant, and analytic solutions of

0

ey

ko ‘
. ) 're thus easy to obtain. If G/8y is nonzero, m? is not constant, but solutions
Fig. 13.5. Geopotential anomaly contours (solid) and temperature contours (dashed) fon o s 1 '“) ore t . y . aq/ Y . i . s (ﬂ
(k = )) Eady wave at the steering level. The warm poleward jet is descending at about Dol the sl o e .“y O_htdmed numerlca“y when the 1-magmc1ry p?.rt ¢ ofcis nonzcro: H?'
and the cold equatorward jet ascends at the same angle, so there is a net poleward heal tans e ail ik tral” dlSlurbances, 1.e., freely propagating waves with ¢; = 0, the calculation is

potential energy. The relationship between the two fields is similar to that in the synoptic st S plicated by the singularity that exists at the steering level, but this does not occur
12.17 although the fields are considerably distorted in the real situation. | I (’Willg disturbances.

I the Charney problem

flows poleward and descends at about half the slope of the isentropes, cie (N
observed steering level tends to be a bit lower than the Eady model prodicis. M
that include beta effects can explain this lowering—see Section 13.4.) i
Laboratory models have been found to be very useful for studying the s
of baroclinic systems and, in particular, the variety of behavior of dist i i
can be found in such systems. A review of this work has been given by Hide aid
(1975). Numerical models [e.g., Williams (1971)] show that the initidl A
freshly growing disturbances is very similar to that predicted by F'iudy s uile
especially if this is generalized to take account of nonuniform gradicnty (hk
with uniformly sloping isentropes (G. P. Williams, 1974)), and of L'k Iy
at the horizontal boundaries (Williams and Robinson, 1974). Some very iited

dg/dy = B (13.4.2)

Lonstant and there is no upper boundary. Solutions are discussed, e.g., by Kuo
, 1973), Charney (1973), and Pedlosky (1979). The solution for the fastest-
Wing mode (which has / = 0) is shown in Fig. 13.6 for the incompressible limit
1, 0 comparison can be made with the f-plane solution.of Fig. 13.1 and the
solution of Fig. 13.4. The maximum growth rate is achieved for / = 0 and is
pendent of B, being given by )

Omax = 0.286(fy/N,) dU/dz, . (13.4.3)
A °d ©
Jitisingly, this is almost the same result as that (13.3.13) found for the Eady

S \Uj¢

phenomena occur when the disturbances reach finite amplitude, and (hew wie
cussed in Hide and Mason’s review. 3
. The Eady problem also points to the possibility of eddylike distui b

z4/Hg

|

grow spontaneously in the ocean, although the model of the mean (low 1 ot
realistic. However, since the preferred scale of the disturbances is of the o 4
Rossby radius, it might be expected that the preferred wavelength in (he oo
be of the order of 27 x 30 &~ 200 km and this is in agreement with obuervisd
Also, since the shear is so much smaller in the ocean, the growth rate given by (14 4

i

is small and therefore e-folding times of order 100 days are to be expected (il g 2
1974). ;
13.4  Baroclinic Instability: The Charney Problem Sl(-);

a
. 116, Properties of the most unstable Charney wave, i.e, of the most unstable perturbation to a uniform
llow on a beta plane, in the incompressible limit. The solution is independent of y. (a) The stream function
apeostrophic flow in the x—z, plane. Near the ground, ascent is associated with “coldward” flow and descent
Witmward” flow as found in Section 12.10. (b) Contours of normal velocity v (solid) and isentropes (dashed)
¢ #, plane. The lines marked H (high geopotential) and L (low geopotential) are zero lines for v. The points
wil W (warm) and C (cold) show where the air is warmest and coldest on the lower boundary and also at
My, which is the edge of the picture but not of the flow. The small panel at the side shows how the poleward
lliix varies with height. The steering level (SL) is also marked. The Rossby height Hg for this wave is given by
4 tholution courtes&f P. D. Killworth.)

The previous two sections ignored the beta effect, and it is important (o (il i
how this affects the stability problem. Consider first the situation of Scc i
L.e., that with uniformly sloping isentropes over a single horizontal boundiry, i
with the beta effect included. This is the problem (with compressibility 1o is uh
included) considered in Charney’s (1947) pioneering paper on baroclinic i1 dihl

The equation for a small wavelike disturbance on any zonal mean (low ¢y
with the y variations sufficiently slow is (12.9.8) with the potential vorticity pind



5

62 13 Instabilities, Frogds and i s il 4
problem. The functional dependence is exactly the same, with ni e
B, and the value is only about 8% less than that in the Eady cane Thuis ai o 1
time of about 2 days for the mid-latitude atmosphere is also predictod By s

Qualitatively, the solution looks like the Eady solution (Fig. IV )t the
Perturbation geopotential contours tilt westward with height, wirn i i
the trough line, poleward-moving air is warmer than average and dessng §
angle less than that of the isentropes. Quantitatively, of course, there aie At
For example, the surface warm tongue is now 417 ahead of the surfuce i
phase difference between temperature and pressure increases (0 i A
at z, = 0.5H; and then falls off toward zero. The steering level inoal o
(this is lower than for the Eady problem, in which it was 0.40/7, ubove
The poleward heat flux falls off with height and is less than 7", ol 1ts s
at z, = Hy. At higher levels, the solution approaches asymptotically Hhe h
solution shown in Fig. 13.1 and the visual similarity can be scen i (e Hgis
particular, the phase differences between @ and 6 become small. This in ulsi s
of observed transient disturbances in the atmosphere (Lau and Walluce, 148

The important feature of the incompressible Charney solution thit ix i
Eady solution is that the horizontal and vertical scales are sct by the vilue ol
not by the tropopause height. Scales for the fastest-growing wave (which s ‘
are given by

k71
Hy

1.26(f/BN,) dUjdz, , L~ 7"
(/kN,) = 1.26(f3/BN?) dU/dz,

1.26£,/p x isentrope slopc.

The last expression comes from using the thermal wind equation (111 1) om‘
definition (6.17.24) of N2. It so happens that the value of Hy, at midlatitudes:
is given by this formula is of order 10 km, so these scales are very similir fi e
found by Eady. mAe like 4 [om ;

Green (1960) studies the problem when both the beta effect and o Til wie s
thereby combining the Eady and Charney problems. The paramcter (hat dites
the solutions is the ratio of the height scale given in (13.4.4) to the heipght ol the
The maximum growth rate varies little, as expected from the fact (hat it %
similar in the two limiting cases. However, the beta effect does stronply 1l
the properties of the very short and very long waves. There are now short vt i
that are rendered unstable by the beta effect, whereas the longest waves are (i
through a new mode with a more complicated vertical structure and a weak or i
rate. ; _
The height scale given by (13.4.4) also is comparable with the scalc hoiplhit ",
compressibility effects should also be included. These produce diflferences i e
but not in the basic structure of the fastest-growing mode [see Lindzen ¢ o/ i}
for the compressible case].

