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As in Section 6.14, alternative expressions for 4’ can be found in terms of pog,
tial temperature 0 and concentration s (salinity or humidity). The conseryy G
equations (4.1.8) and (4.1.9) now reduce for small perturbations to |

0" + hy d0o/dz,, =0, " + h, dso/dz, =0, (6.18

which have form similar to (6.14.11). However, 0" is the perturbation from the equ;
brium value at the same pressure and is not the same as 0". In the case of a Lamb Way
for instance, for which the motion is purely horizontal, there is no change in pote
temperature at any given level, so 0’ vanishes; but since the pressure changes,
nonzero.

An alternative expression, obtained from (6.18.9) after use of (3.7.9) and (6.17.25),

gle'd't = B s YN & M b =0 (6.18.1
Substituting in (6.18.6) and using (6.17.28) and (6.17.22) at the surface give

Chapter Seven

Effects of Rotation

} 1 p'(0)® o lomait T :
In the case of dry air (s” = ¢” = 0) that is treated as a perfect gas, o’ = 1/6, by (3.7.14
and N? = (g/0,) df,o/dz by (3.7.15). Using also the hydrostatic equation and the
finition (6.17.8) of z,, to convert to pressure derivatives, and (6.17.22) for the definitic
of H, (6.18.11) becomes

H @\AOvm Pr H %:N
A = = -+ —— dprdxdy. 6.18
% % 2 lgp YD e anan A

This is a form that is useful for calculating A’ for the atmosphere, along with the pe
fect gas laws (3.1.2) and (3.7.4), which gives density p in terms of pressure and poten
temperature, namely,

roduction

ge with Halley’s (1686) work. However, arguments that neglected the rotatior
arth failed to explain the easterly component of the trade winds. Hadley (1735
how rotation (see Section 2.3) could explain this, using the o@boﬂuﬁ of con
n of angular momentum. Laplace (1778-1779) recognized the importance o

effects. Despite these equations being available for so many years, much o
tk (based on these equations) that gives a proper moc:am:@s for H.ro cbmo.n
g of rotation effects is quite recent. One reason for the delay is the difficulty 11

up experiments like that of Marsigli in a rotating system [see, e.g., Saunder

1/p = RTJp = ROp*~1/p* (6.18.12

temperature can be derived from this, or simply by substitution from (6.17.27) i
(6.18.6) and using (6.18.2). Alternative forms follow from (6.17.25), the ideal ga
equation (6.18.13), and expressions for N, [see (6.17.24)] or N [see (6.14.4)]. EX

amples are
1 p(0) o
Al = = d s
,—,Hm i xdy + 2 N°T2 am
1 p'(0) % % % RO,T!? dM
Zal dx dy + S (e A AmHmH
% % TR —2T,p dfy/dp |

Expressions like this have been used to estimate the available potential energy ¢
the atmosphere.

problem that tells us a great deal about this question is the one discussed i
5.6, i.e., the one associated with Marsigli’s experiment of adjustment of .
nder gravity, but now with rotation effects included. Hro. question of how
‘ot initially in equilibrium, adjusts in a uniformly rotating mu\mﬁaﬁ was no
tely discussed until the time of Rossby (1938a), although transient wav
ns had been considered much earlier by Kelvin (Thomson, 1879). In a series ¢
, Rossby (1936, 1937, 1938a,b, 1940; Rossby et al., 1939) was concerned wit
€ mass and resulting pressure distributions in the ocean and atmosphere ar
shed. In particular, he studied a problem in which momentum was supposed t
into the ocean to give a nonequilibrium velocity &mﬁdc.ao:. WOmmg\.wamm
nsidered the process of adjustment to equilibrium. A similar problem is E.:n
din the next section, and the rest of the chapter is devoted to the repercussion

18



190 7 Effects of B » Rossby Adjustment Problem 19

~ved quantity is called Ertel’s potential vorticity. Section 7.12 discusses the
hation forms of the conservation equations for both types of potential vorticity
in Section 7.13 there is a discussion of an important practical problem for
cal weather prediction, namely, the initialization of fields, because this problen
uch to do with the ideas developed in the remainder of the chapter.

A key feature of the adjustment process in a rotating fluid is that the fluid adjy
rapidly (in a time of the order of the rotation period) to an equilibrium that s
state of rest and contains more potential energy than does the rest state. In
very little of the potential energy initially present may be converted into ki
energy. Also, the equilibrium state achieved (called a geostrophic equilibrium) cap
be found by solving the steady-state equations because these are degenerate in ¢y
any solution of the momentum equations satisfies the continuity equation exacf
It is this degeneracy, exemplified by the fact that the equilibrium fields of mass g
momentum are related to each other, that causes the difficulties with which WOm
was concerned.

The equilibrium state achieved thus depends on the initial state, and WOmm
showed the connection between the two states through conservation of a quantity |

called potential vorticity. Using this property, the final state can be found, and this"
shown in Section 7.2. Details of the transient motions require further analysis, ag
this is done in Section 7.3.

The analysis presented in this chapter is for a fluid that is rotating with unifor
angular velocity about a vertical axis. However, application of the results to
atmosphere and ocean is possible in an approximate sense, and this point is discusse
in Section 7.4. Section 7.5 is about the fundamental horizontal length scale th:
appears in problems dealing with adjustment under gravity of a rotating fluid. Th
is called the Rossby radius of deformation. Since the analysis can be applied to anye
the normal modes of a stratified fluid, there is an infinite set of Rossby radii, on
Rossby radius being associated with each of the modes.

The equilibrium solution is discussed in Sections 7.6 and 7.7. The _mﬁm@-mo ;
motion in the ocean and atmosphere is nearly always close to such an equilibriun
and the implied connection between mass and velocity fields is of great importance i
practice. In fact, much of our knowledge of the circulation of the ocean and atm
sphere was deduced from the mass distribution before direct measurements wei
made. The relationship is used a great deal both as a means of estimating the veloc
field and as an approximation in theoretical studies.

The discussion of energetics is taken up again in Section 7.8, which is concerne
with the concept of available potential energy. This is the difference between
internal plus potential energy at any time and the minimum value to which it coul
be reduced by an inviscid isentropic rearrangement of fluid particles. The quantity!
therefore a valuable measure of how much kinetic energy is potentially obtainable
and is widely used in studies of the circulation of the atmosphere and ocean.

Sections 7.9-7.12 are about the concept of vorticity and the results concerni
circulation and potential vorticity that are of such great utility for rotating fluids. !

