Chapter Six

Adjustment under Gravity
of a Density-Stratified Fluid

provided an introduction to the study of adjustment to equilibrium
nal forces in the absence of rotation. Attention was restricted, how-
of a fluid of uniform density with gravitational restoring forces coming
he free surface was perturbed from the horizontal. In this chapter, the
ed to fluids of variable density.

troduction to the effects of stratification, the case of two superposed
_each of uniform density, is considered in Sections 6.2 and 6.3. This
ce the concepts of barotropic and baroclinic modes and two widely
tions: the rigid lid approximation and the Boussinesq approximation.
S case means that the depth of each layer is small compared with the
of the perturbation, i.e., the horizontal scale is large compared with
of course, the atmosphere and ocean are continuously stratified,
-layer model can be quite useful and appropriate for many situations.
ontinuously stratified fluids begins in Section 6.4 with the case of an
uid, i.e., one whose density depends on temperature and composition
ure. No restriction on scale is made at first, but toward the end of the
xm.oﬁos 6.11 on) special consideration is given to the case in which the
€1s large compared with the vertical scale. This is partly to prepare the
roduction of rotation effects in Chapter 7, for with the exception of
Special situations, rotation is important only for motions with this
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dium of variable properties is discussed in Section 6.9. Further aspects of

! i in ter 8.
, behavior are to be found in me.% 8. .
__,ﬂ‘um: the hydrostatic equation is valid, i.e., when horizontal scales are large

property. An additional reason is that most energy in the atmosphere and ocean is in
components with this property.

No scale restriction applies to the motions studied in Sections 6.4—6.10. In Section i Sy
6.4, the equations for the general case are obtained and the buoyancy frequency N, oared with vertical scales, it is often mmﬁammoocm to use mﬁnwmmcmm%ombmm%sm
which is of fundamental importance to the subject, is introduced. The perturbationg adent variable in place .om .w@_mE. In mmgoc_mb Hro.ooE.B.E w eq e
have a wavelike behavior, the waves concerned being called internal gravity waves, le form even when the fluid is ooEEomm:u_w. The equations in Hmﬂo _mE.o PP e
Their most basic properties are most readily studied in the case for which N is con- jerived in Section 6.17 and are used later in the book, ﬂﬁ:%ﬁmw y 1n oo =
stant and the Boussinesq approximation is made. This case is treated in Sectiong th slow adjustment processes in Eo N:B.owvroa (Chapter 12). The energy eq
6.5-6.7. In particular, the “polarization relations” for a plane wave are found in s coordinates are discussed in Section 6.18.

Section 6.5, dispersion properties are discussed in Section 6.6, and energetics in
Section 6.7.

It is then but a small step to consider internal waves generated at a (slightly
perturbed) horizontal boundary, and this is done in Section 6.8. A particular case of
interest is that of waves generated by flow of uniform velocity U over a gently un-
dulating surface. For small-wavelength undulations (wavenumber k greater than
N/U), the fluid is only significantly perturbed within a certain distance of the ground,
but for large-wavelength undulations (kU < N), waves are produced that propagate
energy and momentum to large distances from the generating surface.

In practice, the buoyancy frequency N is not uniform, so some important effects
of variations in N are considered in Section 6.9, with special reference to the simple
case in which N is piecewise uniform. In particular, waves can be refracted and re-
flected from a discontinuity in N. This can lead to wave energy being confined or
“trapped” in a particular structure that is called a duct or waveguide. This concept
is applied to free wave propagation in Section 6.10, where methods of treating the
general case (N is any function of vertical coordinate z) are developed.

In Section 6.11, there is a return to discussion of cases for which the “hydrostatic
approximation” applies, i.e., for which the horizontal scale is large compared with
that of the vertical. This serves as a prelude to consideration of adjustment problems
rather like that considered in Section 5.6 for the homogeneous case, except that the
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a first example of stratification effects, consider the case of two mcﬁm of &moaoﬁ
y that are immiscible or for which the effect of mixing can be ignored. This
1 is easily set up in the laboratory, and Marsigli’s experiment is an early example.
ydrostatic approximation will be made from the o.Emmr so the results .mroz_a
plied only to cases in which the horizontal scale is large compared with the
. The problem was first treated by Stokes (1847). . ; ;

he means of describing the situation is shown in Fig. 6.1. msc.mozcﬂ 1 is used for
pper layer whose density is p;, whose equilibrium depth is H,, m:m .ér.omo
ontal velocity components are u; and v,. The free surface, whose equilibrium
on is z = 0, has perturbed position z = 5. The interface displacement (upward)

t follows from the hydrostatic equation
dp/0z = —pg (6.2.1)

the surface condition p = 0, that the pressure p; in the upper layer is given by

initial perturbation is now a function of z. However, there is some dependence on the p1 = p19g(n — 2), ~Hy F < 2 S il )
nature of the boundaries. In Section 6.12, we consider adjustment in a semi-infinite

region, i.e., a case such as the atmosphere, in which there is a solid boundary below

but no definite boundary above. In Section 6.13, we deal with a region of finite depth i’

such as the ocean. The structure of these solutions is of special interest because the hidr il

way in which they are modified by rotation effects will be considered in Chapter 7.
In Section 6.14, effects of compressibility are considered. For problems of ad-
Justment under gravity, the main new effect of interest is connected with waves that
carry energy most rapidly in the horizontal in the atmosphere. These are called Lamb
waves, whose vertical scale is the “scale height” and which propagate horizontally at
the speed of sound. They were responsible for carrying the pressure pulses observed
all around the world following the eruption of Krakatoa, and more recently from
nuclear explosions. An example of adjustment in a compressible atmosphere is con-
sidered in Section 6.15, and weak dispersion effects, which characterize pressure
pulses from distant sources, are considered in Section 6.16. This section, and many
others in the book, can be regarded as fairly general discussions of wave properties.
Wave dispersion, for instance, is first treated in Section 6.6, and the behavior of waves

