Chapter Four

Equations
Satisfied
by a Moving Fluid

pperties of a Material Element

Vhen a fluid is in motion, its properties are functions both of spatial position

X=ix 1) 4.1.1)
‘ me (. In other words, for any property 7,
g Y= %0 20 = 9(x, 0). 4.1.2)

symbol =, meaning “is identical to,” is used here to relate different ways of
g the same expression, e.g., in scalar notation on one side and vector notation
e other side.) Now the concepts of the state of a fluid apply to a particular sample
“parcel”) that will move around when the fluid is in motion. Since nearby particles
uid may move apart in time, it is necessary to think of an infinitesimally small
nple that will retain its identity. This will be called a material element of fluid
tehelor, 1967, Chapter 2).
;'upposc now that this material element has position x at time ¢ given by

=R (4.1.3)
Wi the property y for this material element will vary with time according to
? = p(x(2), ¥(t), 2(1), t) = y(x(¢), ). (4.1.4)

Aullows that the rate of change of y for the material element is given by

dy oy dydx oOydy dydz 0y  dx
d"a T natyataaata " (4'1',5 ,)
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Now dx/dt is the rate of change of position of a material element, i.e., the fluid velocity
dx/dt = u = (u, v, w). (4.1.6)
Therefore, for a material element, dy/dt is equal to Dy/Dt, where Dy/Dt is defined by
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(4.1.7)
Note that the symbol D/Dt is defined by (4.1.7) and so has this meaning irrespective of
the context. The symbol d/dt, on the other hand, means the time derivative of a
quantity that is a function of time only. (Despite this fact, the symbol d/dt is used in
some textbooks to have the same meaning as that given to D/Dt here. This does not
often lead to confusion, but it is better to have different symbols for operators that
have different meanings.)

The usefulness of the operator D/Dt can be illustrated immediately by considering
the “concentration” equations for air and seawater. If molecular diffusion can be
ignored, the material element will always consist of the same particles and so the
mass of each constituent will remain constant. Since the salinity s is the mass of
dissolved salt per unit mass of fluid, s will also remain constant, and so

Ds/Dt = (4.1.8)

Similarly, for the atmosphere, the specific humidity ¢ is the mass of water vapor per
unit mass of air. Thus if no phase changes are taking place,

Dg/Dt = 0. (4.1.9)

A similar equation holds for any quantity that is conserved by material elements.

4.2 Mass Conservation Equation

As a material element moves, its mass remains constant but its volume may alter.
Therefore, its density may change, but in a way that is dependent on the field of motion.
The equation relating the rate of change of density to the field of motion is called the
mass conservation equation. There are two equivalent ways of writing this equation,
corresponding to different methods of derivation. The first method, which was used
by Euler (1755) in his paper on the equations of motion, considers the changes follow-
ing a material element. The second method considers the changes for a fixed volume
element. These two different approaches may be applied to the other equations of
motion as well, and both will be considered here.

The first method requires calculation of the fractional rate of change v, ' Dv,/Dt
of the specific volume v, of a material element. Here this will be calculated for an
infinitesimal Cartesian element as shown in Fig. 4.1 [for a more general discussion,
see Batchelor (1967, Sections 2.2 and 3.1)]. Consider an element that (Fig. 4.1a) is
initially rectangular, with sides 0x, dy, and oz. A short time later (Fig. 4.1b), the element
will be slightly distorted. To first order in dx, dy, and dz, the volume changes only
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Wi A1 A material volume element that is initially rectangular (a) with sides dx dy, 6z will a short time later
) displaced and slightly distorted. To first order in dx, dy, and 9z, the volume change is due only to changes
wths of the sides. Changes in angles between the sides do not alter the volume to this order.

ke of small changes in the lengths of the sides, slight rotations of the edges not
s significant to this order. Therefore the fractional rate of change of volume is
1 1 1D 1

D (o oy 89 = 5 (89 + 5 0 00 + 52 02).

(4.2.1)
()x()yéth ox Dt oz Dt

il the first term
E | 1
ox D 09 = ox Dt

A similarly for the other terms. It folIows that the fractional rate of change of specific
alume is equal to the divergence V- u of the velocity, i.e.,
by ou Ov 0w
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(x(B) — x(A4) = — (u(B) — u(A)) —>a—~ as’ gy =8

I i fluid mechanics problems it is usually more convenient to use density p as a
‘ilinble rather than its reciprocal v,. Then (4.2.2) takes the form

p ' Dp/Dt + V-u=0. 4.2.3)

I'he mass conservation equation (4.2.3) is fundamental in all problems involving

il motion. An alternative form of it, which will be derived from first principles,
i1 be obtained from (4.2.3) using (4.1.7), the definition of D/Dt, and (4.2.2), the
wlinition of the divergence operator. First, (4.2.3) gives

ap op op 8p u 0ov ow i
Frhe Mk G
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at+—(p)+

0
o (PU) AL 27 (pw) =

op/ot + V+(pu) = 0.

_ 1he second method of derivation considers the mass balance for a small volume
~ lement fixed in space (Fig. 4.2) and leads directly to the form (4.2.4). For such an

(4.2.4)
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Fig. 4.2. The mass balance for a fixed rectangular volume element with sides dx, dy, and dz. The mass fluxes
through the left- and right-hand faces are shown, where u is the x-component of velocity and p the density at
the center of the element. The errors in these expressions are small compared with dxdy dz, for small &x, dy, and
0z. For the pair of faces there is a net efflux of mass of d(pu)/dx-dx dy 5z. Similar expressions can be obtained for
the contributions to the mass balance from the other two pairs of faces.

element, mass is continually being carried, or “advected” through the sides by fluid
motion. (A property transferred bodily by the flow is said to be “advected” by the
flow. The term “advection” will be used in preference to “convection,” which, as in
Chapter 1, will be used to refer to the process that occurs when heavy fluid overlies
light fluid.) Take, for instance, the side of area dy 5z on the left-hand side of Fig. 4.2.
The mass crossing this area per unit time is approximately

(pu — % 0x 0(pu)/0x) oy oz,

where p, u are values at the center of the element. That crossing the opposite side is
approximately

(pu + % 0x d(pu)/ox) oy oz,

and so adding contributions from all six sides, one obtains for the net rate of increase
of mass the expression

—(0(pu)/ox + d(pv)/dy + d(pw)/dz) dx Oy dz.