The Rossby Adjustment Problem

' Section 5.6, the adjustment under gravity of a homogeneous shallow layer o
was considered, the particular case being one in which the fluid was initially a
¢ had a discontinuity (or discontinuities) in surface level. Now the sam
will be considered for a rotating fluid, i.e., one that is initially at rest relativ
.ame of reference rotating with uniform angular velocity 5 f about a vertical axis
notion is considered relative to this frame and is supposed to be a small pertur
a from the state of relative rest at all times. The z axis is vertical; the bottom z =
horizontal (ie., a geopotential surface); and the surface elevation z =
to a geopotential surface is assumed to be small. The horizontal scale i
ned to be large compared with the depth, so that the hydrostatic approximatios
e made.

equations are the same as those in Section 5.6 apart from the addition of th
lis acceleration (— fv, fu), which produces the effects of rotation (see Sectio:
Thus the momentum equation (4.10.11), after use of the hydrostatic equatio:
¢ (5.6.3)], gives

@

ou/dt — fo = —g on/ox, (@28
ov/ot + fu = —g on/oy. (2

11 18 independent of z, the velocity (u, v) is independent of depth as in the non
g case. The letter f is used for half the rotation rate to avoid having factors o
ear in these equations. The continuity equation is (5.6.6), namely,

on/ot + H(0u/0x + dv/dy) = 0. (a2

he method of dealing with these equations in the :o:wogmbm case was to tak
ergence of the momentum equations [8/0x of (7.2.1) plus 8/dy of (7.2.2)] any
tute from (7.2.3) for the horizontal divergence du/0x + Jv/0y. In the rotatin
this gives

i

2 A4 L e 0 2 2 45 794
is perhaps unfortunate that the name “potential vorticity” is given to more than OB - G L e el iy B (
quantity, but in any given context it is usually quite clear which quantity is referred t0 €. 18 given by (5.5.4), namely,

One form is that used for homogeneous shallow layers of fluid and the approptiat i 2 = gH (12
conservation equation is derived in Section 7.10. The potential vorticity in this € :

is defined as the total vorticity (assumed to be close to vertical) divided by the depth

A different form is appropriate in the continuously stratified case, and this is derive ¢ = dujox — dufdy (7.2.€

in Section 7.11. The conservation relation in this case requires no assumptions abo
the direction of the vorticity or about the ratio of horizontal to vertical scales, and

3

 Telatjpe vorticity of the fluid, i.e., the vertical component of the vorticity relativ
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to the rotating frame (the horizontal components are identically zero). When f

02n/0r* — *(@%nfox* + 0*nf0y?) + fin = — [H?Q'(x,3,0)
= — [?no sgn(x). (7213

the rotating case, this equation points to the necessity of considering how the 85,.,.
vorticity changes.

7.2.1 Conservation of Potential Vorticity " The Steady Solution: Geostrophic Flow

f the mBSESos& adjustment processes lead ultimately to a steady state, tha
‘ ‘will be given by the time-independent solution of (7.2.13). Since the initia
ition is independent of y, the solution at all subsequent times can be assumed tc
ependent of y, and thus the vorticity { is equal to dv/0x. Furthermore, a stead)
on of (7.2.1) and (7.2.2) must entail a balance between the Coriolis acceleratior
, fu) and the pressure gradient. This is known as a geostrophic balance

fu= —gon/dy, fo=gon/ox, (7.2.14

as the property that the flow is along contours of constant pressure (i.e., along
as is familiar from weather maps).

e mﬁom&\-mﬁﬁo solution has a very special property in that any solution satisfyin;
strophic balance happens to satisfy the time-independent version of the
ity equation (7.2.3) exactly, i.e., is nondivergent with

ou/0x + ov/dy = Q. (72115

HE:Z@ way of viewing this result is to use (7.2.15) to introduce a stream functior

Equations (7.2.1)—(7.2.3) were given by Kelvin (Thomson, 1879) in his paper “c
gravitational oscillations of rotating water,” in which he sought to simplify Laplag;
tidal theory by considering “an area of water so small that the equilibrium figure of;
surface is not sensibly curved.” From these equations he derived an equation that is
fundamental importance in the theory of rotating fluids. This is obtained in two ster
First, the curl of the momentum equations [d/dy of (7.2.1) minus /0x of (7.2
eliminates n and gives the vorticity equation :

oL/ot + f(Oujdx + dv/dy) = 0, (72:

i.e., the rate of change of {/ f is equal to minus the horizontal divergence. Second,
continuity equation (7.2.3) is used to eliminate the horizontal divergence, to
P ;

Ok, T a
g i JE
The fact that this equation is easily integrated with respect to time is a ver
powerful result. Equation (7.2.8) is in fact a linearized form of the equation (to t
considered later) expressing the conservation of potential vorticity for a homogene

rotating fluid. The quantity Q’, defined by u= —0aoy/oy, v = 0Y/0x. (7.2.16
@0 = 0/H— o H, (7 1 the geostrophic balance may be written
may be called the perturbation potential vorticity, and (7.2.8) expresses the fact :.N. f oy/oy = g on/oy, f oy /ox = g on/ox. (7211

L R s el e el : eliminated from this pair of equations in order to obtain an equation for
(DG 1) = @0 3O (728 ¢ y derivative of the second equation is subtracted from the x derivative of th

e o) el | y ; i 3 i 4 that emerges is the trivial statement that zero equals zero. In fact (7.2.17) show
This infinite oLy o.m an ESmo.& rotating m:_.a can v@ .omw_o:oav a8 will be s o.<<Pu e stream function (with suitable choice of reference value) is related to pressur
find the final equilibrium solution for a particular initial state without consideri rbation by

details of the transient motion at finite times. Kelvin (Thomson, 1879), being intereste
only in oscillations, took Q' to be zero, whereas the most interesting cases of adj
ment to equilibrium are those for which Q' is nonzero. Solutions with nonzero &
were apparently not considered until the time of Rossby (1938a). )

The wm;oiﬁ initial condition to be considered here is the same as that in Sectio
5.6, namely, u = v = 0 and surface elevation given by (5.6.13), i.e.,

fv=gn=rpp. (7.2.18

istribution #(x, y) of surface elevation gives a stream function i by (7.2.18) tha
S all the steady-state equations.
n:m sense, Eo steady-state equations are %nm:ﬁ&m msa cannot EQE th

1= g ‘senibc) (7.28 the fact that each element of mEa retains its initial potential vorticity, i.e., Q.N._n
ied, which, for the special case being considered, takes the form (7.2.12). For
hically balanced flow, substitution of (7.2.14) in (7.2.6) shows that th
IS given by

(This is an initial condition different from that considered by Rossby, but the mbm_&‘
is similar.) The integral of (7.2.8) in this case is

(LS = n/H = (ro/H) sen(), & { = fg(@%njox? + Pnfoy), (7218
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, ined by adding pHu times (7.2.1) to pHv times (7.2.2). This operation eliminate
‘ﬁnam that come from the Coriolis acceleration, so that rotation terms do no
ar explicitly in the energy equations, which therefore have exactly the same forn
hose in Section 5.7. However, the solution of the adjustment problem is drasticall
ected by rotation, and thus the energy changes in the rotating case are quit
erent from those of the nonrotating case discussed in Section 5.7.

b( onsider first the perturbation potential energy. This is infinite at the initia
ent but, unlike the nonrotating case, it is still infinite when the steady equilibriun

and so (7.2.9) and (7.2.10) yield the steady-state version of (7.2.13),
—c*(@%n/0x* + 0*n/0y*) + f2n = — FH?Q'(x,,0). (722

For the present case, this gives
= dnfdx® + 1 = — [, sgn(x). (722

The solution # that is continuous and antisymmetric about x = 0 is given gm.

Uil w biel o for x>0 jon is established (assuming such an equilibrium does occur). However, th
. Mo 1 — e¥e ltoip bl () (7.2. ge in potential energy per unit length is finite and is given by
where w
a=c/|f| = (gH)*"?/|f] (7.2.2: P.E. released per unit length = 2-3pgn3 {1 —(1 —e )} dx
0

is a length scale of fundamental importance for the behavior of rotating fluids subje;
to gravitational restoring forces. It is called the Rossby radius of deformation, followin
the name given by Rossby (1938a, p. 242), or simply the “Rossby radius” or the “radiug
of deformation.” The modulus sign is used in (7.2.23) to ensure that a be a vo&: 7
quantity since f can have either sign.