Upper layer density pj

Sl T Stel . e PR S

z=-H, + h(x, y, t)

Lower layer density p,

=H
61 The notation used to describe the motion of two superposed shallow homogeneous layers of fluid
re the depths of the layers when at rest and H = H, + H, is the total depth. The z axis points /.\manm__v
Z=1lxy,0 is the surface elevation, and z= —H =+ h(x, y, 0) gives the disturbed position of the interface
 the two fluids,
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Therefore the momentum equations (4.5.7) and (4.5.8) for small disturbances become

Ou, /0t = —g 0n/ox, 0v, /0t = —g on/dy, (6.2.3)

whereas the continuity equation obtained by the same method as that for (5.6.7) is

o(n + Hy — h)/0t + H,(du,/0x + dv,/dy) = 0. (6.2.4)

Taking the time derivative and substituting from (6.2.3) for du, /0t and dv, /0t elimi-
nate u, and v, to give
mm

ot?

0* 0*

—h) =
A& v mu %Xn mv\N

gn = gH, V*y, (6.2.5)
where V? is defined by (4.3.9).
Similarly, for the lower layer, denoted by subscript 2, the pressure p, obtained by

integrating (6.2.1) and using continuity of pressure at the interface is

= pigt 2 Hy =B+ pog(~Hy+h~2),  z<—H; +h | (GE8
Thus the momentum equations are
ou (8@l ,Oh v 0 dh
T N gy S el et (6.2.7)
ot 0, 0x 0x ot 0, 0y dy
where g’ is the reduced gravity [see (5.1.1)], defined by
g =g(p2 — p1)/p- (6.2.8)
The continuity equation for the layer in this case is
oh/ot + H,(0u,/0x + 0v,/dy) = 0. (6.2.9)

As before, the velocity components are eliminated from these equations to give

%N\A mm @N P1 7 2 ’
%HEN Pl NQ:._.mx =H, Vign — g'n + g’'h), (6.2.10)
use being made of (6.2.8).

The adjustments of the two-fluid system are thus governed by Egs. (6.2.5) and
@.w.Hov. If, say, n were eliminated from these, a fourth-order partial differential equa-
tion ._aoﬁ h would be obtained. However, the problem can be greatly simplified by
looking for solutions with a special structure, namely, those for which 5 and h are
proportional, i.e.,

h(x, y, t) = pn(x, y, 1), (6.2.11)

where p is independent of x, y, and t. Then (6.2.5) and (6.2.10) both reduce to the
second-order equation

*nfor* = 2V, (6.2.12)

provided that u and c2 satisfy
gH /1 — )= pu" g — g'(0 — w)H,

=

K (62.13)

The Case of Two Superposed Fluids of Different Density 121

" This simplification is an example of a method that can be used for a wide class of
hanical problems involving small oscillations. In fact, Lamb (1932), in his treatise
sdrodynamics, spends the first section of his chapter on tidal waves discussing the
neral theory because of its wide applicability. For the present problem, there are
o values of p, and hence two values of c, that satisfy the above equation, and the
ions corresponding to these particular values are called normal modes of oscil-
ion. In a system consisting of n layers of different density, there are n such modes
rresponding to the n degrees of freedom. A continuously stratified fluid corresponds
an infinite number of layers, and so there is an infinite set of modes. The fact that
h mode behaves independently is of great utility, and application of the concept
be made repeatedly. The independence of each mode can be seen from the fact
if h and  satisfy (6.2.11) at some initial time, they will then satisfy (6.2.11) for all
quent times, so only one mode will be in oscillation. If, on the other hand, any
ven initial state can be represented as a sum of modes the change of each in time
d space can be followed independently. The fluid state can then be found by adding
ether the contributions of each mode.
he structure of the modes is obtained by solving the quadratic (6.2.13) [iof:
okes (1847, Section 17)], which can be written in the alternative form

ct — gHe: Lgg'H HL 510,

(6.2.14)

gy kg O (6.2.15)

he total depth of fluid in the equilibrium state. To each of the two solutions (or
values) c2 of (6.2.14) there corresponds a particular normal-mode structure
esented by (6.2.11) and the appropriate value of u. For the case of several layers,
is a value p; corresponding to the displacement h; of each interface, so u repre-
an eigenvector of the problem.

other way of expressing the equivalence between the normal mode of the two-
r system and the motion of the one-layer system is to define an equivalent depth

= (6.2.16)

n 7, satisfies the same equation as that for the surface elevation in a homogeneous
f depth H,. By (6.2.14), the eigenvalue equation for H, is
gH? —gHH, + g'HH, = 0.

r applications to the ocean, approximations can be made because the fractional
868 in density are small: of the order of 3%, i.€. g'/g = 1 — p1/p, ~ 0.003. This
S in two widely separated roots c2 of (6.2.14). The larger one, 3, is given ap-
mately by

(6.2.17)

ok = gH( = g'H{H, jgH? ), (6.2.18)
_ A€ ratios #/h and u,/u, are approximately
n/h ~ H/H,, uy,/u; =1—g'H,/gH (6.2.19)
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of uniform density. It is often called the barotropic mode. The strict meaning of the
term “barotropic” is that the pressure is constant on surfaces of constant density,
and hence is constant on the interface. This is only approximately true, but it is
conventional to call this mode barotropic nevertheless.