In the limit as the volume shrinks to zero, the rate of increase of mass per unit volume
is therefore

—d(pw)/ox — d(pv)/dy — d(pw)/0z = —V +(pu).

Since by definition p is the mass per unit volume, the rate of increase of mass per unit
volume is dp/0t and is therefore equal to the above expression. Equation (4.2.4) follows.

(4.2.5)

4.3 Balances for a Scalar Quantity like Salinity

The ideas applied above to the mass balance of a fixed volume can also be applied
to other scalar quantities. The basic requirement is an estimate of the rate at which
the scalar quantity is transported across the sides of the volume element. In general
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cin be assigned to the transport of a scalar quantity, so one can define

ke i(FL, By B

u this direction and whose magnitude gives the rate of transport of the scalar
Iy fieross the unit area normal to the direction of F. F is called the flux per unit
My densit y of the scalar quantity. For example, the flux due to fluid motion is
ction of motion, and the amount crossing the unit area normal to the motion
fmes the velocity, where Q, is the amount of the scalar quantity contained in
It volume, In this case,

K= 0u.

¢ flux (or rate of transport) through an element of area dA, which is not at
igles to K, can be calculated by simple geometry. Figure 4.3 shows a cut
the element of area, the plane of the drawing being the one that contains
' und the normal to 8A4. 8S = 8A cos a is the projection of 4 on the plane
| to I and « is the angle between the planes of 64 and JS. The flux is equal to

F 0S = F oA coso = F cos a. 64,

I is the magnitude of F, and so the flux per unit area is F cos a, i.e., the com-

ol ¥ normal to the area concerned.

ot (he volume element depicted-in Fig. 4.2 the flux across the side of area dy oz

| 0z, where F, is the x-component of the flux. Following the same argument
s, the difference in flux between the two sides of area dy dz is

0F,/0x - 0x Oy 6z

the rute of loss of the scalar quantity per unit volume is

Nl = 0F /0x + OF /Oy + OF /éz.

I words, the equation satisfied by Q,, the quantity per unit volume, is
0Q,/0t + V-F = 0.

Ili¢ muss conservation equation (4.2.4) is the special case in which Q, = p and
-ml. The equation for salinity or humidity is another special case, in which
v In the mass of salt (or water vapor) per unit volume. The advective flux (i.c.,
o i due to fluid motion) is psu, so if there is no other means of transporting salt

(4.3.1)

& Sg Daly ]

k " 44 A diagram for calculating the flux across an area element dA when the flux density is F. The sketch
4 e ton through the area element in the plane that contains F and the normal to the area element. Lines
i thiraugh the boundary of A parallel to F, and S is the projection of 6A on a plane normal to F.
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(or water vapor), (4.3.1) becomes
d(ps)/ot + V+(psu) = 0. 4.3.2)

This equation could also be derived from (4.1.8) and (4.2.3), so it is merely an alterna-
tive way of expressing the salinity (or water vapor) balance.

However, there is another means of transporting salt (or water vapor), molecular
diffusion, which occurs when there are salinity (or humidity) gradients. This is a very
slow process and is therefore neglected in most problems considered in this book.
The diffusive flux is in the opposite direction to Vs, the gradient of s, i.e., it carries salt
from regions of high concentration to regions of low concentration, and is equal to
(Batchelor, 1967, Section 1.6)

_pKD VS:

where kp, the diffusivity of salt in water, is a coefficient that determines the rate of
diffusion and can depend on the state of the fluid, i.e., on the temperature, pressure,
and salinity. Values of kp, for common substances can be found in Weast (1971-1972),
e.g., the value for salt in water is 1.5 x 107° m? s~ ! at 25°C, and that for water vapor
inairis 2.4 x 107> m?s™" at 8°C [see also List (1951, Table 1 13)]. When the diffusive
flux is included,

F = psu — pky Vs (4.3.3)

and (4.3.1) becomes
0(ps)/0t + V-(psu — pry Vs) = 0. (4.34)

[Note: Salt diffusion can also be caused by temperature and pressure gradients
(Fofonoff, 1962), but the effects are minor on the very small scales for which diffusion
is important. |

4.3.1 Finite-Difference Formulation for Numerical Models

The concepts of fluxes across the sides of volume elements are also used in numeri-
cal models of the atmosphere and ocean [see, e.g., Haltiner (1971), Bryan (1969),
Mesinger and Arakawa (1976)]. Such models may be divided into a set of volume
clements like that shown in Fig. 4.2, except that now the dimensions are finite. Each
volume element is identified by integers (i, j, k) that determine its position in a grid
(see Fig. 4.4) and the value Q,(i, j, k; t) denotes the average value of Q, over the volume
element (i, j, k) at time ¢. The change in Q, in time 8¢ can be calculated from the sum
of the fluxes over the sides of the volume element, giving as the finite-difference
analog of (4.3.1),

ot ox
dy
S il i S
+ Fz(l’.lsk s 29t) 5 Fz(l,j,k 2% t)= 0’ (435)
4
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Py 44, A typical arrangement of volume elements (of finite size) in a numerical model. Volume elements,
L{uantities associated with them, are identified by integers as shown. To identify area elements, one of the
i s replaced by a value halfway between the integer values associated with the two volume elements that
Bparates,