The velocity field associated with the solution (7.2.22) follows from the m&owﬁow hi
equation (7.2.14), which gives u = 0 and 3

v = —(gno/ fa) exp(— | x|/a). (72

The flow is not in the direction of the pressure gradient, but at right angles, i.c., alon
contours of surface elevation that are parallel to the line of the initial Emooccsc
The solution is depicted in Fig. 7.1.

= 3pgnia. (2%

In the nonrotating case, all the potential energy available in the initial perturbatio:
nverted into kinetic energy. For the rotating case, only a finite amount of potentie
gy is released. The amount of kinetic energy per unit length found in th
ilibrium solution is given by

2:3pHgtud( fa): 7l iy et das

Il

K.E. per unit length

Lognia. (7.2.2¢

is is only one-third of the potential energy released! What happens to the othe
thirds? Rossby (1938a, p. 244) suggested that a fluid particle must “continue i
splacement beyond the equilibrium point until an excessive pressure gradier
evelops which forces it back. An inertia oscillation around the equilibrium positio
Its.” These speculative comments are fairly close to the truth, but give the mistake
ression that an equilibrium solution is never reached in any finite domain. Whe
lly happens will be found in Section 7.3, where details of the transients will k
culated.

7.2.3 Energy Considerations

The energy equations for rotating shallow-water motion may be found by the
same methods as those in Section 5.7. In particular, the mechanical energy equation

/]
[ 1 | | | x/a | 1 ,NA. wc.ﬁgm.—.v\
= = = 0 1 2 3 y :
- The problem considered above, even though only partially completed, gives
() € ; many insights into the behavior of rotating fluids responding to gravitation:
B Sregar _ s tces. Five notable features are listed below, and various concepts arising from the:
-3 2 Its are discussed in more detail in later sections of this chapter.

- (8) The energy analysis indicates that energy is hard to extract from a rotatir
lid. In the problem studied, there was an infinite amount of potential energy avai
e for conversion into kinetic energy, but only a finite amount of this availab
gy was released. The reason was that a geostrophic equilibrium was establishe:
such an equilibrium retains potential energy—an infinite amount in the ca
led !

(b) The steady equilibrium solution is not one of rest, but is a geostrophic balanc

(b)

Fig. 7.1. The geostrophic equilibrium solution corresponding to adjustment from an initial state that i one
of rest but has uniform infinitesimal surface elevation —1], for x > 0 and elevation 7, for x < 0. (a) The eq
surface level 77, which tends toward the initial level as x— +o00. The unit of distance in the figure is the Rossby
radius a = (gH)'"?/f, where g is the acceleration due to gravity, H the depth of fluid, and f twice the rate of rotat
of the system about a vertical axis. (b) The corresponding equilibrium velocity distribution, there being a _m 1
directed along the initial discontinuity in level with maximum velocity equal to (g/H)/? times No-
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he Transients

i.e., a balance between the Coriolis acceleration and the pressure gradient divig
by density. ]

(c) The steady solution is degenerate in the sense that any velocity field
geostrophic balance satisfies the continuity equation exactly. Therefore the ste
solution cannot be found by looking for a solution of the steady-state mncmmozﬂ
some other item of information is required. ;

(d) This information is supplied by the conservation of potential <o§oq.,_
principle, i.e., the potential vorticity of each fluid element is the same as that at
initial instant. With this knowledge, a steady solution can be found.

(¢) The equation determining this steady solution contains a length scale ]
called the Rossby radius of deformation, which is equal to ¢/| |, where ¢ is the way
speed in the absence of rotation effects, i.e., (¢H)/. If f tends to zero, a tends ¢
infinity, indicating that for length scales small compared with a, rotation effects d
small, whereas for scales comparable with or large compared with a, rotation effe )
are 1mportant.

er 10). Despite the name, such waves were first discussed by Kelvin (Thomson,
In meteorology, they are usually referred to simply as gravity waves, with 7
on effects being understood. A graph of the dispersion relation is shown in
2.1t can be seen from the dispersion relation that the properties of these waves
d on how the wavelength compares with the Rossby radius. The limiting

are as follows:

) Short waves (kya > 1), i.e., waves short compared with the Rossby radius,
ich (7.3.4) becomes approximately

W ~ KyC; (7.3.6)

“short” waves are ordinary nondispersive shallow-water waves. It will be
ed, however, that shallow-water theory requires that the waves have horizontal
Jarge compared with the depth, so these waves have the above form only when
ossby radius is large compared with the depth. This condition is satisfied in the
Josphere and ocean (see Section 7.4).

ji) Long waves (kya < 1), ie., waves long compared with the Rossby radius,

7.3 The Transients hich (7.3.4) gives approximately

i e (1.3.7)

the frequency is approximately constant and equal to f or twice the rotation rate.
is limit, gravity has no effect, so fluid particles are moving under their own.
a. For this reason f is often called the “inertial” frequency.

To complete the solution of the adjustment problem, i.e., of (7.2.13), it is necessary
to add a solution of the homogeneous equation v

02n/0tr — cX(0%/0x> + 0*/0y*) + [ =0 (1.3

to a particular solution, which can be taken as the steady solution #.,4,(x), given by
(7.2.22). The solution of (7.3.1) must satisfy the initial condition i

The group velocity ¢, of Poincaré waves is equal to the slope of the dispersion
e in Fig. 7.2 and thus has a maximum value of ¢ obtained in the shortwave limit,
eas it tends to zero as the wavelength tends to infinity. The consequences of
! =it mWBAXv T Q\\mgwav:
IIch 2T
5= —noe P sen(x) at t = 0. Q.m.w‘, Ter

an m:.m_om provided by a stretched string embedded in a rubberized medium. The
equation is also discussed by Whitham (1974). The transient solution for Rossbys
original problem was found by Cahn (1945) and is discussed by Blumen (1972).

Equation (7.3.1) has wavelike solutions of the form

n oc exp i(kx + ly — wt), (7.358
which on substitution in (7.3.1) gives the dispersion relation

k 1 ‘
pA = (7.34) \ “ L !

Kpa

where
7.2. The dispersion relation for Poincaré waves. For small wavenumber iy (waves long compared with
] sby radius a), the frequency @ is only slightly above the “inertial” frequency f. For large wavenumber (waves
€ompared with the Rossby radius), the waves are little affected by rotation and so approximate the nondis-
shallow-water waves found in a nonrotating system. Note that the group velocity, which is the gradient

Curve shown in the figure, is zero for zero wavenumber (infinitely long waves) and increases monotonically
12

Kk = k* + I (7.3.9)

1s the square of the horizontal wavenumber. Waves with this dispersion Rﬂmao‘w
(k, I eal) will be referred to as “Poincaré waves” here, although this name is sometimes

reserved for the subset that satisfies the boundary conditions for a channel (see

itude with 1, to a maximum of (gH)'/? for very short waves.
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| is useful for computing solutions, and integrals for 1, v in terms of 50. Bessel
‘, n can be obtained from (7.2.2) and (7.2.3). Cahn (1945) used expressions of
Rossby’s initial values. ;
amm%ﬁmaosm PW\H n, u, v are displayed in Fig. 7.3 and can be .ooawmﬁoa with the
ns for the nonrotating case discussed in Section 5.6 (see Em.. 5.9a). Instead of
<m front transmitting just the initial step, as 5. the nonrotating case, .Eo step
followed by a “wake” of waves that trail behind because of dispersion. The
imém that make up the step still travel at speed ¢, but E:mﬂ waves travel more
(ie., their mnowﬁ velocity is smaller), so they lag behind the front. At a mx.aa
this is made evident by the fact that the frequency appears to .aooﬂommm with
fter the wave front has passed (i.e., the time between wave crests _:memmmv and
| approaches the inertial frequency f, as can be seen from (7.3.14). Figure 7.4b
ws how u changes with time at x = a. Another property that can be seen from

these variations will be seen in the transient solution because short waves moye
rapidly from the initial discontinuity, whereas long waves move off only slowly—
longer the wave, the smaller the group velocity, which velocity is given by

¢ = ckiva ofkif for small k. (13

Other properties of Poincaré waves are discussed later.