The smaller root ¢f of (6.2.14) is given for small g'/g by

¢t =(9'H H,/H)1 + g'H,H,/gH* - "), (6.2.20)
and the corresponding values of the ratios 5/h and u,/u, are approximately
e 1 T TR s 2 P (6.2.21)

This mode is called the baroclinic mode, the word “baroclinic” meaning that pressure
is not constant on surfaces of constant density. Typical values of ¢, for the ocean are
2 or 3m s, corresponding to an equivalent depth of 0.5—1 m. Use of the two-layer
model for the atmosphere is not so common, but on occasions when it is used, ct
typically has values of 10-20 m s™' and the equivalent depth of 10—50 m. Often one
layer is deep compared with the other, e.g., H, > H,, and then (6.2.20) is approxi-
mated by ;

2~ g'H,. (6.2.22)

Then the internal wave is just the same as a surface gravity wave would be if the
acceleration due to gravity were g’ instead of g. This is because it is ¢’ that determines
pressure differences rather than g (see Section 5.1).

Because g’ « g, the wave speed of internal waves is very much less than that of
surface waves, so that the internal waves look like surface waves in slow motion. This
difference accounts for a phenomenon noted by Benjamin Franklin (1762, p. 438) ina
letter dated December 1, 1762.

At Madeira we got oil to burn, and with a common glass tumbler or beaker,
slung in wire, and suspended to the ceiling of the cabbin . ... I made an Italian
lamp.... The glass at bottom contained water to about one third of its height;
another third was taken up with oil .... At supper, looking on the lamp, I re-
marked that tho’ the surface of the oil was perfectly tranquil, and duly preserved
its position with regard to the brim of the glass, the water under the oil was in
great commotion, rising and falling in irregular waves. . ..

Franklin’s experiment can be set up in the kitchen and completed within a minute

or two, and readers are urged to try it. The instructions are given in the next paragraph
(p. 439) of Franklin’s letter.

Since my arrival in America, I have repeated the experiment frequently thus. I
have put a pack-thread round a tumbler, with strings of the same, from each
side, meeting above it in a knot at about a foot distance from the top of the
tumbler. Then putting in as much water as would fill about one third part of the
tumbler, I lifted it up by the knot, and swung it to and fro in the air; when the
water appeared to keep its place in the tumbler as steadily as if it had been ice.
But pouring gently in upon the water about as much oil, and then again swinging
it in the air as before, the tranquility before possessed by the water, was trans-
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,, ferred to the surface of the oil, and the water under it was agitated with the same
ommotions as at sea.

erhaps the first explanation of an oceanic crg.oao:o: in terms of 583.& waves

- Bierknes’ explanation of “dead water,” a hitherto E%wwozo:.m effect in which
<m.b MQSE coastal localities would be unable to maintain their :o.aBm_ speed.
nan (1904) cites a large number of examples of the vrosoaos.os going back as
as Pliny the Naturalist, who reported that the effect was attributed either to ,m
usk or a certain type of fish that attached itself to the keel. In a preface to Ekman’s

or (p. 111), Bjerknes says:

" The present investigation of “Dead-Water” was .0oommmo=oa by a letter in Zo<oﬁ_~-
~ per 1898 from Prof. NANSEN asking my opinion on the subject. In my reply
..._ to Prof. NanseN I remarked that in the case of a layer of @Om: 2.&2 resting
~ on the top of salt water, a ship will not only @.ﬂoacoo Eo ordinary <§Eo waves
At the boundary between the water and the air, but will also generate invisible
. waves in the salt-water fresh-water boundary below; I wcmm@.ﬁom that Eo great

resistance experienced by the ship was due to the work done in generating these

~ invisible waves.

an substantiated this view with extensive laboratory experiments, m.ba includes
ographs of his experiments (an example is shown in Fig. m..w.cv and m:ow._umgogm
ind ships. Figure 6.2a shows such a pattern observed off British Columbia, égmo
hwater from river outflow forms a relatively light upper layer over the heavier
water. The internal waves on the interface are associated with horizontal move-
\ts at the surface that affect the ripple pattern and thus become visible. The motion
e interface that corresponds to this sort of situation can be seen E Ekman’s
tory experiment (Fig. 6.2b). A nice demonstration is also given in a cine film by
Tmo National Committee for Fluid Mechanics Films (1972, pp. ’mexiwﬁ.
The main result of this section is that the motion can be represented in terms of
normal modes, and for each mode 7 satisfies the wave equation (6.2.12), i.e., the
equation as that for a homogeneous fluid (but with a different time scale). Thus
results of Chapter 5 for shallow-water motion can be applied equally well to the
layer system. For instance, Fig. 6.3 shows the structure of the progressive wave:
ciated with the two different modes in a particular case. The value of g'/g has beer
en to be small but still much larger than for the ocean. This has been ao:o SC
certain features peculiar to internal motion would be visible in the aEmB.zw
mely, the slight differences in velocity between the two layers in the :_umﬁoQo_m:o
)de of motion and the free surface movement associated with the baroclinic motion
€ ocean, the free surface movement associated with the baroclinic mode is m.E:
1t 1/400 of the interface movement, but this is still sufficient for baroclinic motion:
be detectable by sea-level changes (Wunsch and Gill, 1976).
1gure 6.3 shows the variation in space of a progressive internal wave at a mxnﬁ
€, but the variation in time at a fixed point has the same character. For comparison
‘_‘.ab shows simultaneous observations [from Lee (1961)] of the motion of a
A€M at three points about 170 m apart, thus giving some information abou
lons in space as well as time. Since particles conserve their temperature ove
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(b)

Layer configuration in a two-layer system for a barotropic wave (a) and a baroclinic wave (b) prop-
rom left to right. For the case shown, the lower layer is three times deeper than the upper layer and has
0% greater. Also shown are the directions of flow at troughs and crests, and the relative velocities of the

at these points.