The Charney and Eady problems provide good illustrations of the fuii
instability process in a continuously stratified fluid. The instability cin lu B
tained in the single situation of two superposed homogeneous laycrs ol diffey
densities and differing mean velocities. This was studied by Phillips (19511 1 i

i
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e case [see also Pedlosky (1979)], with layers of equal depth, and was extended,
L by Giill et al. (1974), to include effects of beta, bottom slope, and unequal layer

i, T'he model has been applied by P. C. Smith (1976) to explain the energetic
itions observed in the very strong (0.6 m s~ ') bottom current (Fig. 10.8) that
& through Denmark Strait between Iceland and Greenland. The fluctuations

W i period of 1.8 days and the e-folding time given by the model is about 4 days.

Necessary Conditions for Instability

i Sections 13.3 and 13.4 it was shown by studies of particular cases how dis-
inces can grow spontaneously by drawing on the supply of potential energy

luble in the mean flow. This is a very important demonstration because it shows

leans by which atmospheric depressions and oceanic eddies can be formed. How-

, the example of Section 13.2 shows that the mere presence of available energy is
sullicient to ensure instability since dynamical constraints may not allow the
gy Lo be released. This raises the question about what conditions are required
Instability to occur. It turns out that it is possible to find conditions that are
ssary in order for instability to occur. These are very useful because if they are
silisfied, it can be concluded that-the dynamical constraints will not allow the
Jy Lo be released. If they are satisfied, the possibility of instability is indicated,
this cannot be verified without making detailed calculations.

~Ihe necessary conditions for instability are most easily derived for perturbations
h no y dependence and for flow between two horizontal boundaries. Suppose that
llow is unstable, so that the imaginary part ¢; of ¢ is nonzero. Then multiplying
4 8) by the complex conjugate of i, integrating by parts, and using the boundary
ilition (13.4.1), an equation results whose imaginary (divided by ¢;) and real parts
il, respectively,

Nelvl® oq a9 |¥|*

@] —0
| ARlU=c2ay™™ " | flU=cPay ]~ (13.5.1a)
NiW|* og : agly|> 00
U=y — oz, 9%~ -5 |=P 13.5.1t
J( Do - oy Y Ly T e (13.5.1b)

lwie P is a positive definite expression.

In cach equation, the first term is an integral from the lower to the upper boundary
| (he square brackets enclosing the second term denote the value at the upper
undary minus the value at the lower boundary. The thermal-wind equation (13.2.1)

been used to express the boundary contributions in terms of the temperaturc

dient on the boundary. The result is easily generalized to the case in which y

ndence is allowed, in which case (13.5.1) is integrated over the y domain, at the
ndaries of which either periodicity or a condition of no normal flow is assumed.

o, the upper and lower boundaries can have a small slope, provided that 0©/dy

1.5.1) 1s interp’re\ted as the temperature gradient along the boundary rather than
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that at a fixed level. It is also possible to remove one oi both ol ihie B
infinity by taking the appropriate limit. 1
The application of (13.5.1a) to the problems alrcady studied cun tiw e
considering the signs of the various terms on the left-hand sice. T the &8 :
Section 13.2, the only contribution is a negative one from the lowe bevinindn
cannot equal zero, and therefore the flow must be stable, as is indeed Hhi o '
Eady problem, the negative contribution from the lower boundiury i Fshimie
positive contribution from the upper boundary, thereby allowing the el

instability. In the Charney problem, there is no upper boundary contehing
there is instead a positive contribution from the interior, so instability i & ’
sible. In general, the necessary condition for instability that is required fai
hold is (Green, 1960; Charney and Stern, 1962) that the sct of functivig

(aQ/ay)inlcrior H (a®/ay)lower :3 _((’)(H)/ﬂ.\,)nmn '

must not have the same sign throughout, but must include both positive wil
values. Conversely, a sufficient condition for stability is that the set ol 1y
(13.5.2) have the same sign everywhere. An alternative derivation and e g :
of this result is given by Bretherton (1966).

The condition can be strengthened by taking into account (135 1hl i &
can be replaced by an arbitrary constant U, because an arbitrary multiple affhd
can be added to (13.5.1b). It follows that the flow is stable if (Pedlosky, 196410 il |
U, can be found such that the functions

((U - Ur) aq/ay)imcrior:v ((U S Ur) ae/ay)lowen —((U - Ul ) ey, [

lol low
| 0 _ oa/dy _ _ dq/dy
0"~ ad"/dy  foU
1 he above conditions are useful, for example, in discussing baroclinic instability
o ocean. Gradients are generally weak below the surface layers, so dG/0y 1s close
1 except near the surface. If 9g/0y does not change sign and the bottom tem-
sure gradient is negligible, (13.5.2) implies that instability is possible only if the
¢ lemperature increases toward the poles! This rarely happens, but in regions
sntward surface flow, the temperature increases poleward at the thermocline
I, ns can be seen in meridional temperature sections (see also Fig. 12.5). This can
fuce a change in sign of dg/dy with quite modest currents. For instance, Gill
' (1974) found instabilities with e-folding times of order 100 days for westward
wee currents of 0.05 m s~ '. A quite different situation exists in the cold waters of
ke Passage, where the observed eddies appear to be due to an instability asso-
| with the equatorward increase of temperature on the bottom (Wright, 1981).

(13.5.7)

Barotropic Instability

I'he stability problems examined so far have been for the case in which U is a
jution only of z,, i.e., the “pure baroclinic” case. In general U is a function of both
und z,, and the potential vorticity gradient (12.9.4), which can be responsible for
tubility, as it is in the Charney problem, involves y derivatives as well as z, deriva-
\ws. The condition for the terms involving y derivatives to be small relative to those
ulving z, derivatives is that the y scale L should satisfy

are nowhere positive. The result can also be obtained [see Pedlosky (19791 Wil 7

assuming a wavelike dependence on x and ¢ by balancing the rate ol clinpe ul :

turbance energy with rates of change of other integrals that arc nepitive i L >N H/fo, (13.6.1)
when the quantities (13.5.3) are everywhere negative or zero. The (cehinigin vus ‘ ! .
generalized to nonparallel, quasi-geostrophic flows. Then the geopotentinl piii ' here H is the z,, scale of the U profile, assumed not to be larger thap the scale height
tion ®” acts as a stream function for the steady flow whose stability i heing s . In other words, the pure baroclinic problem is generally applicable only when
gated, since the horizontal flow is geostrophic and thus horizontally nomdives i undisturbed flow has horizontal scales large compared with the Rossby radius.
at the leading order of approximation. Consequently (12.8.13) shows thit (e jibes o condition (see Section 12.3) is also the one for the energy of the undisturbed flow

he principally available potential energy rather than kinetic energy.