The solution of the transient problem can now be found by finding a suit
superposition of wave solutions (7.3.3) (Gill, 1976). The appropriate combinatiop
waves is the one that gives the initial distribution (7.3.2), and this can be found frg
tables of integral transforms [see, e.g., Erdélyi et al. (1954, Vol. L, p. 72)]. Thus (7
is equivalent to

0

Ig k sin kx

f— &»-
1 Tl i e a2 (7

7] x/a

At later times, # will consist of the same superposition of Poincaré waves, ¢
allowance must be made for their propagation. Thus 2 sin kx in (7.3.9) will be repla
by the combination of Poincaré waves that preserves antisymmetry, namely,

sin(kx + wt) + sin(kx — wt) = 2 sin kx cos wt. (738

In other words, the solution at time ¢ is given by

21 [ k sin kx cos wt ,
i1 Eripomiip i &

where w is given by (7.3.4) with [ = 0.
The solutions for u and v can also be obtained by reference to the standing-wa
solutions that follow directly from Egs. (7.2.2) and (7.2.3) with d/dy = 0, namely,

n = sin kx cos wt,
—(w/kH) cos kx sin wt, (7.3
v = —(f/kH) cos kx cos wt.

u

Thus u and v are obtained by replacing sin kx cos wt in (7.3.11) by the appropri

(a)

0
s NG:O\Q% (K* + a=?)""/2 sin wt cos kx dk, (7.38 Ruhi

5 g. 7.3. Transient profiles for (a) 7, (b) u, and () v for adjustment under gravity of a fluid with an initial in-
imal discontinuity in level of 217, at x = 0. The solution is shown in the region x > 0, where the mcl,wnm e
ly depressed, at time intervals of 2~ 1 where f is twice the rate of rotation of the system about a vertical wv.:m.
tks on the x axis are at intervals of a Rossby radius, i.e., (gH)'//f, where g is the acceleration due to gravity
is the depth of fluid. The solutions retain their initial values until the arrival of a wave front nrmﬁ.:m<.m_m out
the position of the initial discontinuity at speed (gH)'/2. When the front arrives, the surface elevation rises U.,\
iNd the u component of velocity rises by (g/H)*n4 just as in the nonrotating case depicted in Fig. 5.9a. This is
ause the first waves to arrive are the very short waves, which are unaffected by rotation. Behind the front
ever, is a “wake” of waves produced by dispersion, which in the case of u, have the slope given by the Besse!
10N (7.3.14). This is the point impulse solution to the Klein—Gordon equation. The “width” of i,:.w ?03 narrows
€rse proportion with time. Well behind the front, the solution adjusts to the geostrophic equilibrium solutior
ted in Fig, 7.1.

where o is given by (7.3.4). It happens that the transform on the right-hand side
be evaluated exactly (Erdélyi et al., 1954, Vol. 1, p. 26), giving

i % (gro/eWo( (1 = x*/c?)!)  for |x| < et (731
0 [oa o g .

where J, is a Bessel function of order zero. This is a special solution of the Hﬁa._‘
Gordon equation, corresponding to a point impulse at x = 0 and t = 0 (Morse &
Feshbach, 1953, p. 139), i.e., the acceleration du/dt has the form of a delta function
result of the infinite pressure gradient that exists at the initial instant. The soluti€
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Fig.7.3. (continued)
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(a)

5 /w\ 15

(b)

“The u velocity as a function of time ¢ (a) at the position of the initial discontinuity in level and (b) o
away. The time axis is marked at intervals of f~ %, where f is the inertial frequency. The solutions shc
ith frequency near f, and these oscillations decay with time like = large times.

b is the shortening of the length scale just behind the wave front at x =
ecause the expression in (7.3.14) is approximated by

B = (¢ +x/o)(t — x/c) ~ 24t — x/c),

gth scale diminishes in inverse proportion with time.
so be seen that the solution approaches the steady solution of the previo
h as time goes on. Details can be calculated from the asymptotic behavi
el function for large times. It is also clear where the potential energy th
verted into kinetic energy of the equilibrium solution has gone. The wa
g away from the initial discontinuity carry energy with them, so for a:
energy is lost through the sides by “radiation” of Poincaré waves un
nergy left is that associated with the steady geostrophic equilibrium.
fer new information provided by the transient solution is the time scale
ment process. Near the origin, i.e., within a distance of the order of t
1us, the time scaleis f 7!, i.e., the rotation time scale or “inertial” time sce
0 half the period of a wocow:: pendulum). However, as Rossby suggeste
1 does not adjust monotonically to the equilibrium solution, but overshoc
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Fig.7.5. (continued)
(a)

Fig. 7.5.  (a) An (internal) Poincaré wave front observed in Lake Ontario following a storm on 9 August 1972.
Lines show the thermocline depth as measured by the 10° isotherm. Times of the beginning and end of each transect
are shown. The first transect shows the large downwelling produced by the passage of the storm, and subsequent
sections show the geostrophic adjustment process involving radiation of Poincaré waves. (b) Results of a (nonlinear
two-layer) model simulation of this event by Simons (1978). The diagrams are from Simons (1978, 1980) and may .
be compared with the solution shown in Fig. 7.3 for a very simple initial condition.

Thus oscillations of frequency f are found because these are associated with the lor
aves of zero group velocity that are left behind. However, the group velocity is nc
Xactly zero for any nonzero wavenumber, so energy disperses slowly and this cause
the algebraic decay in the oscillations as given by (7.3.16).

~ Some waves with characteristics very similar to those depicted in Figs. 7.3 an
14 were observed in Lake Ontario in August 1972 and are shown in Fig. 7.5. Tt
initial condition, produced by storm-induced downwelling near the boundary, has
Steplike structure as assumed for the solution shown in Figs. 7.3 and 7.4. Howeve
because of the boundary at the coast, these are also reflected waves. A linear calcul:
5: could mmm:u\ deal with them by the Boﬁroa of i images :mom to construct Em S

and tends to oscillate about it. The behavior is typified by the value of u at x = 0,
namely,

= (gn0/)J o( f2), - (7.3.158
shown in Fig. 7.4a. For large ft, this solution is approximated asymptotically by ,
u ~ (gno/ANQ/mfi)? sin( ft + /4. (73.16) ) .,bES effects as well.
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a] terminology is used, namely, when a rotation is in the same sense as f, it is
¢yclonic and when it is in the reverse sense, it is said to be anticyclonic.