1 __”.m.vm,..m. (@) Surface “slicks” showing the presence of internal waves in the wake of a ship in Bute Inlet, British
: owcws ia. The <mmmw_ was traveling at 0.5 m s~ in a surface layer of almost fresh water only slightly deeper than _
s 3.4 m draft. The internal waves caused horizontal motion at the surface that affects the ripple pattern and so-

enders the ernal wave pattern v e at the su e al H.ﬁ HVOH.HOQ OM HTQ HOCOH.A_ _——ﬂm@ (
P ace du Bie conditions. [P oto courtesy of Defe C:::_
u Sy De ce Researc rs mar W H__@ Ver :ON.H excursion Dm mﬂ
Establis ent Pac (€, \Vilclio) a, British Columbia (b) A laborato Yy experiment [from Ekman (1904)], showi 2 interna

M\WMH wﬂ:w_AMmHﬂMJMM%MOM M,_M“M_ m:.,mm_?m W:_A is filled é% two fluids of different density, the heavier one being | Although there is in reality a continuous change of temperature with depth,
B o form it Mo<__vh & heimace ) ship ithe superstructure of the “Fram’” has been drawn i3 minant .mmm:cnom of the motion are close to those displayed by a system with
8 eft, causing a wake of waves on the interface. . ts of different density. La Fond (1962) summarizes the main features observed
S & these observations, where the water is 20 m deep. The period of the waves
y in the range 4-10 min. Since ¢’ ~ 0.01 m s~ % and H, is 3-10 m, (6.2.20)
as 0.15-0.22 m s~ !. This agrees well with the speed of the waves as observed
Movement of slicks and by taking simultaneous measurements at three loca-
) 809 of the cases, the surface slick was found to be located between a crest
:o«ibm trough, where Fig. 6.3 shows the surface velocity field is convergent.
€rgence is presumed to be responsible for the slicks.
€L extension of the results of Chapter 5 is to internal seiches and tides in
% 8ulfs, and lakes. These have the form of a standing wave as given by (5.8.6)
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Fig. 6.4.  Observations of progressive internal waves in 20 m of water about 1.3 km offshore at San Diego.
The records are from three points on the triangle C as shown, the sides of the triangle being approximately 170 m.
The waves moved to the right (onshore) at 0.2 m s~ *. The continuous line is the depth of an isotherm (64°F) located
in the thermocline. [From Lee (1961, Fig. 3).

and (5.8.7), ¢ now being the internal wave speed. Quite detailed observations of this
phenomenon were made in Loch Ness by Watson (1904, pp. 435-436).

These observations revealed a pendulous swinging of the ends of the isotherms,
the amplitude of the swing being greatest for the isotherm in the region 200 feet
below the surface, and dying off both above and below this region. A few other
observations taken simultaneously with these at other parts of the loch show
that the isotherms are swinging as a whole about a transverse central axis.

To what can this swinging be due?

If we take a long rectangular trough with glass sides, and put into it a layer of
water, and above the water a layer of lighter oil, and then disturb the arrange-
ment, one of the movements observed will be a swinging of the interface between
the oil and water.... The time, of swing can be calculated from the formula. ...

The formula given is the standing-wave period, namely, twice the time to travel
the length of the lake at speed ¢y, given by the first term of (6.2.20). Using values of
9'~26x10°ms 2 H ~60m H, ~ 120 m, and a length of 40 km, Watson
obtained a period of 68 hr, “which is of the same order as the period observed.” He
also explained how seiches could be generated by wind action, and continued even
during a prolonged period of calm. [See also Watson (1903). Internal seiches were
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ed earlier by Thoulet (1894), who reports an experiment with three superposed
: but did not make observations of the period. |

o

" The Baroclinic Mode and the Rigid Lid Approximation

¢ disparity in the values of g’ and g means Pﬁ m@?oiﬁmaosm. can UM ?MQM to
uations and boundary conditions, Qomo:@bm on Ew mode UoS.m mﬁm. mw . For
.waoQoEo mode, the mwvmoiamaos.a simply .8 ignore ao:m:u\m * woao:oom
other and treat the fluid as one of cb;ozb.mwcm:% as in Chapter 5. mﬁo mﬁw
) a Eoﬁammozm used to obtain the baroclinic mode. Hro. first uses .Eo act tha
; E_m mode surface displacements are small ooavmnoa. ;:.9 581@.8 displacements
n be seen in Fig. 6.2, for instance). Thus the continuity equation (6.2.4) for the

 layer is approximated by
—0h/ot + H,(0u,/0x + 0v,/0y) = 0.

.wuoEobEB equations for the upper layer are m?g by (6.2.3) as U&.o?. This is
the rigid lid approximation, although the name is moaoé.rﬁ E_m_oma_bm because
urface displacements are required to give pressure mﬂ.ma_.oam in the upper layer
(6.2.3) involves Vn]. The justification for the name lies in the wmo.ﬂ that if there
a rigid lid at z = 0, the identical pressure gradients would be achieved because
igid lid would provide the necessary pressure. : R
e second approximation is simply to replace the ratio p,/p, by unity in (6.2.7)
| hence in (6.2.10)], giving

Ou, /0t = —g 0n/ox — g’ Oh/0x, 0v, /0t = —g 0n/0y — g’ Oh/0y.

is usually referred to as the Boussinesq approximation, which will be discussed

more general context later. ; e fla
ince the two continuity equations (6.3.1) and (6.2.9) do not involve 1, itis desira le
btain a combination of the momentum equations that m.o.om not involve #. This
bination is obtained by subtracting (6.3.2) from (6.2.3), giving

‘, on/ot = g’ Ohjdx,  08/ot = g’ h/dy,

(6.3.1)

(6.3.2)

(6.3.3)

ere (@, 0) is given by
(6.3.4)

f=u; —uy, =1y — 1y,

represents the difference in velocity between the two layers. (4, d) can also be
t of as the amplitude of the baroclinic mode. .