ore dx, dy, and 8z are the sides of the volume element and F (i + 3, j, k; ) is the
tige x-component of the flux per unit area across face (i + 3, j, k) during the time
wivil from ¢ to ¢ + ot. Face (i + 1, j, k) is the one common to volume elements
k) and (i + 1, j, k). it _
- With the interpretation given above, (4.3.5) is exact. The approximation comes in
ot (he components of F are calculated in terms of other quantities. For instance,
e miass conservation equation, where Q, = p, F. (i + 3., k; ©) is the average value
.,lpu neross the face (i + %, j, k). However, changes in pu are calculated from the
mentum equations, where pu is interpreted as the average value of the X-compo n.cnl
Mmotmentum per unit volume over a volume element. Some form of approx1mul'|on
Jeiuired to relate the average value over a face to average values over appropriate
wime elements. This approximation must have the property that if the size of the
uime elements tends toward zero, the approximation becomes more and more
utite, This should be true of all finite-difference schemes, whether or not the
Winilas are readily interpreted in the way described above. Unfortunately, it is'nul
Wiyn possible to choose elements small enough for the ﬁnite-differenc-e solutions
he close to the exact solutions. In that case, the numerical model is best interpreted
i system distinet from the exact one, but having, it is hoped, closely analogous
havior,

0 Changes Following a Material Element

~ Olten it s desirable to modify an equation like (4.3.4) to gives changes l’olluwiqg i
ierinl element rather than changes at a fixed position. This can be done by using,
4 iy variable y (usually a quantity per unit mass), an expression for p Dy/Dt that
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is modified from that given by (4.1.7) by adding y times the quantity equated to zero
in (4.2.4). Thus

p Dy/Dt = p 0y/ot + pu-Vy + y dp/dt + y V +(pu)
e
p Dy/Dt = 0(py)/ot + V-(pyn). (4.3.6)

This can be regarded as an identity because the continuity equation (4.2.4) is exact.
Applying this to (4.3.4), for example, gives

p Ds/Dt =V -(pip Vs). 4.3.7)

The coeflicient pxy, is in general a function of the state of the fluid, but the variations
are sufficiently small in most cases to take pkp as a constant. Then (4.3.7) becomes

DS/DUE w6, V25, (4.3.8)
where
i 0%y 0%
Vipg = ViVl ol e 1 0, 4.3.9
Y V) 0x? T oy? A 07> ( )

4.4 The Internal Energy (or Heat) Equation

This equation has a simple form for fluid elements that do not exchange heat with
their surroundings and that retain a fixed composition. In such cases, the motion is

said to be isentropic, i.e., the entropy of a material element is fixed, and the state of

such an element does not change during the motion. Therefore the relationships
among state variables given in Chapter 3 apply to the element at all times, and the
form of equation depends on which variables are used to describe the state of the
fluid. In terms of specific entropy n or potential temperature 0,

Dy/Dt = ¢,(p,, )0~ DO/Dt = 0 (4.4.1)

by (3.7.6), where ¢, is the specific heat and p, is the reference pressure. Alternative
forms follow from (3.2.1), (3.2.6), and (3.6.1), namely,

Dn DE Do, /i ¥
S *

oaT Dp
Sl ke gl el &
Y b Dt

Bl fo RAY, §

i (4.4.2)

Dy e
where T is temperature, E internal energy per unit mass, v, specific volume, and o
the thermal expansion coefficient. All the above equations can be expressed as bal-
ances for a fixed volume element by using the general relationship (4.3.6), and diagrams
like Fig. 4.2 can be drawn to visualize the balances that occur. For instance, the equa-
tion in terms of the internal energy E may be written

p DE/Dt = 0(pE)/ot + V+(pEu) = —pv; ! Dv,/Dt = —p V-u, (4.4.3)

where (4.2.2) has been used to give Duv,/Dt. The physical interpretation of (4.4.3) is
that the internal energy in a fixed volume can change by advection across the sides
(the term pEu) or by compression or expansion of the fluid in the volume (the right-

0 Internal Energy (or Heat) Equation 7

| wide is equal to the rate per unit volume at which work is done on the flui
Wit iy compressed).

hen the motion is not isentropic, additional terms must be added to (4.4.3) t
wide the additional effects. A thorough discussion is given by Batchelor (196°
un 3.4). The additional terms are of three types:

(l) Radiative exchange with the surroundings. This requires a knowledge ¢
Judiative flux density F™9 of energy that can be calculated if the distribution an:
l ol ubsorbing, emitting, reflecting, and scattering agents are known.

(l1) Heat exchange by molecular conduction. The flux of heat by this mean
wportional to the temperature gradient, and is given by

~k VT,

k is called the thermal conductivity. [ Values may be found in Weast (1971
), e, 0.6 Wm ™! K ™! for water and 0.023 W m™"' K™ for air. |

(1) Heating due to change of phase (latent heat release), to chemical reactior
10 viscous dissipation. The effect of these processes can be represented by

W (. which gives the rate of heating per unit volume. The modified form ¢
) iy then

' (pE)/ot + V+(pEu + F — kVT) = Qy — pV-u, (4.4.4
+ (he quantity :

F = pEu+ F?® — kVT (4.4.
Il uppears on the left-hand side may be called the heat flux density.