The Rossby adjustment problem explains why the atmosphere and ocean are
w always close to geostrophic equilibrium, for if any force tries to upset such an
brium, the gravitational restoring force acts in the way described in Sections
and 7.3 to quickly restore a near-geostrophic equilibrium. However, there is
oh more to the story than that, because the geostrophic equilibrium solution
Wic does not satisfy the equations exactly when account is taken of the fact that f
ot constant. Because the constant- f/ solution is degenerate, the processes that
ly take place are rather subtle, and much of what :m.%@@a in the ocean and
sphere can be described as “quasi-geostrophic” motion that has this subtle

7.4 Applicability to the Rotating Earth

The Rossby adjustment problem teaches us a lot about the behavior of rotatj
fluids, but the analysis is for a fluid rotating about a vertical axis. The rotation axis
the earth is not vertical, except at the poles, and furthermore, its angle with
vertical changes from place to place. Does this mean that the analysis is not applicap
to the rotating earth, or is it applicable in some approximate sense? Kelvin (Thomsg,
1879) stated that his wave solutions (the so-called Poincaré waves) are applicable.

in any narrow lake or portion of the sea covering not more than a few degrees
the earth’s surface, if for 1 / we take the component of the earth’s angular velo,

round a vertical through the locality—that is to say racter. \ LA ; - ’
he use of a constant-f approximation to describe motion on the earth is
3f = Qsing, (741 etimes called an f-plane approximation. It is adequate to handle the rapid or

oss” adjustment processes of the sort already considered, and these are charac-
ed by time scales of order '~ ! or smaller. The more subtle adjustment processes,
h are characterized by time scales large compared with f ™!, will not be
dered until Chapter 11.

where Q denotes the earth’s angular velocity, and ¢ the latitude.

(The notation has been changed in the quotation to comply with that used here))

Kelvin’s statement can be justified by examining the linearized version of th
momentum equations (4.12.14)—(4.12.16), which are the ones appropriate to the
earth. These reduce to (7.2.1) and (7.2.2) if three conditions are satisfied. The fi
condition is that referred to by Kelvin, namely, that the range of latitude be s
enough for f to be regarded as constant and to allow use of local rectangular coo
nates. The second is that the additional term 2Qu cos ¢ in the vertical componet
(4.12.16) of the momentum equations should not upset the hydrostatic balance. Th
is easily checked by calculating the additional pressure at the bottom due to this ter:
when a Poincaré wave given by (7.3.12) is present. This causes negligible change i
the pressure gradient if

5 The Rossby Radius of Deformation

The Rossby radius of deformation «a is a length scale of fundamental importance
mosphere—ocean dynamics. Basically, it is the horizontal scale at which rotation
cts (of the “gross” variety) become as important as buoyancy effects. More
fically, it is the scale for which the middle and last terms on the left-hand side of
2.13) are of the same order.

Consider first its significance in transient problems. In the early stages of adjust-
from an initial discontinuity, the change of level is confined to a small distance.
pressure gradient is consequently very large, and gravity dominates the behavior.
other words, at scales small compared with the Rossby radius, the adjustment is
oximately the same as in a nonrotating system. Later, however, when the change
evel is spread over a distance comparable with the Rossby radius, the Coriolis
eleration becomes just as important as the pressure gradient term and thus
tion causes a response that is markedly different from the nonrotating case.
The same considerations apply to Poincaré waves, so the short waves (k' < @
- Very much like gravity waves in a nonrotating system, as discussed in Section 7.3
EWaves with scales comparable with the radius of deformation, the buoyancy
0 12 in the dispersion relation (7.3.4) is of the same order as the rotation term
Long waves (k7! > a), on the other hand are dominated by rotation effects and
€ frequency close to the inertial frequency f, which for applications to the ocearn
& atmosphere is also the Coriolis parameter given by (7.4.1). The inertial perioc
J is also half the period of a Foucault pendulum, and therefore is sometimes
€d a half pendulum day. This varies with latitude and is 12 hr at the poles, 17 hi

gky > (2Q)? sin ¢ cos ¢, (742

which is well satisfied since x;; ! cannot be greater than the radius of the earth, wh
happens to be much smaller than

g/2Q)? ~ 460,000 km.

The third condition is that it be possible to neglect the additional term 2Qw cos @ i
the horizontal momentum equation. The largest value of w is its value dn/dt at th
surface. Using the Poincaré wave solution (7.3.12), it is found that the condition
its neglect is that

Hiy, « tan o, (743

which is implied by the condition Hxy « 1, used already to justify the hydrostatt
approximation, provided ¢ is not too small, i.e., the area considered is not too clo$
to the equator.

Further discussion of the approximation will be made later. For the moment, th
main point is that f is interpreted as the quantity defined by (7.4.1), which is called ﬁ.ﬁ
Coriolis parameter. This parameter is positive in the northern hemisphere and negatl
in the southern hemisphere. The sign of f is very important in many applications, ¥
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at 45° latitude, 1 day at 30°, and nearly 3 days at 10°. At the equator, it go@w_
infinite, but by that stage the f-plane approximation breaks down. 1

The Rossby radius of deformation is not only significant for the behavigy
transients, but is also an important scale for the geostrophic equilibrium solutig ;.._
well. That was seen in the adjustment from the initial discontinuity, @oom:momu_
discontinuity did not spread out indefinitely, but only over a distance of the o :
of the Rossby radius.

For geostrophic flow, the Rossby radius is the scale for which the two contribytj;

should be remembered that the Rossby radius is considerably larger near the
or, €.g., four times bigger at 10°, where f = 0.25 X 0=* s %
or deep water in the ocean, where H is 4 or 5 km, ¢ is about 200 m s~ ' and
core the Rossby radius a = ¢/ f = 2000 km. This is large compared with the
so the hydrostatic approximation is valid at this scale, although the scale is
Jarge for f to be taken as constant. For applications on the continental shelves
1 shallow seas like the North Sea much smaller values apply because the depth
: : ; ller. For H = 40 m, for instance, ¢ = 20 m sietandiat —ic/ifi=—200«m’
terms In ,Q.N.&. to the perturbation potential vorticity Q" are of the same order. Foy WMHMHWN_OZF Sea has larger dimensions than this, rotation has a mﬁ\ﬂwsm effect on
m&cmo_am_ <m:mw5.s of surface elevation with wavenumber #, the contribution ient motions such as tides and surges.
R i isomieizatio i ¢ above values are calculated for a homogeneous shallow layer of fluid.
L0 Sk wever, the adjustment problem can m_mo.co done for a m:m:mo.a nsa using .:6
e St . (7.5.1 aration of variables technique discussed in Chapter 6. The Coriolis acceleration
: he same structure in the vertical as has the acceleration relative to the rotating
. so the separation technique works in the same way and the analysis of Sections
d 7.3 applies to each of the normal modes, the only difference (see Sections 6.11
4 6.14) being that H is replaced by the equivalent depth H,, which is related to the

L

h
rd

to the contribution from the surface elevation, by (7.2.19). For short waves (el <8

therefore, the vorticity term dominates, whereas the surface elevation term aowE.:m

for long waves (x5! > a). ,
The ratio (7.5.1) gives not only the partition of perturbation potential vortici aration constant ¢, by (6.11.14).

but also the partition of energy. This may be seen by multiplying the terms on Thus there is a Rossby radius associated with each of the normal modes. The

left-hand side of (7.5.1) by 3pgH#n and integrating over a wavelength. The second ter s calculated above are for the barotropic mode and are therefore called values
e barotropic Rossby radius. Each of the baroclinic modes has an associated
1
P9 % % n? dx dy

ssby radius
is the potential energy, whereas the first is, by (7.2.19),
I 0\? o’y 8%y