W OW a combination of the continuity equations that involves o:_v\. (@, ) is re-

€d. This is obtained by subtracting 1/H, times (6.2.9) from 1/H, times (6.3.1),

O (6.3.5)
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equilibrium state to be perturbed is the state of rest, so the distribution of
tv and pressure is the hydrostatic equilibrium distribution given _uu.N (4.5.17) and
In the absence of rotation and of friction, the momentum equations (4.10.11)

(5.6.4)—(5.6.6) for the homogeneous fluid. Thus when the velocity components # and
 are eliminated, the result is the wave equation

o2h  ,(0%h  8%h

prolahe [ O = ¢} V5, (6.3.6) I perturbations p’ in pressure and p’ in density become
where . po Ou/dt = —0p'/ox, po Ov/0t = —0p'/0y, (6.4.4)
it e (63.7) h po OW/08 = —3p'/0z — p'g, (6.4.5)

#

: po(2) is the unperturbed density and g the acceleration due to gravity. For E.o

t. no restriction on horizontal scale is being made, so there are no approxi-
\ w,ogmﬂ than for that of the smallness of the perturbation. Hro governing
ons are (6.4.3)(6.4.5) and the linearized form of (6.4.2) appropriate to small

rbations, namely,

is the square of the speed of propagation of the baroclinic mode. This is the same
value as that given by (6.2.20) in the limit as g'/g — 0. An alternative form of (6.3.7)
is the equation

1 1 1

il T ar ’
gH. g¢'H, g¢g'H,

(6.3.8)
op'/ot + wdpy/dz = 0. (6.4.6)

ations based on these equations were made by Rayleigh (1883, p. 170) “in order
trate the theory of cirrous clouds propounded by the late Prof. Jevons.”
initial step in dealing with the equations is the same as that used for the
nd two-layer system, namely, to eliminate u, v from the horizontal part of the
htum equations and the continuity equation. This is done by using (6.4.4) to
itute expressions for the acceleration components in the time derivative of
The result is

for the equivalent depth H, = ci/g. For typical oceanic values of g’ = 0.03 m s~ 2
H, =400 m, H, = 4000 m, one finds H, is ~1 m.

5

6.4 Adjustments within a Continuously Stratified Incompressible Fluid

So far the study of adjustment under gravity has been restricted to a fluid that has
uniform density, or to a system consisting of two immiscible fluids, each of uniform
density. Particular emphasis has been placed on motions with horizontal scale large
compared with that of the vertical scale. In the remainder of this chapter, the study of
adjustment processes will be extended to continuously stratified fluids, i.e., fluids
with continuously varying density. The scale restriction will not be made at first,
although the emphasis in subsequent chapters will be on motions with relatively
large horizontal scale since these contain by far the most energy.

To begin, the fluids to be considered will be restricted to a class such that the
density depends only on entropy and on composition, i.e., p depends only on the
potential temperature 6 and on the concentrations of the constituents, e.g., the salinity
s or humidity ¢. Then for fixed 0 and q (or s), p is independent of pressure:

p = p@, q). (6:4.1)

The motion that takes place is assumed to be isentropic and without change of phase,
so that 0 and g are constant for a material element. Therefore

o*w 0? kel :
2o v o W p = Vip'. (6.4.7)

s equation may be thought of as a relation between the horizontal divergence
9% + 0v/dy = —O0w/dz and the perturbation pressure p’.

r the stratified system, another relation between w and p’ is required. This is
ied by eliminating p’ from (6.4.5) and (6.4.6) to give

0*w/0t?> + N*w = —pg* 0%p’/oz ot, (6.4.8)

I N(z) is a quantity of fundamental importance to this problem (see Section 3.7.1
essions for N), defined by

NP = = - @iz, (649

s the dimensions of frequency, and is variously known as the Brunt—Viisil
NCy, the Brunt frequency [after Brunt (1927)], the Viiséla frequency [ after
(1925)], and the buoyancy frequency [see, e.g., Turner (1973)]. Other names
 stability frequency and intrinsic frequency) have also been used, but Brunt-
seems to be the most common appellation. However, Rayleigh (1883) drew
 to this frequency (as the maximum possible in a stratified layer) well before
and Viisil, and buoyancy frequency is the most appropriate name physically
,@nnmcmo of the solution for purely vertical motion for which p’ vanishes, anc
0.4.8) shows that the frequency of oscillation is N. The restoring force tha
the oscillation is the buoyancy force [see (6.4.5)].

o A e (642)

In other words, p is constant for a material element because 0 and q are, and p de-
pends only on 6 and g. Such a fluid is said to be incompressible, and because of (6.4.2),
the continuity equation (4.2.3) becomes (4.10.12), i.c.,

dufox + dv/dy + éw/dz = 0. (6.4.3)
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Gravity Waves

There are now two equations to be satisfied, namely, (6.4.7) and (6.4.8). It is usefy]
to think of (6.4.7) as being associated with the horizontal part of the motion since it ig
derived from the horizontal part of the momentum equations, and to think of (6.4.8)
as being associated with the vertical part of the motion since it comes from the <o§o.m_
component (6.4.5) of the momentum equation. When p’ is eliminated, a single equa-
tion for w results, namely,

rnal Gravity Waves

onsider the case in which the buoyancy (Brunt—Viisild) frequency N is constant
hout the fluid. Traveling wave solutions of (6.4.12) can be found of the form

w = wg cos(kx + ly + mz — wt), (6.5.1)

£ TN Y N W S
e TR T Po o w+ N P s w=0. (64.10)

W, is the amplitude of vertical velocity fluctuations, the vector
k = (k, I, m) 6.52)
o wavenumber of the disturbance, and o is the frequency. In order for (6.5.1) to
Eq. (6.4.12), » and k must be related by the dispersion relation
w? = (k? + P)N?/(k* + > + m?). (6.5.3)

internal waves can have any frequency between zero and a maximum value of
‘Rayleigh (1883, p. 174) put it, “Contrary to what is met with in most vibrating
, there is a limit on the side of rapidity of vibration, but none on the side

It is this equation that determines how small amplitude adjustments within a con-
tinuously stratified incompressible fluid take place.