vorticity g is constant on streamlines ®” = const., i.e.,
L ‘ The opposite limit occurs when U is a function only of y, and is called the “purc
q= g(@"). (AN jotropic” case. This applied when variations with height can be neglected. When
Similarly, the temperature © of a fluid particle on the boundary is conscived aml "h. types of msgabllity are 4potent1all'y present., - fUANEELNE assessment of fheir
‘ lutive importance can be made by using the disturbance energy equation. For the
0 = (D) (1A vompressible case, this equation can be deduced by starting from the disturbance
k. y . y 5 ) 5 .
on the upper and lower boundaries. A sufficient condition for stability thit wis fii :I'c" of the quasi-geostrophic momentum equations (12:2.24) and (12255}, witiel
by Blumen (1968), using a method due to Arnold (1965), is that
(aq/aq)”)imcrign (aG/a(D//)Iowe” _(a@/a(l)”)um,” (114 ,' fOua = —ﬁyllg = (6/6r + U 6/5x)vg, (|3()2)
be positive everywhere. The relationship with (13.5.3) can be seen by notiny tht i : = —Byv, + (0/0t + U 0/ox)u, + ©U/Oy)v,, (13.6.3)

fb{;.—
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where U(y, z,) is the undisturbed flow, ° i

6 / -

hy H >

— ey ’ i
u, = — fo ' 00'/0y, vy = fo  0D'/dx

is the disturbance geostrophic velocity, and (u,, v,) is the disturbiance sk
velocity. If u, times (13.6.3) is subtracted from v, times (13.0.2), and (| IR
the result [cf. (12.2.33)] can be written

X0/ot + U 8/ox)(u? + v}) + (U /0y, + u, 00'/0x + v, D[y = )
Adding N ? 0®'/0z, times(12.9.6) and using (12.8.2),(13.6.4),(13.2.5), anel (1 4 A !

1/0 0 o,g0\*\ - oU o\ O
= Ol o 3 “ug o+ ()
2<6t ax><uL iy ( N*> T dy by (N*, «’\"'”

=]

10,7, Perturbation geopotential (or perturbation pressure) for the most unstable disturbance to the split-
Wl ity profile shown at the right. The tilt of the phase lines is such that it is correlated with —v, i.e,, il y points
ardl, castward momentum is carried southward and westward momentum is carried northward.

(' = (a cos kx sinh ky + b sin kx cosh ky) exp(a1) for |p| <= L. (13.6.9)

! |'v| ~ L, @ decays exponentially away from the value given by continuity of
Wl ¢ = L. The relationships between «, b, and ¢ follow from the requirement of
ilinuity of v,, as given by (13.6.3), at y = + L. They give

b(dU/dy)(; — kL + 3 exp(—2kL)),

o, . 0, ] ,
ot g(uﬂ(b) + 5;(03([)) + E(W*(D ) = 0. ” L

This can be averaged with respect to x over a wavelength, the average being e od = (13.6.10)
by an overbar and periodicity in x being assumed, to give on integriation with ¢ ob = a(dU/dy)(kL — + + % exp(—2kL))
to yand z, ’ 2. ’
iy ] | hence ’
0,90 oUu ___
19 J f <u 5 b < o ) >dy B = — j J O e iz, 07 = (dUJdy)*(& exp(—4kL) — (5 — kL)) (13.6.11)
; maximum value for the growth rate o is given by
a9\ 00 - 2
— ~.) o v 0dyd:, I8 Omax = 0.2012 dU/dy when kL = 0.3984, (13.6.12)
* A

| (he corresponding solution is shown in Fig. 13.7. As for the Eady problem,
lubility occurs only for wavenumbers that are less than a cutoff value, which in
§ case is given by kL = 0.6392.

~ I'he geopotential perturbation @ shown in Fig. 13.7 has phase lines tilting in the
liection opposite to the shear profile shown in the panel at the side, i.e., if eastward
un velocity increases to the north, phase lines tilt westward with increasing
Wtude. This is characteristic of a growing wave because (13.6.7) shows u,0, must
ve the sign opposite to dU /dy for growth. Equations (13.6.4) then show that where
" increases with x, the y gradients of ® and U must have the same sign, and this
iplies that phase lines tilt the way opposite to that of the shear flow. In the present
imple u.v, has a constant value for |y| < Landis zero for|y| > L. Thesign is that
sociated with bringing momentum from outside the shear layer in toward the center
ihe layer. This has the effect of reducing the mean flow energy by transfer to the
isturbance.

T'he above example is useful for illustrating the characteristics of barotropic in-
ubility, but for geophysical applications the beta effect is often of prime importance.
Ihe required modification is discussed by Kuo (1949, 1973). The first condition
11.5.2), found in Section 13.5, shows that barotropic zonal flow is stable if

The normal velocity is assumed to vanish on the boundary of the domiin ol il
tion. The right-hand side contains two terms representing sources or sinhs ol i
turbance energy. Only the second arises in a “pure baroclinic” problem, in which
represents conversion of mean available potential energy to disturbance cncipy §
the first arises in “pure barotropic” problems, in which it represents conversiiig
mean kinetic energy to disturbance energy. When both processes arc active, the
of the terms may be taken to define the relative importance of the two cllecis 7
The ““purely barotropic” problem will now be illustrated by a simple /il
example. When beta is zero, the problem has exactly the same form as in the
rotating case, so the classical theory of the stability of undirectional flow: ¢ ih !
applied (Lin, 1955; Drazin and Howard, 1966; Drazin and Reid, 1981). 'T'Tie ¢ xis
chosen is that of a uniform shear flow

U= ydU/dy for [yl < L (Hﬂ

(with dU/dy constant) sandwiched between two regions of uniform f{low i i
in Fig. 13.7. This problem was first studied by Rayleigh (1880) and is very uii
mathematically to the Eady problem studied in Section 13.3. This is beciauie |

potential vorticity gradient dg/dy, given by (12.9.4), is zero (except at v | /1 W 3 5
(12.9:1) again reduces to (13.2.2), although this time there is no z, variation HE ‘ p — d*Ujdy
solution has structure similar to that of (13.3.2), and for a growing mode it tuh s the Woes not change sign, i.e., if the maximum value of the vorticity gradient «*U/dy*
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dlsplucements of the thermocline and the establishment of a ““Sverdrup balance,”
e depicted in Fig. 12.5. The associated density field contains a large amount of avail-
whle potential energy that is generated at an average rate of order 1073 W m ™2
Wil e al., 1974) by Ekman pumping. The scale of the gyre is set by the meridional
wule /"~ 1000 km of the wind stress, which is about 30 times the baroclinic Rossby
Il (see Section 12.5). It follows [see (7.5.2)] that the available potential energy

is less than f. To give an indication of the implications of this, dc\u\v il
L. and velocity scale AU such that AU/I? equals the maXimum vortieiy
The instability is possible only when ;

T < (AU By,

k:

i.c., for atmospheric examples with AU =20 m s~ ', L must be less (i

for instability, whereas for an oceanic example with AU = 20 em » ', | ahout 302, i.e., about 1000 times bigger than the kinetic energy associated with the
less than 100 km for barotropic instability to be possible. : Sverdrup mean circulation. If this were the whole story, the ocean currents away

Stability calculations have also been made for barotropic plunetis o the boundaries would be very weak (of order 1 cm s™ 1), and this was thought
(Lorenz, 1972; Gill, 1974; Coaker, 1977; Ripa, 1981). Except for the spesis Iy miuny to be the case until current measurements in such regions began to be made
zonal flow, planetary waves on an infinite beta plane are always unstible (€1 I (he late 1950s.