_QN ,_,% m:N m:»mm mm
=-p|%) H sl gy e |
2 0x oy 0x smx dy smu\ &l

@y =iGioh s = Al 2 (7.5.4)

ch can be called the nth baroclinic Rossby radius, ¢, being the nth value of the
ation constant c, (see Section 6.11), which is equal to the wave speed of the ntk
de in a nonrotating system. If a value of n is not given, the first baroclinic mode i
iderstood. For the ocean, the value of ¢, is usually 1-3 m s~ ', so typical values o
the baroclinic Rossby radius are 10-30 km, with larger values in low latitudes. This i
rge compared with the vertical scale (which may be taken as the thermocline deptt
about 1 km), so the hydrostatic approximation is valid at this scale. The baroclinic
ssby radius is a natural scale in the ocean that is often associated with boundar;
omena, such as boundary currents and fronts, and with eddies.
' For the atmosphere, the Lamb wave is the fastest mode with ¢ ~ 300 m s~ ! The
ociated Rossby radius of 3000 km is too large for the f-plane approximation to b
id. For internal modes, there is a continuous set of modes and therefore a con
1Wous set of Rossby radii. In the isothermal case, ¢ & N/m, where N is the buoyanc
m uency and m the vertical wavenumber, so

il 2 5
IMbm w* + v°) dx dy,

the last equality making use of (7.2.14). Thus the first term is the perturbation kineti€
energy, and so

K.E.:PE. = %421, (7.52)

Le., short-wavelength geostrophic flow contains mainly kinetic energy, whereas lon.
wavelength geostrophic flow has most of its energy in the potential form. _ a~ N/mf (755

. Zosw typical values of the Rossby radius will be calculated. These vary somewhat 3 : .
with latitude because of the variation of f that is given by (7.4.1), i.e., by !

i | T i (1.53)
Estimates will be based on the value f = 1.0 x 10™* s~ ! appropriate to 45° latitudé

.S:o N/ f is typically of order 100, so the Rossby radius is about 100 times th
ttical scale m~ L. For a vertical scale associated with the height of the tropopause
about 1000 km. This is the predominant scale seen on weather charts as the scal
”,%romm and anticyclones, and is often called the “synoptic scale.”

B
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For both ocean and atmosphere it happens that

e (7.5.6

except for rather limited regions; the horizontal scale a is therefore large compare
with the vertical scale m™ !, and therefore the hydrostatic approximation is justifi
for motions with these scales. The fact that (7.5.6) is generally true has strone
influenced the way rotation effects have been introduced in this chapter, in particulay
the restriction to motions for which the hydrostatic approximation is valid, wow.
planet for which (7.5.6) were not true, a rather different approach would be needeg
For baroclinic modes, the results (7.5.1) and (7.5.2) are still valid, but the term
involving # is then associated with vertical displacements of isopycnals and in the
case of a compressible medium, with compression and expansion of fluid elements:
i.e., with changes of internal and potential energy. Thus it can be said that the terp
( represented by 7 corresponds to changes in the mass field, whereas that represented
: by { corresponds to changes in the velocity field. Thus for large scales (xya < 1)
(7.5.1) and (7.5.2) show that the potential vorticity perturbation is mainly associated
with perturbations in the mass field, and that the energy changes are in the potential
and internal forms. On the other hand, for small scales (xya > 1) potential vorticity
perturbations are associated with the velocity field, and the energy perturbation
mainly kinetic. It follows that a distinction can be made between the adjustme
processes at different scales. At large scales (k' > a), it is the mass field that
determined [ through (7.2.10)] by the initial potential vorticity, and the velocity field
1s merely that which is in geostrophic equilibrium with the mass field. It is said,
therefore, that the large-scale velocity field adjusts to be in equilibrium with the large-
scale mass field. On the other hand, at small scales (k7' « a) it is the velocity field
that is determined by the initial potential vorticity, and the mass field is merely that
which is in geostrophic equilibrium with the velocity field. In this case it can be said.
that the mass field adjusts to be in equilibrium with the velocity field.

7.6 The Geostrophic Balance

An important feature of the response of a rotating fluid to gravity is that it does
not adjust to a state of rest, but rather to a geostrophic equilibrium [ the name geo=
strophic is due to Shaw (1916)]. Consequently, the ocean and atmosphere tend to wa,,
close to a state of geostrophic equilibrium all the time [ see Phillips (1963) for a Rioc& 4

The development of an awareness of this fact has been very slow. The barometer:
was invented by Torricelli in 1643, and its potential for weather prediction was soof
realized. Barometer readings, along with temperature, wind direction, and state of the
sky, were taken daily in the first network of stations set up by Anitoni, secretary to the ﬁ
Grand Duke Ferdinand II of Tuscany in 1654 Toou e.g., Khrgian (1970, Chapter mm. i
This network included stations as far apart as Florence, Warsaw, and Paris and
operated until 1667. Various other attempts were made in the eighteenth centurYs
the most notable being an international effort with standardized instruments
organized by the Mannheim (or Palatine) Meteorological Society, beginning in 1781:%
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owever, a clear idea of the relationship between wind &Roanb NEQ. pressure
ient does not appear to have emerged until 200 years after the invention of the
?nﬁoﬁ Many writers in the mid-nineteenth century mroéom some awareness of
_ relationship, so one cannot easily associate the idea 2:.? any particular person.
ebrandsson and Teisserenc de Bort (1898, Chapter 3) give oxm.a%_omn .Eo earliest
Brandes (1820), who studied data collected by the Mannheim Society for the
"1783. He did not publish diagrams, but Fig. 7.6 shows a chart constructed from
des figures by Hildebrandsson and Teisserenc de Bort. Contours are pressure
_iations in lines (5 Parisian inch of mercury or about 3 mb) from mean values at
m: locality. Brandes noted that the wind direction was closely 358&. to .Em
ure distribution and attributed the turning to the right (from Eo. m:oo:.os
osite to the pressure gradient) to the rotation of the earth. Another E,aaom:sm
ple is shown in Fig. 7.7 from Birt (1847). In the first report of the British >m.mo-
on in 1832, Forbes expressed his hopes for future networks of meteorological
ons as a means for detecting “great atmospheric tidal waves” like Eomo treated
Laplace. As a result, a committee was set up under Herschell, and Birt gave five
orts on work he did for the committee. Birt was influenced by Scott Russell’s
tt on waves (1844), referred to in Section 5.4, and proposed that the wave
ription shown in Fig. 7.7 could explain much of the available observations.

" Let the strata aaa’a’, b'b'bb, fig. 2, represent two parallel aerial currents, aaa’a’

HW.BRANDES:

Carte synoplique
du 6 Mars 1783.

2
{ i

% eargy At ST

=
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Fig.7.7. A wave description of wind and pressure changes proposed by Birt (1847 fig. 2), which included the
concept of wind being along isobars. The lines aa and bb are lines of low pressure, whereas the line a’a’ or b'b/’ is
one of high pressure. Winds in between are in the direction shown, and the whole system propagates in the direc-
tion shown by the large arrow.

the N.W. in the direction of the large arrow, that is the strata themselves will ad-
vance with a lateral motion. Now conceive the barometer to commence rising just
as the edge bb passes any line of country, and continue rising until the edge b'¥’
arrives at that line, when the maximum is attained. The wind now changes and
the barometer immediately begins to fall and continues to fall until the edge aa
coincides with the line of the country on which bb first impinged (Birt, 1847 p. 135).