Exact solutions can be found in special cases such as those in which the density
varies exponentially with height. However, there is a simplifying approximation that
is always a good one in the ocean and that is valid for many applications to the
atmosphere. This is based on the observation that if w varies with z much more
rapidly than p,, then ,

I3

vness.”
e dispersion relation for internal waves is of quite a different character com-

| to that for surface waves. In particular, the frequency of surface waves depends
on the magnitude x of the wavenumber, whereas the frequency of internal waves
pendent of the magnitude of the wavenumber and depends only on the angle
the wavenumber vector makes with the horizontal. To bring this out, it is
to specify the wavenumber in spherical polar coordinates (4, ¢, k) in wave-
space (see Fig. 6.5), namely,

R e R
m 2z \VOM 5\2%“ A@AHMV

and so (6.4.10) can be approximated by

g ot 02 0% e a4 .
: k = x cos ¢’ cos 4/, l =% cos ¢ sin A, m = K sin @' (6.5.4)
In the ocean, p, never departs by more than 2% from its mean value, so it is a very
good approximation to treat p, as a constant as implied by (6.4.11). v

Another way of stating the condition for (6.4.11) to be valid is that the vertical
.mom_a for variations of w be small compared with the vertical scale for variations of 208
Le., be small compared with the scale height H, (see Section 3.5). If this condition is
satisfied, it turns out, as will be shown later, that (6.4.12) is a good approximation
even when the fluid is compressible (conversely, if the condition is not satisfied,
.ooEEammwc::% should not be ignored). Since vertically propagating internal waves
in 9.@ atmosphere are usually found to satisfy this condition, (6.4. 12) can be used in
applications to the atmosphere as well.

The approximation that applies when the motion has vertical scale small com-
pared with the scale height is called the Boussinesq approximation [see, e.g., Spiegel
m:a. Veronis (1960)] and is attributed to Boussinesq (1903). Basically, it oovsmmma of
taking the density to be constant in computing rates of change of momentum from
accelerations, but taking full account of density variations when they give rise to
buoyancy forces, i.c., when there is a multiplying factor g in the vertical component
of m.:m momentum equations. For the case considered in this chapter, this means
taking p, as a constant in (6.4.4) and (6.4.5) and hence in (6.4.7) and (6.4.8). Buoyancy

w@m%%wovonﬁ in through the term p'g in (6.4.5), which gives rise to the term N2W
in (6.4.8).

[ -

X a7 ”\.To*
51

k
. The system of spherical polar coordinates in wavenumber space used to express the dispersion rela
€mnal waves. For these waves, the frequency @ does not depend on the magnitude k of the wavenumber
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The prime is used to denote wavenumber angles as opposed to angles in E&Eomy.
space. Then the dispersion relation (6.5.3) becomes simply
® = N cos ¢'. a.m.&,

The way p’, p’, u, and v vary for the plane wave a.w.: can be deduced from the
appropriate equations. The relationships among these variables are sometimes called
the polarization relations. The perturbation pressure p’ is, from (6.4.7), given by

p' = —(k* + ) lompow, costkx + ly + mz — wt), Am.m.@.,
whereas (6.4.6) gives for the perturbation density
= —(N%/wg)pow, sin(kx + ly + mz — ot). a.m.d.

Note that the last two equations, together with (6.5.3), imply that for a plane Eo-
gressive wave,

0 62 = (e = I - nY)gp. 658).

The horizontal velocity components can be found from (6.4.4), which gives

(u,v) = —(k, D(k? + 2)™! mw, cos(kx + ly + mz — wt)
(k, D(wpo)~'p’. (6.5.9)

The above relations between pressure and velocity fluctuations can be useful for
deducing wave properties from observations at a fixed point. For instance, if the
horizontal velocity components and perturbation pressure of a progressive wave are
measured, the horizontal component of the wavenumber vector can be deduced from
(6.5.9). This device was used, for instance, by Gossard and Munk (1954). :

A sketch showing the properties of a plane progressive internal wave in the
vertical plane that contains the wavenumber vector is presented in Fig. 6.6. The
particle motion is along wave crests, and there is no pressure gradient in this direction.
The restoring force on a particle is therefore due solely to the component g cos ¢’ of
gravity in the direction of motion. The restoring force is also proportional to the
component of the density change in this direction, which is cos ¢’ dp/dz per unit
displacement. It follows from Newton’s second law that the square of the frequency
of vibration is

@w&

Sketch showing in a vertical plane the phase relationships for a progressive internal wave with down-
velocity (this implies upward group velocity). The solid lines mark lines of maximum (High) and minimum
re, which are also lines of maximum and minimum <m_on_ﬂ<\ the direction of motion being as shown.
lines mark the positions of maximum (Heavy) and minimum (Light) density perturbations. If the direc-
e propagation is reversed, the only change in the diagram is a reversal of the direction of motion.

extreme case of purely horizontal motion requires special consideration
e this is a singular limit for which the solution of (6.4.12) is the trivial one,
. In this case, the general solution of Egs. (6.4.3)—(6.4.6) has p’ = p’ = 0, with
any functions of x, y, and z alone that satisfy

ujox + dv/dy = 0. (6.5.10)

words, each horizontal plane of particles can move independently of any
e, but the motion within each plane must be nondivergent. An alternative

L this solution is
W — ' =0, u=—ovoy, v=ouox i)

W is an arbitrary function of x, y, and z. This solution is not an internal wave,
a limiting form of one, but it represents an important form of motion that is
erved. For instance, it is quite common an airplane journeys to see thick
loud that are remarkably flat and extensive. Each cloud layer is moving in

rizontal plane, but different layers are moving relative to each other as
by (6.5.11). If a mountain pierces such a layer, it is possible to have motion
'm (6.5.11) with two-dimensional flow around the mountain in each hori-
- Spectacular consequences are the vortex streets observed behind islands

p g cos ¢’ cos ¢’ dp/dz = (N cos ¢')?,

thus giving a physical interpretation of the dispersion relation (6.5.5).