I practice, however, currents observed in the ocean interior are typically of order
1 i s ' rather than 1 cm s™ 1, so how do such strong currents arise? It has been
‘1 in the earlier sections of this chapter that eddies can arise through instability
4l the mean flow and can draw on the potential energy available in the mean field.
Such eddies tend to have a scale of the order of the Rossby radius, i.e., a scale for
Which [see (7.5.2)] the kinetic energy is comparable with the available potential energy.
Il lollows that if the available potential energy of the ocean gyre were suddenly
Wi to create eddies on the scale of the Rossby radius, their available potential energy
Wiild be about half that of the original gyre (i.e., the eddy available potential energy
tild be the same order as that of the original gyre), and the eddy kinetic energy
Wwild be about the same, i.e., very much /larger than that of the original gyre. This
Apument gives a possible source of energy for the eddies, but it does not explain why
il how that energy source might be utilized. Numerical experiments [see, e.g.,
Suhimitz and Holland (1981); Robinson et al. (1977)] with sufficient resolution to
similate eddies demonstrate how these can be generated and also contain many
alures that can be compared with observation. In particular, the geographical
distribution of eddies indicates that the major production zones for eddies are in
e repions of strong currents such as the Gulf Stream. Also, the models indicate
il the deep recirculating flow found in the western basin of the North Atlantic is
Wlidy-driven.

I'he observed properties of eddies vary considerably, but the word eddy is gen-
siully used to describe features with length scales (inverse wavenumbers) of order
0 100 km, and with time scales (inverse frequency) of 1030 days. They tend to
Wi approximate geostrophic balance and are generally found to move westward
Al i lew centimeters per second. Their amplitude, in terms of vertical displacement
Wl lopycnals, can be 100 m or more, and the associated currents can be 1l m s~ ! or
More, although magnitudes of order 10 cm s~ ! are more typical. In the North Atlantic
Detween 07 and 50°N, the distribution of eddy potential energy density, calculated
Wy Dantzler (1977), indicates that the largest values (500—2000 cm? s~ 2) are confined
1 the peneral area of the Gulf Stream. Although there is little doubt that eddies in
s region are due mostly to instability (Schmitz and Holland, 1981), other genera-
Hon mechanisms such as wind forcing (see Section 9.11) or flow over topography
ARections 8.7-8.10) could be significant elsewhere (Miiller and Frankignoul, 1981).

~ Instabilities may take a variety of forms, and the mechanisms are often difficult
o identify observationally, However, one form clearly seen in observations is due

If their inverse wavenumber is well below the value given by (13.6.13) (ur, I
[rom another viewpoint, if their amplitude AU is sufficiently large), the W
is just like that of parallel flow in the absence of beta. For large scules {
amplitude), on the other hand, the unstable disturbance consists of (W Wi
form a resonant triad (see Section 8.13) with the primary wave. The resulis hs
generalized to a two-layer system by Jones (1979). On a sphere, the geain
straints reduce the possibilities of resonant interactions, so not all waves iie i
(Hoskins, 1973; Baines, 1976). i
In practical examples, there is often a mix of baroclinic and barotrapie
Parameters that affect the situation are the ratios of the length scale . on wh
flow varies to the Rossby radius and to the beta scale (13.6.13). In oceni
examples the ratio of the depth scale, on which the mass flow varies, (o he
depth is also important, and Killworth (1980a) has discussed the stability
for the variety of limiting cases that are'possible. The presence of side b
is also important in the case of boundary currents like the Gulf Stream, wid
lopography also has an effect. Laboratory experiments on the stability of
currents are discussed, e.g., by Griffiths and Linden (1981).
The remaining sections show how disturbances can grow spontaneously i
circumstances, and there are many other examples that occur in nature.
instabilities are very common and give rise to such natural features as turhiul
wind and water, both tropical and extratropical storms, a great variely ¢
forms, rain bands, thermals, etc. The instabilities are not studied here, but th [
ing authors have written pertinent books: Betchov and Criminale (1967),
rasekhar (1961), Charney (1973), Drazin and Reid (1981), Gossard i |
(1975), Lilly (1979), Turner (1973), Wallace and Hobbs (1977), Woody (19§
Yih (1980). :

13.7 Eddies in the Ocean

Many aspects of the dynamics of the ocean circulation were discussed on
Sections 10.14 (eastern boundary currents), Sections 11.12, 11.14, and 11,16 (4
currents), and Sections 12.5 and 12.6 (extratropical currents). In purlicullﬂ'.'
seen that in mid latitudes, Ekman pumping (introduced in Section 9.4) causes
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ull Stream meanders forming large loops that pinch off and form Gulf Stream
UM they break off on the equatorward side, they have cold water in the middle
Leore eddies), and the Labrador Sea water they contain may be trapped in the
for a year or so, in which time the ring may move a considerable distance to the
und south. Similarly, warm-core eddies form on the poleward side and drift
wird also, sometimes being reabsorbed into the Gulf Stream. For example,
1 3.8 shows the Gulf Stream, nine cold-core (cyclonic) rings and three warm-core
syelonic) rings observed in the spring of 1975, together with a cross section
gh the Gulf Stream and two of the rings. A summary of the properties of rings
by Richardson (1982).

rther information about eddies may be found in the survey article by Wunsch
1) and in the comprehensive volume on eddies edited by Robinson (1982).
§ of the observational base are given by Richman ez al. (1977) and the MODE
ip (1978). Modeling of eddies and their interactions with the mean flow is dis-
il by Rhines (1977, 1979) and by Rhines and Holland (1979). Analogies between
11 eddies and baroclinic disturbances in the atmosphere are considered by
ey and Flierl (1981).

a0°-

Ly

300] 1 »

Fronts

‘I'he solutions found in Section 13.3 nicely illustrate the initial development of
selinic disturbances, but sooner or later effects that have been neglected in the
" wlel will come into play and give rise to new features. One is the development of
i : ¢ sharp fronts that are such a familiar feature of surface weather charts. These
¢ i variety of forms and develop in a variety of ways. Descriptions are given e.g.,
Wallace and Hobbs (1977) and by Palmén and Newton (1969); many ideas of
ture go back to Bjerknes (1919). Here attention will be concentrated on one
Istrative example, namely, the fronts formed by the fastest-growing Eady wave
Fig. 13.4). This is somewhat special because the disturbance is independent of
d in fact satisfies the nonlinear quasi-geostrophic equations. However, the quasi-
pstrophic approximation itself breaks down when the ageostrophic velocity com-
anent u, becomes comparable with its geostrophic counterpart, which in this case
{/. Then the derivative D/Dt, following the motion, can no longer be approximated
D,/Dt.