Alternative forms of this equation can be obtained by using the relations amon
e variables [summarized in (4.4.1) and (4.4.2)] and the expression (4.3.6) relatin
il derivatives to derivatives following the motion. With temperature as stal
lible, the equation becomes  x

9 pe, DT/Dt — aﬂbp/Dt = Valk VT - &% 4 Q. (4.4.0
lornntively, in terms of potential temperature
pTe,(p,, )0 DO/Dt = V+(k VT — F™) + Q4. (4.4,

ale that if & is a constant, it may be taken outside the bracket in the above expre:
Wi, piving rise to the combination

K = k/pcp, (4.4.!

hete i iy called the thermal diffusivity. Typical values are 1.4 x 1077 m? s ! fc
tornnd 2 % 10 °m? s ! for air. These values are so small that thermal conductio
ol ol direct importance for the scales mainly considered in this book, and hence |
Ily neglected. The radiative term may be quite important in the atmosphere, bt
Ul i the ocean except for the top 30 m or so. The internal heating term Qy is rarcl
portnnt except in those parts of the atmosphere where latent heat release is takin
0 due to condensation. Assuming the latent heat rglease to be pseudoadiabati
Nection 3.8), Qy, is nonzero only when (a) ¢ has attained the saturation value ¢
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and (b) the rates of change of pressure and temperature for a material particle are such
that the saturation humidity g,,(p, T) is falling. The latter condition is usually equiva-
lent to requiring upward motion (w > 0). Thus when the internal heating term Qy, is
due to latent heat released by a pseudoadiabatic process,

0 if g <. ot DDt <0,

= ip) 449
On Lol o e otherwise. ( )
1—gq, Dt

An alternative way to include condensational heating when it occurs is to put Qy = 0
in (4.4.7) but replace 6 by the equivalent potential temperature 6. This follows from
the definition of @, given in Section 3.8. If ice forms instead of water g, should be
replaced by g;, the saturation value with respect to ice. Note that in practice ¢, is
small, so that the factor (1 — ¢,,) in (4.4.9) can be approximated by unity. Then (4.4.9)
can be replaced by

Oy ~ —L,p Dq/Dt, (4.4.10)

assuming that diffusion of water vapor can be ignored; for if the conditions of the
first line of the right-hand side are satisfied, (4.1.9) makes the right-hand side of
(4.4.10) zero as required. Otherwise ¢ = ¢,,, s0 (4.4.10) is again consistent with (4.4.9).

4.5 The Equation of Motion

The equation of motion is the expression of Newton’s second law of motion for a
material volume element, namely, that the rate of change of momentum of the cle-
ment is equal to the net force acting on the element. For the scales considered in this
book, the main forces are those considered in Section 3.5, i.e., the pressure force and
the gravitational force, which is the gradient of a potential ®,. (This is not the same
as the geopotential ® introduced in Section 3.5 because of rotation effects, to be
discussed in Section 4.5.1.) The resultant of these two forces per unit mass is, from
Section 3.5,

A Wiy N

and so must be equal to the rate Du;/Dt of change of momentum per unit mass of a
material volume element (Batchelor, 1967, Section 3.2). In other words, the equation is

Du/Dt = —p~ ' Vp — VO,. 4.5.1)

The subscript f is used to denote the fact that the velocity u, is measured relative to a
fixed frame. In geophysics, position x, and velocity u, are measured relative to a
rotating frame, the earth, so an expression for Dug/Dt in terms of these quantities is
required. The derivation of such an expression is purely a matter of geometry and
calculus.
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‘. lon Relative to a Rotating Frame

(he subscript { refer to quantities measured relative to the fixed frame and
ol 1 refer to measurements relative to the rotating frame. Let the angular
s ol the rotating frame be € (i.e., Q is the vector along the axis of rotation with
e equal to the magnitude of the angular velocity about this axis, where the
il totation is clockwise when looking down the axis in the direction of €). Then
L with fixed position x, in the rotating frame has (Fig. 4.5) velocity £ x X,.
{he point x, is moving relative to the rotating frame, its velocity relative to the
[bime is therefore given by

Axe/dt = dx Jdii+ XXy, 4.5.2)

wiition of this operation gives the acceleration

2-
dx'—d<dx'+ﬂxx,)—i—ﬂx(dxr—i-ﬂxx,),

dt? ~ dt\ dt dt
Px, & d
‘d:;f - —(% 420 x ;t' + O x (2 x x,). (4.5.3)

i addition to the acceleration measured relative to the rotating frame, there
Wi other contributions to the acceleration relative to the fixed frame. The one
1y the second term on the right-hand side of (4.5.3) is called the Coriolis acceler-
ulter Coriolis (1835) who discussed it, although the term appeared earlier in
Iilul equations of Laplace (1778, 1779)]. The last term can be written as the
it of o scalar

O e (O %X = V(%szf),
0 (.5.3) may be written
dug/dt = du fdt + 29 x u, + V(3Q2x). (4.5.4)

"4

QX x,

A8 A point P with fixed position x, in a frame of reference rotating with angular velocity £ about a
ot O moves in the circalar path shown with velocity X x,.
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When the point x, is the position of a material volume clement, the derivative d/di
is the same as D/Dt (see Section 4.1), so (4.5.1) becomes

Du/Dt +2Q x u= —p~' Vp — VO, (4.5.5)

where the subscript r will be implied rather than written explicitly from this point
onward. @ is the geopotential defined by

= D, — 1022, (4.5.6)

Le., is the sum of the gravitational potential @, and centrifugal potential —1Q%x? as
defined in Section 3.5. Note also that (4.5.5) is not altered by a change in origin of the
axes, so it is not necessary to have the origin on the axis of rotation when using (4.5.5).