Consider now the succession of solutions as ¢’ progressively increases from zero
to a right angle. When ¢’ = 0, a vertical line of particles moves together like a rigid
wire undergoing longitudinal vibrations. When the line of particles is displaced from.
its equilibrium position, buoyancy restoring forces come into play just as if the liné
of particles were on a spring, resulting in oscillations of frequency N. The solutions
for other values of ¢’ correspond to lines of particles moving together at msm_o @' to
the vertical. The restoring force per unit displacement is less than it is for ¢’ = 0, and

so the frequency of vibration is less. As ¢’ tends to /2, the frequency of vibration
tends to zero.
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e the magnitude of the group velocity is (N/x) sin ¢’ and its direction is at

@' to the vertical. ¥ ; : e P
re 6.8 is designed to illustrate how the dispersion properties of in mnw :

om those of surface gravity waves. F.omow case the wave field shown Mww
ombination of four waves of equal amplitude 2:.: ,.zmés.ca_u.oa k + ok ..._nw ,
k and ok’ are small compared with k, and dk’ is in a direction for which no

i1 o occurs. This combination has the form [cf. (5.4.1)]
4 ok + 0K):x — (w + do)t] + cos[(k + ok — ok')'x — (w + dw)t]
os[(k — ok + 0K')-x — (w — do)t] + cos[(k — dk — 6K')*x — (0 — dw)t]

(Gjevik, 1980), and related experimental work is discussed by Brighton (1978). How.
ever, it is not possible to have a solution of the form (6.5.11) representing uniform floy
normal to a ridge at levels below the crest of the ridge. Ridges are sometimes founq
to block flow in this way, and the general phenomenon is called blocking. |

6.6 Dispersion Effects

In practice, internal gravity waves never have the pure form (6.5.1), so it is neces.
sary to consider superpositions of such waves. Then dispersion effects become evident
when different waves have different phase velocitites, as discussed in Section 5.4,
The dispersion of internal waves is quite different from surface waves, one reason
being that the frequency of internal waves is independent of the wavenumber magni-
tude, whereas the frequency of surface waves is independent of wave direction.

For internal waves, the surfaces of constant frequency in wavenumber space are
the cones ¢’ = const shown in Fig. 6.7. The phase velocity is directed along the
wavenumber vector and therefore lies on the cone, its magnitude being

— 4 cos(ok’ - x) cos(Ok * x — dot) cos(k * x — wt)
'~ 4 cos(SK’ - x) cos[Sk - (x — ¢,1)] cos(k - X — wi). (6.6.2)

w/k = (N/k) cos ¢'.

The group velocity ¢, is by (5.4.11) the gradient of @ in wavenumber space and therefore
is normal to the surface of constant w. It follows that (as for any waves whose frequency
is independent of wavenumber magnitude) the group velocity is at right angles to
the wavenumber vector. When the group velocity has an upward component, there-
fore, the phase velocity has a downward component, and vice versa. By (5.4.11)

¢, = (N/x) sin ¢’ (sin ¢’ cos X', sin ¢’ sin A’, —cos ¢'). (6.6.1)

60°

A contrast between the dispersion characteristics of internal waves and surface m.S<:<A<<m<mm
d by the behavior of a suitable combination of four progressive waves. (a) The initial configuration of :
nte 1al waves with wave crests at 60° to the vertical. Contours are of pressure perturbation, where thi:
' +0.5 times the maximum value. (b) The configuration four periods later, the group having movec
the crests and upward, while the individual crest AA” has moved four <<m<m_m:mEm Qoisémqa and tc
Oompare this with the way surface waves behave, suppose (@) now shows a plan <._m<< of a similar com
f Waves, contours now being where the surface elevation is +0.5 times the maximum value. qrmz_uﬁ
onfiguration four periods later. The individual wave crest AA’ has again moved four wavelengths, bu
P has moved two wavelengths in the same direction.

€ >1.0

Fig. 6.7. For internal waves (no rotation), the surfaces of constant frequency in wavenumber space are cones
as shown, contours being values of /N, where @ is the frequency and N the buoyancy frequency. The group
velocity is in a direction perpendicular to the cone in the direction of increasing frequency as shown by one set

of arrows, whereas the phase velocity is in a direction along the cone away from the origin as shown by the other
set of arrows. ]
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(b)
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60°

oo

Fig. 6.8.

(continued)
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8a represents such a combination of internal gravity waves. It is a vertical
 the plane of propagation, showing contours only where the pressure
nis +0.5 times the maximum value for the whole wave field. The wave-
tor is at angle @’ = 60° to the vertical and pointing downward, ok’ is
be equal to 0.03k, and ok has the same magnitude but is at right angles to ok’.
b shows the same waves four periods later. Wave crest AA’ has moved four
s downward to the left, but the wavegroup has moved upward parallel to
ie., at right angles to the direction of phase propagation, For comparison,
Lows the behavior of a similar combination of surface gravity waves. In this
8a is interpreted as a plan view, showing contours of surface elevation, with
and Ok’ of the same magnitude but at right angles. Figure 6.8c is the view
ds later, crest AA’ having moved four wavelengths. The group as a whole
in the same direction but at half the speed.
fFerence in the directions of phase and group propagation for internal waves
illustrated in laboratory experiments (Mowbray and Rarity, 1967), in which
turbations can be made visible by using shadowgraph or Schlieren tech-
their experiment, results from which are shown in Fig. 6.9, energy prop-
sutward from a vibrating cylinder that can be regarded as a point source
with a fixed frequency . Consequently, energy propagates radially outward
ection of group propagation, i.e., it travels in beams whose angle ¢’ with
jcal is given by (6.5.5). Lines of constant phase are observed to cross the beams
ely, their motion being directed toward the horizontal plane through the
oion. These and other laboratory experiments on internal waves are dis-
Turner (1973).
apter 5 reference was made to the effect of dispersion in separating out
different length that come from a distant source of short duration. With
aves, this effect has been used to calculate the position and time of the
f swell arriving at some distant location. The way the properties of the
riving at the distant point change with time is easily calculated for any type
ve wave. Choose the origin of the coordinate system to be at the source
16.9¢), and let t = 0 be the time of generation. Since waves move outward
e group velocity c,, the waves found at point x at time ¢ will satisfy