- A formal procedure for finding the equations that apply in the neighborhood
i front is to introduce appropriate nondimensional variables (in a frame of
lerence moving with the front), allowing for the fact that the cross-front scale
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DEPTH (M)

DISTANCE (KM)

) ., I8 small compared with 1the along-front scale L, . Suitable sgales for ¢, Zu s WD,
4 e i i ‘

Fig. 13.8. (a) Chart of the depth, in hundreds of meters, of the 15° isothermal surface, showing the Coll Sie i t , and ?riall‘e (Ly/le)ff' 7 (é/N*)LxI; (Lx/Lyl).fo 4 fo’ (]l:LX) /IN*L'V, (fLX) " drk])d‘

nine cyclonic rings, and three anticyclonic rings. Contours are based on data obtained betwoen 16 b M ,\./a*g'. b s t-O 1qtro HEIRg ¥ es.e b that.t By that Cdr,] f

9 July 1975. (b) A temperature section through the Gulf Stream and two cyclonic (cold-core) i st o " |Iected in the equations 1s the acceleration term Du/DZ in the x component of the

stream. The section is a “dog-leg” from 36°N, 75°W (left-hand end) to 35°N, 70°W (middle) and then 1o 170 & 4 nomentum equation,hxis term being of order (Lx/Ly)z relative to the Coriolis term.

(right-hand end). [From Richardson et al. (1978, Figs. 1a and 4a, Section 3).]

s flow along the front is in geostrophic balance with the cross-front pressure
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gradient, i.e., 0 derivative following the motion is, in the new coordinates,

ot i o R o e Rt R 9

: ; . ] = — + — = —* =2 . 3.8,

The cross-front flow is not in geostrophic balance, but it is still uselul f 8 Bt 0T o T oy bl 0z, Dt T 0Z, S
as the sum of a geostrophic part and an ageostrophic part u,, where . D./Dt is defined b
fua % _DU/DI = —‘Dl}g/DI’ l/ e y

D,/Dt = 0/0T + u, 0/0X + v 0/0y (13.8.7)

tk}e equality on the far right using (13.8.1). The operator D/D¢ hun 115 |
(hmensional form (4.1.7), i.e., it includes the term w, 0d/0z, . 'The n‘lmﬂ”
tions to be satisfied are the hydrostatic equation (6.17.20), the continuiy
(12.8.2), and the potential temperture equation (4.10.8). These cquintions W
by Sawyer (1956) and Eliassen (1962) to discuss the vertical circuliation ul
It so happens that this set of equations can be transformed into the (i
strophic equations by a change of variables (Eliassen, 1962; Hoskins i Wil
1972; Hoskins and Draghici, 1977), i.e., by a replacement of the varinhles o
gf the following tabulation with those on the right (denoted by chunping b |
into capitals and vice versa) '

/07' represents the time derivative with X (not x) kept constant. The transformed
ons of (13.8.2) and (4.10.8) are now

U, = —Dw/Ds, - DO/Dt + (n2/o,g)W, + v0@©/dy =0, (13.8.8)

e remaining equations are

fo= 060X, 0,90 = 0$//0Z,,  OUJOX + dW,[0Z, =0. (1389)
'

we follow by expanding derivatives with respect to X and Z, in terms of x and z,,
valives, using for any function F

F aF, X aF, X /g 0 0F 1 0
a__z—(;:l(’ ):l_a__l i 1_3 (13.8.10)
s dZ.x) J ) " d 0z,

q)/ d)/ == (I)/ il %UZ,
X X =x+v,/f,
Z4 VA

Tox)” ox f oz,
* Eod 3

| i similar result for 0F/0X.

‘Now the quantity n2 is proportional to Ertel’s potential vorticity Q, defined by
|.17), and therefore is conserved following the motion by (7.11.13). The semi-
strophic equivalent can be derived from the above equations. For the Eady
blem, 72 is uniform for the undisturbed flow and thus remains uniform throughout
motion. It follows [as was first shown by Hoskins and Bretherton (1972)] that

T
u, U, =u, +(fJ)" 'w, dv/oz,,
W, =w,/J

N2 e %y Fatd dv\ 00 ov 00
i e x) oz, 0z, 0x | yolution in the transformed coordinate has the same form (13.3.15) as that found
. gction 13.3. In particular 0 and v are given on a section y = 0 by
where
15 hZ,./H inh(Z,/H
g = n2Z, + xploT) o LR | gy SIOZ /)|
i3 e l@ oy} 67X s ELy) ] H, sinh(H/Hg) cosh(H/Hy)

fox ox oz (1% (13.8.11)
is the Jacobian of the coordinate transformation. The dependent variables ¢4 X - x)= fo=k exp(oT)[—sin kX —’SI.Ilh(Z*/HR) + cos kX ,——COSh(Z*/HR):l.
v are unchapged, so there is no need to introduce new symbols for them |l i ' S e cosh(H/Hy) A
pendent variables z, and t are not changed either, but capital letters are uned 1 i e

cate that partial derivatives such as 0/0Z, that involve capital letters, nie o \
X, whereas 0/0z,, is for fixed x. :

The prqof Qf the result about the transformation is a matter of manipulativ
par.tlal .derlvatwes. For instance, by the definition (13.8.3) of X, it follows m»l'
derivative, following the motion, is

|1 solution is shown in Fig. 13.9, which was constructed by first calculating contours
(X, Z,) space and then using (13.8.12) to transform to (x, z,) space. It has the
foperty that a singularity develops on the boundaries (at the points marked L)
or a finite time, the singularities corresponding to the formation of fronts with
finite gradients. The singularity on the ground is at the point where J = o0, 16
J0X = 0,ie,by(13.8.12) it occurs at kX = Zn when k? exp(aT) = 27 (2. Figure
1.0 shows the solution when the disturbance amplitude is 909, of the value at this
¢. For comparison, Fig. 13.10 shows an observed section through a front, and the

DX/Dt = Dx/Dt + f~' Dv/Dt = u + f~* Dv/Dt = u,,

the last equality using (13.8.2) and the definition of u,. It follows that the cxpress
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arities in the lower troposphere are apparent. (The structure near the tropopause
he modeled in a similar way, as discussed below.)

liere are several features of the front that are independent of the details of the
ation process. By definition, the front is a region of large gradients, so the dom-
terms in the potential vorticity balance [ the last equation of (13.8.3)] give