4.5.2 Momentum Balance for a Fixed Volume Element

Multiplication of (4.5.5) by p and use of the identity (4.3.6) for each component in
turn give an alternative form of the equation of motion, namely,

d(pu)/dt + V+(puu) + 2Q,0w — 2Q,pv = —0p/ox, (4.5.7)
d(pv)/ot + V+(pou) + 2Q,pu — 2Q _pw = —0dp/dy, (4.5.8)
d(pw)/ot 4+ V +(pwu) + 2Q _pv — 2Q,pu = —dp/dz — py. (4.5.9)

The axes (at the element concerned) have been chosen so that the z axis points verti-
cally upward, i.e., in the direction of

g = Vo, (4.5.10)

where —g is the acceleration due to gravity of magnitude ¢ [cf. (3.5.2)]. The angular
velocity € has been written in terms of its components (Q,, Q,, Q.). These equations
can be interpreted in terms of the momentum balance (per unit volume) for a fixed
volume element (such as that shown in F ig. 4.2). The rate of change of momentum
(first term) is determined by the flux of momentum across the sides of the element
(second term), the Coriolis force acting on the element (last two terms on the left-hand
side), the net force resulting from the pressure on the sides (first term on the right-hand
side) and the gravitational force [last term in (4.59)].

4.5.3 Hfects of Viscosity

Although viscosity is not of direct importance for the scales of motion considered
in this book, it is of indirect importance as a means of removing mechanical energy
from the system. Viscosity gives rise to stresses on the surface of a material volume
element that may be related to the rate of strain. A detailed discussion is given by
Batchelor (1967, Section 3.3). It turns out that if, on the scales for which viscosity is
important, viscosity changes and compressibility effects can be ignored, then the

Ol
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momentum is the same as that of a diffusion process (see Section 4.3) and
iken into account by adding diffusive fluxes to (4.5.7) (4.5.9), i.c.,

A pu) /ot + V- (puu — p Vu) + 2Q,pw — 2Q_pv = —dp/ox, (4.5.11)

0(po)/ot + V+(pvu — u Vo) + 2Q_pu — 2Q_pw = —dp/dy, (4.5.12)
pw)/dt + V-(pwa — pu Vw) + 2Q _pv — 2Q pu = —0p/0z — pg, (4.5.13)

L in called the viscosity of the fluid. [ Values of p are tabulated by Weast (1971 -
L0, 10 kgm ' s™" for waterand 1.7 x 10 5kgm~'s~" for air.| The value
Hepends on the state of the fluid, but the variations are sufficiently slow in most
o take ft as a constant. Then the modified form of (4.5.5) is

Du/Dt + 2@ xu= —p ' Vp — g + v V2, (4.5.14)

W) (4.5.15)

illed the kinematic viscosity [which has a value of 107° m? s™! for water and
10" m? s~ ! for air at 1000 mbar—see List (1951, Table 113)], and V?u is the
01 with components

Viu = (VZu, Vv, VZw). (4.5.16)

Perturbation Pressure and Perturbation Density

o large-scale motions in the ocean and atmosphere, the dominant terms by
i the equation of motion (4.5.14) are the gravitational acceleration g and the
iticnl component of the pressure gradient, which approximately balances it. In
ther words, none of the other acceleration terms in (4.5.14) approaches the gravita-

il acceleration. In the atmosphere, for instance, winds are of order 10 m 8.4, 80

0 Coriolis acceleration is about 1073 m s ™2, i.e., less than the gravitational acceler-
lon by a factor of 10,000!

Hence it is desirable to define a perturbation pressure and a perturbation density

h departures from an equilibrium solution

Pp=p0(2), p=po2), (4.5.17)

the type considered in Section 3.5, i.e., which satisfied the hydrostatic equation

dpy/dz = —gp,. (4.5.18)

he perturbation pressure p’ and perturbation density p’ are defined by

P=po(2) +p, p=po2)+p, (4.5.19)

i which case (4.5.14) becomes

p(Du/Dt + 2Q x w) = — Vp' — p'g + V-(u Vu). (4.5.20)

In the special case of a homogeneous fluid, i.e., one of uniform density, p'is zero.
1erwise the term — p’g represents a force per unit volume called the buoyancy force
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since an element with negative p’ is relatively buoyant and therefore experiences an
upward force due to the action of gravity.

4.6 Mechanical Energy Equation

The set of equations governing the behavior of the ocean and atmosphere has
now been derived. They are summarized in Section 4.10 and consist of (a) the mass
conservation equation, (b) the equation of motion, (c) the internal energy or heat
equation, (d) the equation of state, and (e) the equations for the concentrations of
constituents such as salt and water vapor. From this set, other useful equations can
be derived, using elementary calculus. In this section, the equation for mechanical or
kinetic energy is considered.

The kinetic energy per unit mass is defined as u®>* An equation for the rate of
change of this quantity following a material volume element is obtained by taking the
scalar product of (4.5.20) with u, which gives

p D(zu?)/Dt = —wgp' + V-(—p'u + u V(3u?)) — pe + p' V-u,

(e o )

is always positive and is called the dissipation rate (see below). Another version of
(4.6.1) has the primes removed and is obtained from (4.5.14) by the same procedure.
Note that the scalar product of u with the Coriolis acceleration in (4.5.20) is identically
zero, so there is no Coriolis term in (4.6.1).

Equation (4.6.1) can be converted to one for a fixed volume element by applying
(4.3.6), which gives

d(zpu*)/ot + V-F' = —wgp' — pe + p' V-u,

(4.6.1)

where

(4.6.2)

(4.6.3)
where

F' =@ + zpu’)u — p V(3u?) (4.6.4)

will be called the energy flux density vector because it gives a rate of flow of energy
per unit area. It is not uniquely defined, however. For instance, any vector with zero
divergence could be added to F’ without altering (4.6.3). As before, there is an alterna-
tive version with the primes removed, i.e., with pressure in place of perturbation
pressure and density in place of perturbation density. In this case F is used in place
of F" in (4.6.3) and (4.6.4).