) X = ¢yt
« that the properties of the medium are uniform), and so the wavenumber k
found by solving
it
g c (k) = x/t. (6.6.3
ik
ider the special case of internal waves in which ¢, is given by (6.6.1) anc
Eﬁ.ﬂom angle ¢’ with the vertical. Since this angle is fixed for a given point
vation, the frequency o of the waves passing this point will have the fixec
i by (6.5.5). In other words, wave crests will pass at fixed intervals of time
the spacing between crests will decrease with time; for (6.6.3) gives (for

¢, =T/t,
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(c)

. .Im. mw Patterns, obtained by Schlieren techniques, of internal waves propagating away from a cylinder that
is vibrating at a frequency given by (a) @/N = 0.366, (b) /N = 0.699. Waves propagate outward with group velocit

along the dark lines, which indicate an extreme of refractive index and hence a wave crest. qrmmo:m_ﬂm:o: ovm
the crest is the one expected for the frequency of vibration. The dark lines continually move toward the horizontal
plane containing the cylinder, new lines appearing at the top edge of the beam and old ones disappearing at the
lower edge of the beam, thus showing that the phase propagation is at right angles to the group velocity. [From

D. E. Mowbray and B. S. H. Rarity (1967). A theoretical and experimental investigation of the phase configuration

Wﬁ internal waves of small amplitude in a density stratified fluid. . Fluid Mech. 28, 1 (Plate ). Cambridge University
ress.] (c) The geometry of the situation. For a point source at O, waves received at x travel in the direction of the

2 A LT el
group velocity, and hence c, is in the direction of Ox. The angle marked is ¢ since ¢, makes this angle to the -

vertical. ¢ s also the angle the wavenumber vector makes with the horizontal since the phase velocity is at right
angles to the group velocity. For a source of fixed frequency @ as in the experiments shown in () m:ﬁw\:ov s&mmm
qum ovmm?mm .o:_< along the beam for Er_wr @' is given by (6.5.5). For an impulsive source applied at W\H 0, all

Q:m:m_ows\___ be present, but only those with frequency o, given by (6.5.5), will be observed at x. The wayenumber
of the dominant wave will, however, increase with time as calculated in the text.

and substitution for ¢, from (6.6.1) then gives

e R A (6.6.4)

hus « increases in proportion with time, i.e., the spacing between wave crests de-

Maommom ::62.@? in proportion with time. More detailed discussion of the solution
%ﬂ an _.B@Em:\o source of internal waves is given by Bretherton (1967), and further
1scussion of the general problem is given by Whitham (1974) and Lighthill (1978)-

6 Adjustment under Gravity of a Density-Stratified Fluiq

ergelics of Internal Waves 139
metimes geometric factors cause the wavenumber to be constrained to lie on
surface or line in wavenumber space, in which case the dispersion properties
.nd on how the frequency varies on that surface or line. For example, the vertical
onent m of the wavenumber may be fixed because the waves are contained in a
. on of finite vertical extent. The dispersion properties then depend on how w, given
5.3), varies with k and I This shows that the long waves, which have low fre-
\cy, have the largest group velocity, equal to N/m. As the horizontal component
vavenumber increases, the frequency increases toward a maximum value of N
he group velocity decreases toward zero. (Further discussion of this case can be
| in Section 6.10.)
Another example corresponds to the case in which the horizontal component
) of the wavenumber is fixed, so that (6.5.3) is regarded as a relation between
'm. In this case, the frequency is a maximum and the group velocity c,, is zero when
0. The group velocity also tends to zero as m —> oo, and has a maximum at a
ue of m, corresponding to propagation at 35° to the vertical (cot ¢ = o) ilihe
iated frequency is (2/3)"/2N and the group velocity is 2N, /3312 (fee" S RN

. Energetics of Internal Waves

he energy equation for internal waves can be obtained by multiplying (6.4.4) by
,(6.4.5) by w, and (6.4.6) by g>p'/poN?, then adding the results. With the use of

) and (6.4.9), this gives

1
MboA:N + v? + w?) +

W QNE\N

e

is a special case of the total energy equation discussed in Section 4.7. As found in
pter 4, the energy equation can be integrated over a large volume, thereby giving
eful results about overall balances.

eidentification of the perturbation kinetic energy density term 3 po(u® + v* + w?)
1) with the corresponding term in (4.7.3) is obvious, as is the correspondence
een the perturbation energy flux term (p'u, p'v, p'w) in (6.7.1) and the full expres-
1(4.7.4) for the flux when account is taken of the perturbations being infinitesimal,
mpressible, inviscid, and nondiffusive. The identification of the perturbation
tial energy term in (6.7.1) is less obvious, and it is helpful first to consider the
,@mmro two-layer fluid of Section 6.2. There the potential energy (see Section 57,
jual to

d d 0
+ —(p'u) + ——(p'v) + —(p'w) = 0. (6.7.1)
0x 0y 0z

p® dx dy dz
= pgz dz dx dy
g 1 > 2 1 2 %
W MEHQT IAEHISQ._.MbNQTEHIS — H?]pdxdy,
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