@ 0, o0 A0l 0E); 13.8.13
6%z, Oz, W VExeg) s LEL AR

Surface
pressure
| 4

£ P ) and 0 contours tend to coincide in the front. This feature can be seen in both the
™ : kx ' . e . .
" ¢lical and the observed fronts. Also, potential vorticity conservation requires

Fig. 13.9. Large-amplitude solution for the fastest-growing (two-dimensional) Fady wive i Y 0!’/(7.’6 to remain positive, so it can be large only when the relative vorticity
hormal velocity (solid) and potential temperature (dashed) in a vertical section. The amplituco of the A is large and cyclonic. ‘Lo give an idea of pOSSiblC magnitudes, detailed observa-
is 90% of the value at which singularities develop at the low pressure (L) points on the bounidiary 4 \ by Sanders (1955) of a front in the United States showed O0v/0x with a value of
which corresponds to the fronts, the normal velocity is zero. The contour interval in ) i

: 1 i E potential terpme i T

same as in the small-amplitude solution shown in Fig. 13.4c. The solution was obtained by oot : pta helght F e 50/(3)6 A Ts e Upl ek VEE (o deg i ;
from the latter, so the boundaries of the contoured region do not coincide with the frame. e virt il ¢ nother general statethent concerns the cross-frontal flow, for (13.8.2) gives on
is N, /I. Note that the velocity and potential temperature contours become nearly parallel ot (e i & Aurface
panel shows the corresponding variation of surface pressure with distance x. Note the sharpress of e 1

as compared with the broadness of the ridge. ov/ot + u(f + ov/ox) = U, = _f‘l 0D'/0y. (13.8.14)
uming that the along-front pressure gradient and along-front acceleration do not
nge much, the cross-front flow u must become small when f + dv/dx becomes
2, This statement can be made more precise for the Eady case since v (and hence
(1) is zero at the point L of minimum pressure and maximum cyclonic vorticity
4l which the front forms. From Fig. 13.4b it can be seen that the ageostrophic flow
hposes the geostrophic flow at this point. The latter remains constant, but u, in-
pises exponentially with time so (13.8.14) implies that (f'+ dv/dx) will become
linite in a finite time. Because there is little cross-front flow, the poleward flow
nd of the front continues to bring in warm air, whereas the equatorward flow
liind brings in cold air, and so builds up the temperature contrast even further.
ther features of the front shown in Fig. 13.9 follow from the properties of baroclinic
surbances, e.g., the slope to the west with height, with a value for the slope of order
N. Typical observed values are of this order [the value is about f/N in Fig. 13.10
il was about 0.3 f/N in the case studied by Sanders (1955)].

In reality, infinite gradients are not observed, so clearly other effects such as
viiriations (see below), friction, mixing, and latent heat release modify the struc-
ire of fronts, which can become quite complicated when viewed on a small scale
', ¢.g., Bennetts and Hoskins (1979)]. The maximum velocity in the solution of
‘. 13.9 is 0.90k~'f = 1.IN H or about 100 m s~ *. Sanders found changes in geo-
tophic velocity v, of this magnitude across the front, but the change in the measured
locity v was only 20 m s~ ! at 300 m. At 1200 m the changes in measured and
wostrophic velocities were both about 35 m s~ '. One obvious discrepancy in the
leory is the neglect of the surface boundary layer. The large shear (see Section 9.5)
s to a large Ekman flux into the surface low (Sanders measured convergence al
rtate equal to 5/ at 300 m) that enhances the temperature gradient and leads to
nereased upward velocity at the front. Descriptions of the vertical motion observed

- 0 % 3, 100

S

HEIGHT (km)

1000

Fig. 13.10. A vertical cross section through a frontal zone from Omaha, Nebraska (OM), to Clhialoin o
Carolina (CH), showing contours of velocity in meters per second (dashed) and potential temperatiie |1 ‘h‘m :
Kelvin (solid). The horizontal distance across the section is about 2000 km. The time was 00 GCT or /(0 i
1964. The figure is from Wallace and Hobbs (1977, Fig. 3.20), where further details are described. The (1ol iy B
compared with the one obtained for an ideal fluid in Fig. 13.9.
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at fronts have been given, e.g., by Browning e al. (1975). Blumen (1980
surface friction effects to the solution shown in Fig. 13.9 and has mnde com
with Sanders’ observations. Friction effects outside the boundury layer i
considered by Gill (1981) in another context and by Garrett and oy
connection with fronts in the ocean. Shapiro (1981) has discussed the
turbulent fluxes in the free atmosphere and R. T. Williams (1974) abtuied
state front numerically. Latent heat release may also be importunt wid i
modeled, e.g., by Orlanski and Ross (1978). 4
The development of fronts in three-dimensional flows can be hundlod by §
methods as those used above. The y component of the momentun siyu
approximated in the same way as is (13.8.2), i.e.,

Jfv, = Duy/Dt,

and will provide a good approximation in frontal regions, whatever (e oo
provided that the along-front scale is large compared with the croms ot
The approximation is known as the geostrophic momentum approxinintiong.
introduced by Eliassen (1949), and the equations are known as the seiipeints
equations. The equations can be transformed into the quasi-geostropliic oy

(Hoskins, 1975; Hoskins and Draghici, 1977) by using the variables of (11 B
also by using

Y=y — wlf (1A
The coordinates X, Y, called geostrophic coordinates, were used by Y udin (1955}
the transformation has been further discussed by Blumen (1981). ‘The it
is proportional to Ertel’s potential vorticity as before, and J is the rulio ol
vorticity to /. The approximation has been applied to the development of the s
Eady wave (shown in Fig. 13.5) by Hoskins (1976). Hoskins and West (1970} gl

the effect of horizontal shear in the mean flow, and the types of fronts (it devels

have been discussed by Hoskins and Heckley (1981). The mathematicul llwul’, 1
frontogenesis has been reviewed by Hoskins (1982).

As Figs. 13.9 and 13.10 indicate, fronts can also form on the tropopuiie
rigid lid model is not very good for describing their development, but represciint f
of the tropopause as a discontinuity in N (or rather n}) gives remarkably 1oulish
results, as found, e.g., by Hoskins (1972). A significant feature of these fronts s
descent of a tongue of stratospheric air well below normal tropopause heiphin
such tongues can be traced, e.g., by measuring ozone concentration. [Deuciipiiin
may be found, e.g., in Reed and Danielsen (1959) and Shapiro (1974).