In the special case of a fluid of uniform density, p" = 0 and V-u = 0 by (4.2.3),
s0 (4.6.3) simplifies to

o pu)/ot + V-F = — pe. (4.6.5)

* In order to simplify notation, u? has been written in place of u-u throughout.
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y jenl interpretation of this equation is illustrated in Fig. ft.(w (_cf. Fig. 42),
of the fluid in the volume element shown is p dx dy 6z, so its kinetic energy
dy 6z by definition. This can change (a) by energy transfer across the sides
ent or (b) by energy loss within the element. The rate of transfer of encrgy
W flux 1 is shown for two of the sides in the figure, F| being the component ol
o direction of the x axis. Adding the contributions from all sides gives a nel
erpy of

0 0
- F.+—F
(nx # 7T 3y
uppropriate order of approximation. This gives rise to the term V -‘F’ in (4.6.5
\ling by the volume dx oy 6z and taking the limit as the volume shrinks to zero
(4.64), the individual contributions to the rate F dy dz of energy transfel
i luce of arca dy oz are

il —a—F;)éx(Syéz = —V-:F 0x0y0z
piioz

p'“ oy oz,

| pntu oy oz,

= i 0(3u?)/0x oy Oz.

4l contribution is the product of p’ dy 0z, the normal force on thc.t face ol.' the
il due to the pressure perturbation p’, and u, the rate of movement in the dn:cc
(he force. It is therefore the rate of working by the pressure force on that side
seond contribution is the rate of advection of kinetic energy across'thc facc
It contribution can be interpreted as the rate of diffusion of kinetic encrg
e fuce due to viscous processes.

| 8 g/
[F.-;;;(F‘)Sx] By &z oAl V] -

8z [Fi+s&(F0 8x] 8y 8z

By

W

Rate of loss by viscous
dissipation = pe Sx By dz

A6 1he mechanical energy balance for a fixed rectangular volume element in a homogcmmus fluic
41 Huses across one pair of faces are shown, where F is the x-component of the mechanical energy f
I {hese contribute a net rate of loss of energy per unit volume of 0F./dx and the two other pairs of fac
h 01 /0y and 0F,/0z, where Fy and F; are the y- and z-components of I The balarfc‘e of energy for |
Cannot be described completely in terms of fluxes across the sides. There is an additional logs of ener
Vulime of pe, where ¢ is a positive quantity called the dissipation rate.
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Returning to (4.6.5), the remaining contribution to the rate of change of kinetic
energy of the element is

— p€ 0x 0y 0z,

which is interpreted as the rate of loss of energy within the element due to viscous
processes. Thus ¢ is called the rate of dissipation of mechanical energy per unit mass,
or simply the dissipation rate.

The same ideas can be applied to a large volume of fluid that can be subdivided

mentally into small volume elements like that shown in Fig. 4.6. The transfers of

energy across the faces of the elements merely represent a flow of energy from onc
part of the fluid to another, and therefore make no contribution to the energy balance
of the large volume except for the contributions from the outer surface of that volume.
On the other hand, the dissipation in each volume element contributes to the total
energy loss in the large volume. In other words, integration of (4.6.5) over a volume
gives an equation for the rate of change of

il
K= Jjjipuz dx dy dz, (4.6.6)
the kinetic energy of the volume of fluid, the equation being
dK/dt + ffF,’, das = —Jjjpe dx dy dz, (4.6.7)

where F, denotes the outward normal component of the flux across the surface of

the volume and dS an element of area, so that the integral is the total rate of transfer
of energy across the surface. The integral on the right-hand side is over the volume
concerned. For instance, the volume concerned could be that part of an ocean below
some fixed level surface. Then (4.6.7) says that changes in kinetic energy result from
transfer across this surface, transfer across the bottom, and dissipation within.

It is also possible to derive an equation for a large material volume of fluid, i.c.,
a volume with mobile boundaries but always consisting of the same fluid particles.
An example is the ocean, which is bounded above not by a fixed surface but by its
(constantly moving) free surface. As before, this volume could be subdivided into
material volume elements and the balances for each element added. This is equivalent
to integrating (4.6.1) over the material volume, which for a homogeneous fluid again
leads to (4.6.7), with the integrations now being over the material volume and its
surface. The advective contribution to the transfer across the surface is zero since by
definition no advection takes place across the surface of a material volume.

In the case of a homogeneous ocean or lake, energy is transferred across the free
surface from the atmosphere through the working of the pressure force and through
“diffusion” of energy, which represents the action of viscous stresses. Since the
normal velocity is zero at the bottom, the pressure force cannot do work there, so
the only means of losing energy involve viscosity, namely, viscous stress acting on
_ the bottom and viscous dissipation within the ocean or lake. Since the kinetic energy
“of such bodies of water does not continually increase, the energy losses through
viscous effects must balance the energy inputs over a long period of time. At first

%ﬂ'fl)' Leuation “

seems to contradict the statement that viscous effects are not important o
I senles such as those characteristic of the energy inputs. The implication is
iy I8 transferred from one scale to another [ which is possible because of the
Wl terms in (4.5.14)] and significant dissipation takes place only at scales
velocity gradients are large enough for (4.6.2) to give values such that dissipa-
tlances inputs, These scales are very small in practice, and can be estimated il
siined that the scale depends only on € and v. The only combination of these
wiers with the dimensions of length is