Birt’s description is not only of interest in connection with the relation between wind
direction and pressure gradient, but also in connection with waves, which will be
studied in later chapters.

Despite these insights, the rules that “the wind is in general perpendicular to the
barometric slope” and that “if you turn your back to the wind, the lower pressure
will be on your left and the higher pressure your right” are sometimes referred to as
Buys-Ballot’s law (for the northern hemisphere) since he expressed them thus in his
yearbooks of 1857 and 1860 (Khrgian, 1970).

On the theoretical side, interest in the effects of the rotation of the earth was
stimulated by the experiments of Foucault (1851), which were followed 8 years later
by the “bathtub” experiment of Perrot (1859). In this, a small hole in the center of the
base of a large cylindrical container was opened after the water in the container had
been left a whole day to settle down. As he expected from theory, Perrot found that
fluid particles were deflected to the right, thereby acquiring, in modern parlance, a
cyclonic rotation. A repetition of this experiment can be seen in the film “Vorticity”
by Shapiro [see National Committee for Fluid Mechanics Films (1972, pp. 63-74)].

Perrot’s experiment prompted Babinet (1859) to attribute preferential erosion on
the right banks of Siberian rivers, among other things, to the rotation of the earth. He
was immediately “jumped on” by his colleagues for this. In particular, Delaunay
(1859), after showing that the horizontal force per unit mass due to rotation is f times
the velocity, put it this way: Consider a straight canal in the northern hemisphere. If
the fluid is at rest it will exert equal pressures on its two banks. If it moves, “the pressure
will diminish a little on the bank left of the current and increase a little on the right
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.,,cmsw (p. 692).” He also said that the changes would be quite small. Combes (1859) went
further and showed that the surface would slope up to the right in the northern

pemisphere (and to the left in the southern hemisphere) with an inclination given by

surface slope = 2Q sin ¢ v/g, (761
which is another way of expressing the geostrophic balance Q.N.T.c. He om_.oc_mﬁom
that for a river 4 km wide flowing at 3 m s~ 1 at 45° latitude, the difference in level
petween the two sides would be 12 cm. .
These discussions at the Paris Academy were not directed toward meteorological
questions, but had some “spinoff” in European meteorology later [see Abbe Gm.ju
1893, 1910)]. In the United States at this time, however, Ferrel was concerned s,:E
applying the equations of fluid motion on a rotating sphere to meteorological
problems, and in particular to the global circulation. He appears to be the first person
(Ferrel, 1859, pp. 397-398) to deduce that large-scale motions of the atmosphere are
approximately hydrostatic and geostrophic. His approach was ﬂo.mﬂmﬁ Eﬁamam.ﬁ the
hydrostatic equation, neglecting changes of temperature with height to obtain the
exponential falloff (3.5.12) with height. This was substituted in Ew :o.irlmoc:_
component (4.12.15) of the momentum equation and then approximations were
made that amount to approximating (4.12.15) by
2Qu sin ¢ = —(pr)~ ' dp/d¢ + friction term. (52
He then argued that the friction term would be relatively small and used surface
pressure measurements to calculate from his formula the zonal winds at the surfacs
and at a height of 3 miles (5 km), using observed pressures and a reasonable approxi
mation for dependence of temperature on latitude. At 5 km he obtained westerl
(ie., eastward) winds at all latitudes with maxima of 13 m s~ "' at 55°N and 23 m s~ :
at40°S. He did not find easterlies near the equator as observed (see Fig. 7.9), but as he

- stated: “Very near the equator the formula. .. fails practically, since, on account of the

small value of sin ¢ there, the effect of” friction and inertia “may be very great” (p.401)

The geostrophic relationship found in (7.2.14) applies to any one mode. The mor
general result (which could be obtained by adding contributions from modes) come:
from balancing the pressure gradient and Coriolis terms in (4.10.11) to give

— fo.= —pil op/lox, (7.6.3

fis =~ p i Bploy. (7.6.4
The nonlinear terms and friction terms, which were automatically excluded in th
linear inviscid analysis, tend to be important only in regions of strong gradient such a
fronts and boundary currents, and friction effects are significant, though no
dominant, near the surface. Thus surface winds tend to be along isobars, in E,,
direction given by Buys-Ballot, and pressure is related to a stream function by (7.2.18
Le., winds are strongest when isobars are closest together. Another way of remem
@odsm direction is in terms of the direction of rotation around a “high” (anticyclone
Or “low” (cyclone). The air has a cyclonic rotation around a cyclone, as the tern



(a)

Fig.7.8. (a) (i) The dynamic height of the sea surface of the Pacific Ocean relative to 1000 db (i.e., the anomaly in the difference of geopotential between these two pressure
levels) in dynamic meters. Arrows show the direction of the current at the surface relative to that at 1000 db. Dots represent data points where values were computed. [From
Reid and Arthur (1975, Fig. 1)1 (i) A similar map, showing the dynamic height or geopotential anomaly of the 1000-db surface refative to 2000 db. Oceanographers make use of
these charts for inferring currents because of the difficulties involved in determining the absolute topography of a pressure surface. (b) Thickness charts give the equivalent in-
formation for the atmosphere, e.g, (i) shows the wintertime difference in geopotential height (m) between the 850- and 1000-mb surfaces. Values can be converted into average
temperature between the two levels in K by multiplying by 0.210. The contour interval is 10 m (2.1K). Because the field is so nearly zonal, certain features are best brought out
by p\ottmg departures from the zonal mean as is done in (ii). The contour mterva[ is now 9 m (1.9 K), and the difference between the warmth of the oceans and coldness ofthe -
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- meteorology and oceanography. The advantage in meteorology is clear becausé
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Jative Geostrophic Currents: The Thermal Wind

rrel not only found that the atmosphere was approximately in hydrostatic an
trophic equilibrium, but also showed that this fact could be exploited to calculat
o air winds, using surface pressure measurements and temperature observations
ck of other information, Ferrel’s winds at an elevation of 3 miles were calculate:
e assumption that temperatures up to this level were not too different fror
e values.

owadays, radiosonde ascents of the atmosphere (and lowerings of salinity
serature—depth recorders in the ocean) are routine, so accurate information abou
ations of temperature and humidity (or temperature and salinity) with pressur
be obtained. The equation of state gives the density as a function of pressure, s
geopotential ® can be calculated from the hydrostatic equation (3.5.6), i.e.,

dp. (7

(b)(iii)

Fig.7.8. (continued)
. information from radiosondes is often recorded in terms of values at “significar

ats,” i.c., places at which there is a significant change in temperature gradient. .
od approximation to the profile is obtained by joining these points by straight line
thermodynamic diagrams (see Section 3.9). Graphical methods of calculatin
potential changes from these diagrams are discussed, e.g., by Godske et al. (195
pter 3).