In the ocean, fronts are produced by a variety of mechanisms. Sometimes (hiey wie
very distinct in the temperature and salinity fields but not in the density field wik
this distinction is important so far as the dynamics is concerned. A survey of (¢inpiig
ture fronts as seen by satellites is given by Legeckis (1978). Figure 13.11 shown the
main climatological frontal regions (i.e., regions where fronts are most commmly
observed) in the North Pacific, and these are discussed by Roden (1975). One inijui

tant type of front is that produced by Ekman convergence in the surface layer the
subtropical fronts found at about 30°N and 40°S being important examples. Fodin
and Paskausky (1978) have studied changes in such fronts due to changing | ki
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Fig. 13.1. A schematic map of the main North Pacific fronts. The cross sections marked A
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il zonal mean temperature distribution at the end of the life cycle being as shown
| Fig. 13.12b. This distribution is only weakly unstable, so no further significant
eise of available potential energy takes place.
A useful means of depicting the changes in the disturbance during its life cycle
dmon et al., 1980) is by means of “Eliassen—Palm cross sections,”” which show
\¢ (uasi-geostrophic Eliassen—Palm flux, defined in Section 12.9, and its divergence.
his flux has the direction of the group velocity (when that concept applies); its
orizontal component [see (12.9.14)] is proportional to the horizontal momentum
X, its vertical component is proportional to the horizontal heat flux, and its diver-
nce is proportional to the quasi-geostrophic potential vorticity flux. Figure 13.13

convergence. A second type of front is that formed at a water masy b
Welander, 1981) such as that which separates the subarctic and subtropiul 11
the North Pacific (Fig. 13.11) this front is located at about 42N and s [t
the cold equatorward flowing Oyashio meets the warm poleward Howiig K

The surface front is a prominent feature in temperature and salinity sections S
density sections. A factor that may be important in determining the propertiss
front is that it is close to the boundary between upward Ekman pumipiig
subarctic gyre and downward Ekman pumping in the subtropical gyre. The 4k
Convergence (Mackintosh, 1946) has properties similar to those of the North

subarctic front (Taylor et al., 1978). A detailed study of the Antarctic Conveig
where it passes through Drake Passage, has been made by Joyce ef al (1978 ¥ i

can also be formed by coastal upwelling of cold water (Mooers et al., 1976, Fan b 0
an example being shown in Fig. 10.16. McVean and Woods (1980) have il H
formation of fronts by convergent mean flow, using the method of Hosking gL
Bretherton (1972). A further type of front is formed by gradients in rates ol SHE
e.g., by tides (Simpson, 1981), and such fronts have been modeled by Tumes (' i
They are distinctive features of shallow seas and form a boundary betweei <
mixed water on the shallow side of the front and stratified water on the ('“g : tHBd
Large-amplitude waves are commonly observed on fronts (Woods ¢/ a/. 107 600}
models have been constructed by James (1981). Yet another way ol producing i i
perature contrasts in models of well-mixed shallow seas is by applying the Sl
amount of cooling to different depths of water (Gill and Turner, 1969) |
1000 55
13.9 The Life Cycle of a Baroclinic Disturbance
0
The baroclinic instability theory indicates how depressions form in the ilimasphis i
and how their initial structure is determined. Similarly, eddies can be peneriied 200l
the ocean through instabilities of the mean flow. Eddies (the term is taken (ol i
atmospheric disturbances) cannot, however, grow indefinitely, and (heir Wi 400}
effect cannot be assessed without some knowledge of the way in which they iy P
decay, interact with other disturbances, etc. For the atmosphere, a uselul pietiis: Sl 1
provided by considering the behavior of disturbances to a realistic zonul oW S 600 -
as that shown in Fig. 13.12a. The horizontal temperature gradient is mainly coniis L
to the 30—60° latitude band, giving a jet stream centered at 45 and 200 mb. St el
and Hoskins (1978, 1980) studied the evolution of a disturbance to this flow Hh |
initially had the structure of the fastest growing mode of zonal wavenumber 6 Wil o
small amplitude (such that the maximum disturbance pressure was | mhi | s
disturbance grows rapidly by drawing on the potential energy available in the i

Fig. 13.12.  Meridional cross sections of zonal-mean potential temperature and zonal wind for (a) The basic
Jonal-mean state at the beginning of the life cycle experiment. [From Simmons and Hoskins (1980, Fig. 1a).] (b) The
. " sunal-mean state at the end of the life cycle. Contour intervals are 5 K and 5 m s~ 1. The zero velocity contour is
nth day. Then the disturbus . : : 4
disturbance energy I'CfiChCS a- peak during the seve Y : | i (ltawn relatively dark. [Courtesy of B. ). Hoskins.] (c) North polar stereographic plot showing surface pressure (solicl
energy falls off as rapldly as 1t grew and by the end of the tenth d(ly 18 reduced tuntours) and near-surface temperature (dashed contours) after 5 days of integration for a disturbance of zonal
about a tenth of its peak value. Thereafter the decay is much slower. Aboul i (uiniise - Wavenumber 6 to the flow shown in (a). The initial surface pressure amplitude was 1mbar and the initial perturbation

of the available potential energy is released during this process, the zonal mean Hius Wi the fastest-growing normal mode. Contour intervals are 8 mb and 8 K.

flow, and develops a realistic surface structure with fronts, as shown in iy 11 k"
The occlusion process eventually chokes off the disturbance near the surface, il il
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Xl 2 days. The resultant zonal flow at the end of the cycle is shown in Fig. 13.12b,
e westerlies are too strong at the surface, but this can be rectified by including
ilnee friction (Simmons and Hoskins, 1980). 13

~ The mean Eliassen—Palm cross section for the cycle is shown in Fig. 13.12¢c.
he upward arrows represent a poleward heat flux, and this is large over the region
lurpe initial horizontal gradient. The equatorward pointing component of the
lix represents a poleward transfer of westerly momentum, corresponding to equator-
vird planctary-wave propagation [see (12.9.14) ]. The flux is particularly large be-
yeen 150 and 400 mb within the jet stream. This transfer is extremely important in

0 = —
2001 : § e T
i
400 + AAAAAAA
(c) (M8 | CEll Sl
Fig. 13.12. (continued) 600k BAgPOATN O
shows this flux at two stages in the life cycle, and the average valucs over 1 vy I ¥4 g0
The arrows give the direction of the flux and the contours its diverpence (¢ | 800+ sl Tl
give the potential vorticity flux. The initial (fastest-growing) disturbance, i i L (X
Fig. 13.13a, has a structure remarkably similar to that of the Charncy mode sl A AZ "1 an
in Section 13.4, but confined to a channel, so that the horizontal plantari i i 100 00 e °°
that shown in Fig. 13.5. The channel walls would be placed at about 1% il 4 “
match the structure shown in Fig. 13.13a, with half a sine wave spanning, e i : g
The arrows for a Charney mode are exactly vertical because it has no niomeii
flux, and their magnitude varies with height in a manner like that shown i (e 200r
at the right of the lower panel in Fig. 13.6. The pattern seen in Fig. | 1.1 bi (s ¢ -
close to this.
The structure at day 8 (Fig. 13.13b), when the disturbance has begun (o s QOO I
rapidly, is very different. The fluxes near the surface have become relatively <ol sk e
spread over a wider range of latitude. The baroclinic instability proces. (v i i
ceasing to operate (see above), and it appears that planetary waves have becr | ,ulmiz‘ r
upward and equatorward from the seat of the instability. The strongest (lisis s 800+
now in the jet stream within the 10 m s~ contour, the significance of (hi coniiml I
being that this is where the disturbance wave speed equals the flow specd Al el —