e

denl values for the ocean and atmosphere are of the order of a millimeter.
iscussion of dissipation processes in the ocean, see Woods (1982).] This fact
Wi problem for numerical models that cannot hope to cope with scales ranging
e wize of the earth to the dissipation scale (ten factors of ten!). A common
Jue is to make the viscosity artificially large (in which case it is called an edd)
14) w0 that sufficient energy dissipation can occur on scales resolvable by the
il scheme. Since the vertical resolution is usually much better than the
itil resolution, smaller values can be used for vertical “diffusion” of momentum
Wiy than are used for horizontal diffusion. [ Vertical eddy viscosities may be
10" times the molecular value, i.e., typical of oils rather than air or water.
il eddy viscosities used are often 10'° or even 10'! times molecular, i.c..
1 very viscous substances like glucose (Weast, 1971-1972).] There is, however,
funtee that this procedure will remove energy in a realistic way, and a major
Wi ol numerical modeling is to find schemes that will remove energy realistically.
Wipy principles are such that the loss of mechanical energy by dissipation
WL 0 rate of conversion of energy into a different form, namely, heat. Thus
i contribution pe to the term in (4.4.4) that represents a rate of gain of internal
per unit volume. This contribution is, however, so tiny that it is nearly always
1 The terms —wgp’ and p’ V - u that appear in (4.6.3) also represent rates of
dialons of energy from one form to another. The former term is the product of

Wwitd buoyancy force per unit volume —gp’ and the rate w of movement in
‘Aon of that force, and therefore represents the rate of working per unit
hy the buoyancy force. The latter term is the product of a pressure p’ and
wetional rate of change of volume [see (4.2.2)] of a material element, and there-
Spienents the rate of release of energy per unit volume of the fluid by expansion.
101y conversions associated with these terms are dealt with in the next section.,

al Lnergy Equation

s lar, equations have been derived for energy in two forms: internal energy
{44.4)] and kinetic energy [ Eq. (4.6.3)]. If the version of the latter equation with
U0 In used and the two equations are added, the term p’ V -u disappears because
Wenenity i rate of conversion of energy from the internal form to the kinetic form,
We In true of the term pe (which cancels a contribution to Qy). Another term
LOUACNILEN p‘: ;”L(

R AmA ~wpa.
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that requires interpretation as a rate of conversion of energy from one form to
another is the buoyancy term —wgp' in (4.6.3). This represents work done by graviti-
tional forces when fluid crosses geopotential surfaces, and the appropriate form of
energy per unit mass is the geopotential ® defined by (4.5.6). With this interpretation,
® is called the potential energy per unit mass associated with gravitational and
centrifugal forces. ® depends only on z, and so by definition (4.1.7) its rate of change,
following a material element, is

D®/Dt =u-V® =u-g = wy 4.7.1)

by (4.5.10). This can be converted into a rate of change for a fixed volume element by
using the standard formula (4.3.6), giving

o(p®)/ot + V- (pdu) = wgp.

The total energy equation is now obtained by adding (4.7.2), the internal energy
equation (4.4.4), and the version of the kinetic energy equation (4.6.3) without primes,
The result is

(4.7.2)

A(p(E + @ + Ju?)/ot + V-F*' = Qy, (4.7.3)
where F! is the total energy flux vector given by
F = pu(E + @ + Lu?) + pu + F™ — k VT — p VGU?). 4.7.4)

The terms contributing to F'' in order of appearance are the advective flux, the rate
of working by pressure forces per unit area, the radiative flux, the flux by diffusion of
heat, and the flux by diffusion of kinetic energy. Equation (4.7.3) gives the changes fo1
a fixed volume element. Using (4.3.6), the equation for changes of a material volume
element is

p D(E + ® + 2u?)/Dt + V-(pu + F* — kVT — pV@u) = Qy. (475

As with the kinetic energy equation, (4.7.3) can be interpreted in terms of balances
for a fixed volume element like those illustrated in Fig. 4.6. Also, by adding contribu
tions of many such elements, an equation for the rate of change of total energy of
large volume can be obtained. The internal energy I of the volume is defined by

= jjjpde dy dz, (4.7.6)
and the potential energy P by
P=JJJ p@dxdydzzjjjpgzdx dy dz 4.7.7)
by (3.5.2). The total energy [see (4.6.6)] is thus
K Bty
whose rate of change is given by
d(K + I + P)/dt + ij:,"‘ 45 = jjj Qy dx dy dz. (4.7.8)
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w the outward component of the flux across the surface of the volume and
ent of area, so that the integral is the total rate of transfer of energy across
e As found in the previous section, the equation applies both to a fixed
Weross which fluid may flow, or to a material volume, which may have a
fuce but always consists of the same particles.
' whove discussion of energy is satisfactory and consistent when no phase
(01 chemical changes, etc.) occur, for then Q,, is zero. If Qy; is nonzero, it must
; i conversion of energy from one form to another. For instance, the effect
lient release by means of the pseudoadiabatic process can be included by
| lll.iun (4.4.10) for Qy;. Substituting in (4.7.8) and using the standard relation
0 opive

d(K + I + P + L)/dt + Jj(F,‘,"‘ + pgLu,)dS = 0, (4.7.9)
L= fjj L,pq dx dy dz (4.7.10)