" In the atmosphere, the dynamic height of any pressure surface can be calculate
scause the surface pressure is known. The same is not true in the ocean because th
ation of the free surface relative to a geopotential is not usually known. Howeve
erences in the dynamic height of given pressure surfaces can still be calculated, s
e geostrophic velocity at one level can be calculated relative to that at another.
- Temperature and salinity values in the ocean, if obtained by STD (salinity
emperature—depth) or CTD (conductivity—temperature—depth) recorders, a
ally listed in a cruise report and sent to a data center as values at certain standar
ths, with some additional values where changes of gradient occur. If obtained t
msen bottles, which record temperatures and collect samples of water for analys
tprearranged depths, values at those depths are given. There are standard comput
utines to calculate values of density and of dynamic height. For calculations of tt
tter quantity, the density is calculated in terms of the specific volume anomaly .
ned as the specific volume v, = p~ ! related to the value at the same pressure f¢
_ €mperature of 0°C and a practical salinity of 35, i.e.,

0 =0l (STD p)i—"v(B5; 0)p): (Tl

,,M,.omc be calculated using (A3.3), and is usually given in units of 107% m? kg™ '. Tl
€0potential anomaly @' (the usual notation is —AD) is then defined by

implies (i.e., anticlockwise, looking downward, in the northern hemisphere and clock-
wise in the southern hemisphere) and anticyclonic rotation around an anticyclone,

There is a significant correction to geostrophy for surface winds. One way of
expressing this is to define the geostrophic wind (u,, v,) by A

Jags —p= L ap/ay, Sfog = p~ 1 0p/ox, (7.6.5)

and express the surface wind in terms of the geostrophic wind. This amounts to a.
reduction in magnitude (which increases as the distance from the ground decreases)
and a change in direction toward the low pressure, typical angles being around 20°.
In practice, the correction depends on stability of the air and on whether or not
equilibrium conditions have been established. (Diurnal variations in heating rate
and variations in terrain work against this over land.) The deviation from geostrophy
decreases with height and is usually quite small above 1 km. A verification of the
closeness of geostrophic balance aloft was obtained by Gold (1908).

Although (7.6.3) and (7.6.4) are a convenient way of expressing the geostrophic
relationship at the surface, a more convenient form for other levels is in terms of

isobaric coordinates (see Section 6.17), i.e., the velocity on a constant-pressure
surface is given by

—fo = —0®/0x, (7.6.6)

fu = —0®/0y, (7.6.7)

where @ is the geopotential on that surface. This is the form used in practice in both
r

AD e Bit 1E b gy 1.

0

density is eliminated and thus charts of @ at different pressure levels have the same
scale for o.o=<o25m into velocities. As an example, Fig. 7.8b includes charts of the
geopotential height (see Section 3.5) of the 200 mbar surface. Winds at this pressure

can be calculated from (7.6.6), (7.6.7), and (3.5.2). IS obtained by integration from zero pressure (the surface) to the pressure co

Ined. Since the anomalies are expressed relative to a function of pressure only, t]
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1 the two pressure surfaces. Figure 7.8b shows an example of a thickness chart.
‘eorology these are more often used as a measure of mean temperature than

ive winds.

horizontal gradients of @’ along isobaric surfaces are the same as horizontal gradig,
of ®. Hence ,

: 09'(p) the above discussion, the information in the hydrostatic and geostrophic

o) i w0 s A ions has been combined, following Ferrel, by first integrating the hydrostatic

20 (17 on and then using the geostrophic relation. Alternatively, the geostrophic

o u(0)} = — |€ v“ i ons (7.6.6) and (7.6.7) can be differentiated with respect to pressure N.EQ then
ay .drostatic relation used to substitute for 0®/0p = —p~*. The result is

give geostrophic currents relative to the surface. Similarly, geostrophic velocities f év/op = p~? Op/0x, f ou/op = —p~? dp/dy. (7.7.8)
pressure p; can be calculated relative to another pressure p, by ‘
P tively, using the hydrostatic equation again to put dp = —pg dz, this may
= f{vep1) — ve(p2)} = — 5 {@(p1) — P(p2)} ; itten
(. f ov/oz = —gp~'(0p/0x),, [ Ou/dz = gp~'(0p/dY),, (79

) Ly ,
S {ug(p1) — ulpa)} dy pllmalie) he derivatives on the right-hand side are taken on constant-pressure surfaces.
Usually the reference level (subscript 2) is chosen to be the lower of the two levels, an
hence at the higher pressure (p, > py).

As an example, Fig. 7.8a shows the dynamic topography of (i) the surface of tl
Pacific Ocean relative to the 1000-decibar level and (ii) the 1000-db relative to tl
2000-db level. [ In oceanography the decibar (dbar) (see Section 3.5) is often used a
unit of pressure since a pressure change of 1 db corresponds to a change of depth
1/pg times this value, which is very close to 1 m: typically 1 db = 0.995 m near
surface and 0.969 m at the 5000-db level. Often the distinction between a decibar and
meter is of little importance and is ignored. | Usually, currents at the deeper levels ai
small compared with surface values, so the surface currents relative to 1000 or 2000d
are assumed to be a good approximation to actual surface currents. There is alw:
the question, however, of which reference level gives the best approximation to surf
currents. The ideal reference level would be a “level of no motion,” but such a ley
does not necessarily exist in practice because both components of velocity need
vanish at the same level. Methods of deducing a reference level from temperature an m& wind blows along isotherms (or, more precisely, along contours of constant
salinity observations in a neighborhood are discussed by Stommel and Schott (197 ness) with, in the northern hemisphere, cold air on the left and warm air on the
and Killworth (1980b). i There are various consequences that are useful to remember.

In meteorology, the dynamic height of one pressure surface relative to another; Ippose, for instance, the geostrophic wind at the reference level has a component
called the thickness. If the perfect gas law (3.1.2) is satisfied, (7.7.1) gives old to warm. Then the thermal wind will be directed to the left in the northern
phere (see Fig. 7.10), so the wind will back with height (i.e., the wind vector will
.sao_OoW,Smﬂ or cyclonically, with height). Conversely, the wind will veer with
t(ie, rotate anticyclonically) if the wind has a component from warm to cold.
backing of the wind with height is associated with cold air advection and veering
I®ight is associated with warm air advection.

12 chart showing isotherms on a constant-pressure surface, the shear vector is
; o.%o_oaom:% around low temperatures (or low thickness) and anticyclonically

high temperatures (or high thickness). Thus if a low-pressure disturbance has a
i .Eo cyclonic flow around the core will increase with height, and vice versa.
1y, H,m a high-pressure disturbance has a warm core, the anticyclonic flow will
With height, and vice versa. If temperature and pressure centers do not

Ily so small that the distinction is unimportant for practical purposes.)
- a perfect gas p = p/RT, so the derivatives on the right can be reexpressed in
of temperature to give

B 0= = gT (0T /0x),, f ou/oz = —gT (0T /dy),. (7A7EL0)

rm of the equation is called the thermal wind equation, and gives a relation
n temperature gradient (on an isobaric surface) and wind shear. It follows that,
el found, when temperature decreases toward the poles, winds become more
erly (i.e., stronger toward the east) with height. Figure 7.9 shows observed dis-
ons of temperature and wind with latitude and height, and the relationship
n the two fields, as expressed by (7.7.10), is apparent.

s useful to think of the thermal wind as the wind at one level (denoted by
pt 1, say) relative to the wind at a lower level (denoted by subscript 2). Then the

p2
®, —®, = | p 'RTdp=RT In(p,/py), (7.
P
where T is the temperature averaged with respect to the logarithm of the press
co.goos the two levels. Hence the thickness, and therefore relative winds, is assoc1df
with a mean temperature T. Another interpretation of T is obtained by integratlt
the hydrostatic equation in the form (3.5.11), which gives
p1 b1
In(p,/p1) = | (g/RT)dz = (9/RT) | dz, €

p2 p2

e, 1/T is the reciprocal of the temperature averaged with respect to distance
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