S0

places planetary waves tend to be absorbed and perhaps partially reflected (v S
tion 8.9), so that disturbance energy can be trapped in the jet stream by the “ciitiul
line.”” The arrows show the preferred direction of wave propagation (o1 (I s
turbances (which presumably could be found approximately by ray-tracing tely
niques), namely, equatorward and upward. This determines where (he wirven e :
absorbed, namely, on the equatorial flank of the jet stream just below the (rojjig
The energy lost from the disturbance as it propagates to regions where (he velon iy
relative to the wave is weaker is largely converted to mean flow kinetic cuiorpy A
calculation of the rates of transfer of disturbance energy to zonal kinctic cicipy W
fact shows that it begins to rise rapidly at the end of the sixth day, reaches a s i i
2 days later (the time corresponding to Fig. 13.13b), then falls to near zero duiing the

Iig. 13.13. Eliassen—Palm cross sections during the life cycle of a baroclinic disturbance. The vectors, shown
by arrows, give the Eliassen—Palm flux (see Section 12.9), which for linear waves is in the direction of the group
vilocity. Because of the coordinates used, the horizontal and vertical components of the vector are defined,
- wpectively, by —2nr?g™'u'v cos® @ and 2mirg ™' VT cos® ¢/(0©/3p), where ris the earth’s radius, ¢ the latitude,
# the acceleration due to gravity, and f the Coriolis parameter. [This is 2nr? cos® @/p,g times the Eliassen—Palm
flix as defined in (12.9.14).] With this choice, the “divergence,” defined as the sum of the ¢ derivative of the hori-

S Lo

sontal component and the p derivative of the vertical component, is equal to 21r3g ™'V’ cos® ¢ and therefore
it proportional to the quasi-geostrophic potential vorticity flux. The “divergence,” so defined, is shown by contours
leuntour interval 1.5 x 10'> m? for (a) and (b) and 4 x 10'®> m? for (c)]. The zero contour is drawn dark. (@) At day
soio for the life cycle, i.e., represents the fastest-growing mode; (b) at day 8; and (c) the average over the cycle,
IFiom Edmon et al. (1980, Fig. 3).]
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Fig. 13.13.

(continued)
the angular momentum budget of the earth, and is responsible for the midhi !

surface westerlies that are such an important feature of the circulation. F'urther &
cussion may be found in Section 13.10.

13.10 General Circulation of the Atmosphere

13.10.1 Introduction

An introductory discussion about the way in which the atmosphere responds i
the radiative driving from the sun was given at the beginning of the book, wid i
seems fitting to conclude with a further discussion in light of the concepts thiut e
been developed in the intervening chapters. In Chapter 1 it was shown thal i |nm!|' ‘
radiative equilibrium is unstable in the sense that air at the surface would be liphier
than that above the surface. Thus convection takes place over the depth of the fropu
sphere and radiative—convective equilibrium models can be constructed to simuliie i

a local balance between radiative and convective effects. One could imuagine au
atmosphere in which such a balance applied on average at each latitude indepen
dently. This would give much higher temperatures at the equator and much lower ones

at the poles, with the equator-to-pole temperature difference being perhaps four times
the 30 K that appears in the zonal average distribution shown in Fig. 7.9, Such o

temperature distribution could be in thermal-wind balance with the zonal flow, piving
a very much stronger jet stream than that observed.

Such a state is not observed, however, because of the action of baroclinic i
turbances as described in Section 13.9. These derive their energy from the potentinl
energy available in the meridional temperature gradient, and act to reduce (his
gradient as illustrated in Fig. 13.12. Radiation, on the other hand, tends to restore
the gradient, so the mean temperature field observed is largely due to a balunce
between the competing effects of the instability and of radiation.

To gain further insight into the zonal mean circulation, consider the equations

for [a], [0], and [w,], the temporally and zonally averaged velocity componenis

GConeral Circulation of the Atmosphere 583
sociated with the coordinates 4, ¢, z,, where 4 is longitude, ¢ is latitude, and z,
(he log-pressure coordinate introduced in Section 6.17, and for the time and
mully averaged temperature [T]. The square brackets denote a zonal mean (and
departure from this mean will be denoted by a superscript asterisk) and the
¢rbar denotes a mean with respect to time (the depature from the time mean will
denoted by a prime). The two components [v] and [w,] can be expressed [cf.
.15.10)] in terms of a stream function y associated with the meridional circulation.
fom the continuity equation (6.17.11) and the definition (6.17.29) of p,, , it follows
il the stream function can be defined by

pyltl cos ¢ = —ay/oz,, puW,]cosp = r ! oylp, (13.10.1)

ere r is the radius of the earth (the spherical polar form of the equations is dis-
unsed in Section 4.12). Similarly, the two components [i] and [T] can be expressed
terms of a single variable [®], the time and zonally averaged geopotential, because
¢ “'rapid” adjustment processes studied in earlier chapters will keep them in approx-
nite thermal-wind balance. Taking from (4.12.15), the meridional momentum
Juation in spherical polar coordinates, the terms that contribute to the geostrophic
lunce (7.6.7) (but also including a nonlinear term that can be significant in low
titudes), and appending the hydrostatic equation (6.17.20), there results

—r~ 1 0[®]/0p,
o[®]/oz, .

(2Q + r~ i sec )[i] sin @
H;'R[T]

(13.10.2)

I'or simplicity, the distinction between virtual temperature 7, and temperature 7'
will be dropped, i.e., moisture effects on buoyancy will be ignored.

Thus the zonal mean circulation can be described in terms of two variables i/
und [@]. The observed field of ¥ for the two extreme seasons is shown in Fig. 1.7,
Whereas the fields of [i] and [T] that are associated with [®] are shown in Fig. 7.9.
‘I'he equations that determine the distributions of [@] and ¢ are the remaining two
¢uations, namely, the averaged forms of the zonal momentum equation (4.12.14)
und of the temperature equation [see (4.4.6) and (6.17.13)]. These are coupled equa-
tions and can be solved only when taken together, but for discussion purposes it 1s
uselul to consider the two equations separately.

13.10.2 The Zonal Momentum and Angular Momentum Balances

A usefulform of the zonal momentum equations (4.12.14) is in terms of the
nngular momentum

M = (Qrcos ¢ + [u])r cos . (13.10.3)
| The averaged form of this equation can then be written as
r~[o] oM /[op + [W,] OM[0z, = r cos @(¥ sy + Viriction)s (13.10.4)
where
Veaay = — 17" s6c? @ d{(U0)aay €OS* @}/00 — py ' O{Py(UW)eaay}/0z,  (13.10.5)
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