nergy that could be released by moving each parcel adiabatically upward to
Wiintion level and then pseudoadiabatically upward until all moisture is
intes of the terms K, I, P, and L for the atmosphere have been made by Oort
Ul euch month of the year, and fluxes of energy across circles of latitude have
soi made. The largest contributions to the mean total energy are I (73%,),
hy (4.7.6) and (3.2.7), and P (25%), defined by (4.7.7). However, with these
I0ns, | P represents the energy that could be obtained by lowering the
titure of the atmosphere to absolute zero and bringing the mass of the atmos-
duwn to sea level. Since little of this energy could be obtained by a process that
Jendily occur, Lorenz (1955) has introduced the concept of available potential
s the energy that could be obtained by some well-defined process. Usually
Hiess considered is an adiabatic redistribution of mass without phase changes
Wtleally stable state of rest (see Sections 3.5 and 3.6). With this definition, the
e potential energy of the atmosphere has been estimated (Price, 1975) to be
24 % 10°7 ), giving a mean over the whole earth of about 4.5 x 10° J m™ 2,
iy be compared with the mean available potential energy in a typical mid-
ueean gyre, estimated by Gill et al. (1974) to be of the order of 10° J m ™2,
iitnntive definition for the atmosphere [a discussion of the concept of available
{ul energy is given by Dutton and Johnson (1967)] would also include the energy
vould be released by condensing all the moisture. This amounts to 64 x 10° J
Peixoto et al., 1981).
1 numerical models of the atmosphere and ocean, finite-difference approxi-
Win ol the balances of mass, momentum, internal energy, etc., for finite volume
Wl ire used, as discussed in Section 4.3. It does not follow automatically that a
difference equivalent of the total energy equation will exist. All that can be
thit the total energy equation will be satisfied, correct to a certain order, as
ol the element shrinks to zero. However, it is always possible to write the
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finite-difference equations in such a way that a finite-difference form of the total
energy equation is exactly satisfied. In other words, there are no energy sources or
sinks within the body of fluid, only conversions of energy from one form to another,
Such formulations have been found to eliminate problems that may be encountered
otherwise, namely, an artificial increase or decrease of energy over a long period of
time (Arakawa, 1966).

4.8 Bernoulli’s Equation

A variant of (4.7.5) can be deduced from the identity

Dp
V- =u'V Veu= "2
(pw)=u-Vp +pV-u Dt

which follows from the definition (4.1.7) and from the continuity equation (4.2.3).
The result may also be written
<£> s
P

and so (4.7.5) becomes

p D(E + p/p + ® + 1u?)/Dt + V- (F™* — k VT — u V(3u?)) = Qy + dp/ot. (4.8.2)
For applications not connected with acoustic waves, the term dp/dt is often relatively
small, changes in pressure due to a change in level of a fluid element being large
compared with changes at a fixed point. Also, viscous and diffusive effects can be

ignored except on the smallest scales. Thus in situations for which radiative heating
and latent heat release can also be ignored, Eq. (4.8.2) becomes

D(E + p/p + ® + 3u?)/Dt = 0.

This is known as Bernoulli’s equation since both Daniel and John Bernoulli con-
tributed to special forms of it. [ A historical discussion is given by Truesdell (1954b). |
A discussion of circumstances in which it is valid may be found in Batchelor (1967,
Section 3.5).

The quantity E + p/p, which appears in (4.8.3), often occurs in thermodynamics
and is called the enthalpy per unit mass. For a perfect gas, it follows from (3.2.10)
and (3.2.12) that

D

Ve(pw) = p o

op

— 4.8.1
ot’ ( ’

(4.8.3)

E+p/p=c,T, (4.8.4)

and this approximation is used for applications to the atmosphere. Corrections (0
(4.8.4) for moist air can be found in Table 85 of the Smithsonian Meteorological
Tables (List, 1951). In applications to the atmosphere, the quantity £ + p/p + ® 1s
sometimes called the dry static energy per unit mass. An approximate expression fo1
this quantity for air is

E+plp+®=~c,T + gz (4.8.5)

Hiocts of Diftusion LR

noulli equation (4.8.3) can be modified to include effects of latent heat
i peendoadiabatic process by using the approximation for Qy, in (4.8.2)
ol version is

D(E + p/p + ® + L,q + $u?)/Dt = 0. (4.8.6

£ T oo+ O+ Ljgieg Tz Lyg (4.8.7

dAppears in the equation, is sometimes called the moist static energy pei

sematic Effects of Diffusion

tiles of diffusion of salt in water (kp = 1.5 x 107° m* s™') and of water
LU (g, = 2.4 x 107 ° m? s 1) are so small that diffusion plays no direct role
Wi senle motions. However, diffusion is systematic in that it always acts (o
widients. An equation that shows this effect can be derived from (4.3.8) in a
Wity to that by which the mechanical energy equation (4.6.5) was derived from
Hientum equations. Multiplication of (4.3.8) by s gives

p DG?)/Dt = V-(picp V(35%) — prep(Vs), (4.9.1
the identity (4.3.6), this can be written
A(3ps?) /ot + V+-(Gps*u — prp V(3s?) = — prp(Vs)2. (4.9.2)

2 '
Sriitive version has s in (4.9.1) and (4.9.2) replaced by the salinity perturbation
. Y

Sli— 5080

(4.9.3)

il be any constant since a constant value satisfies (4.3.8), (4.9.1), and (4.9.2)
villy, but a natural choice would be the mean salinity for the volume of fluid
Lunnidered (e.g., the value for the ocean is about 0.0348 or 34.8%,; see Fig. 3.2).
_ ion (4.9.2) can be given a physical interpretation similar to that illustrated
A6 lor the energy equation. The squared salinity in a small volume is changed
ly by fluxes across the surface of the volume, but also there is a systematic loss
nted by the negative definite term on the right-hand side of (4.9.2).
4.9.2), or the equivalent version with primes, is integrated over the whole of
i1, the same apparent contradiction is obtained as for that with the mechanical
diition. There is an input across the ocean surface at large scale [ because
W0 salinity tends to be high where there is a salt flux into the ocean—see, ¢.g.,
WLI961, Volume 1, Fig. 68)], but losses by diffusion are insignificant at the large
. Au with energy, transfers from one scale to another take place because of the
e advection terms in (4.3.8), the significant contributions to the right-hand
ul (4.9.2) coming at very small scales. On this basis, Stern (1968) estimated the
ﬂ:n-uquurc salinity gradient in the upper ocean to be about 1000 times the
virlue,
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