Properties of Seawater

A3.1 The Equation of State

It is necessary to know the equation of state for the ocean very accurately to determine stability properties, particularly in the deep ocean. The equation of state defined by the Joint Panel on Oceanographic Tables and Standards (UNESCO, 1981) fits available measurements with a standard error of 3.5 ppm for pressure up to 1000 bars, for temperatures between freezing and 40°C, and for salinities between 0 and 42 (Millero *et al.*, 1980; Millero and Poisson, 1981). The density ρ (in kilograms per cubic meter) is expressed in terms of pressure p (in bars), temperature p (in °C), and practical salinity p S. The last quantity is defined in such a way (Dauphinee, 1980) that its value (in practical salinity units or psu) is very close to the old value expressed in parts per thousand (ppt). Its relation to previously defined measures of salinity is given by Lewis and Perkin (1981).

The equation for ρ is obtained in a sequence of steps. First, the density $\rho_{\rm w}$ of pure water (S=0) is given by

$$\rho_{\rm w} = 999.842594 + 6.793952 \times 10^{-2}t - 9.095290 \times 10^{-3}t^2 + 1.001685$$
$$\times 10^{-4}t^3 - 1.120083 \times 10^{-6}t^4 + 6.536332 \times 10^{-9}t^5. \tag{A3.1}$$

Second, the density at one standard atmosphere (effectively p = 0) is given by

$$\rho(S, t, 0) = \rho_{w} + S(0.824493 - 4.0899 \times 10^{-3}t + 7.6438 \times 10^{-5}t^{2} - 8.2467 \times 10^{-7}t^{3} + 5.3875 \times 10^{-9}t^{4}) + S^{3/2}(-5.72466 \times 10^{-3} + 1.0227 \times 10^{-4}t - 1.6546 \times 10^{-6}t^{2}) + 4.8314 \times 10^{-4}S^{2}.$$
(A3.2)

Finally, the density at pressure p is given by

$$\rho(S, t, p) = \rho(S, t, 0)/(1 - p/K(S, t, p)), \tag{A14}$$

where K is the secant bulk modulus. The pure water value K_w is given by

$$K_{\rm w} = 19652.21 + 148.4206t - 2.327105t^2 + 1.360477 \times 10^{-2}t^3 - 5.155288 \times 10^{-5}t^4.$$
 (A.14)

The value at one standard atmosphere (p = 0) is given by

$$K(S, t, 0) = K_{w} + S(54.6746 - 0.603459t + 1.09987 \times 10^{-2}t^{2} - 6.1670 \times 10^{-5}t^{3}) + S^{3/2}(7.944 \times 10^{-2} + 1.6483 \times 10^{-2}t^{2} - 5.3009 \times 10^{-4}t^{2})$$

and the value at pressure p by

$$K(S, t, p) = K(S, t, 0) + p(3.239908 + 1.43713 \times 10^{-3}t$$

$$+ 1.16092 \times 10^{-4}t^{2} - 5.77905 \times 10^{-7}t^{3}) + pS(2.2838 \times 10^{-3}t$$

$$- 1.0981 \times 10^{-5}t - 1.6078 \times 10^{-6}t^{2}) + 1.91075 \times 10^{-4}pS^{3/2}$$

$$+ p^{2}(8.50935 \times 10^{-5} - 6.12293 \times 10^{-6}t + 5.2787 \times 10^{-8}t^{2})$$

$$+ p^{2}S(-9.9348 \times 10^{-7} + 2.0816 \times 10^{-8}t + 9.1697 \times 10^{-10}t^{2})$$

$$(A.10)$$

Values for checking the formula are $\rho(0, 5, 0) = 999.96675$, $\rho(35, 5, 0) = 1027.6741$ and $\rho(35, 25, 1000) = 1062.53817$.

Since ρ is always close to 1000 kg m⁻³, values quoted are usually those of the difference ($\rho - 1000$) in kilograms per cubic meters as is done in Table A3.1. The table is constructed so that values can be calculated for 98% of the ocean (see 11) 3.2). The maximum errors in density on straight linear interpolation are 0.013 kg m for both temperature and pressure interpolation and only 0.006 for salinity interpola tion in the range of salinities between 30 and 40. The error when combining all types of interpolation for the 98% range of values is less than 0.03 kg m $^{-3}$.

A3.2 Other Quantities Related to Density

Older versions of the equation of state usually gave formulas not for calculating the absolute density ρ , but for the specific gravity $\rho/\rho_{\rm m}$, where $\rho_{\rm m}$ is the maximum density of pure water. Since this is always close to unity, a quantity called σ was defined by

$$\sigma = 1000((\rho/\rho_{\rm m}) - 1) = (1000/\rho_{\rm m})(\rho - \rho_{\rm m}). \tag{A.17}$$

Since the value of $\rho_{\rm m}$ is

$$\rho_{\rm m} = 999.975 \, \text{kg m}^{-3},$$
 (A.M)

it follows that σ , as defined above, is related to the $(\rho - 1000)$ values by

$$\sigma = (\rho - 1000) + 0.025,\tag{A3.9}$$

601

i.e., 0.025 must be added to the values of $(\rho - 1000)$ in the table to obtain the old σ value. The notation σ_t (sigma-t) was used for the value of σ calculated at zero pressure, and σ_{θ} (sigma-theta) for the quantity corresponding to potential density Another quantity commonly used in oceanography is the specific volume (or steric) anomaly δ defined by

$$\delta = v_s(S, t, p) - v_s(35, 0, p) \tag{A3.10}$$

and usually reported in units of 10^{-8} m³ kg⁻¹.

A3.3 Expansion Coefficients

A3.4 Specific Heat

The thermal expansion coefficient α is given in Table A3.1 in units of 10^{-7} K⁻¹ along with its S derivative. The maximum error from pressure interpolation is two units, that from temperature interpolation is three units, and that for salinity interpolation (30 < S < 40) is two units plus a possible round-off error of two units. The salinity expansion coefficient β can be calculated by using the given values of $\partial \rho/\partial S$.

A3.4 Specific Heat

The specific heat at surface pressure is given by Millero et al. (1973) and can be calculated in two stages. First, the value in joules per kilogram per degree Kelvin for fresh water is given by

$$c_p(0, t, 0) = 4217.4 - 3.720283t + 0.1412855t^2 - 2.654387 \times 10^{-3}t^3 + 2.093236 \times 10^{-5}t^4.$$
 (A3.11)

Second.

$$c_p(S, t, 0) = c_p(0, t, 0) + S(-7.6444 + 0.107276t - 1.3839 \times 10^{-3}t^2)$$

+ $S^{3/2}(0.17709 - 4.0772 \times 10^{-3}t + 5.3539 \times 10^{-5}t^2)$. (A3.12)

The formula can be checked against the result $c_n(40, 40, 0) = 3981.050$. The standard deviation of the algorithm fit is 0.074. Values at nonzero pressures can be calculated by using (3.3.1) and the equation of state. The values in Table A3.1 are based on the above formula and a polynomial fit for higher pressures derived from the equation of state by Dr. N. P. Fofonoff. The intrinsic interpolation errors in the table are 0.4, 0.1, and 0.3 J kg⁻¹ K⁻¹ for pressure, temperature, and salinity interpolation, respectively, and there are additional obvious roundoff errors.

A3.5 Potential Temperature

The adiabatic lapse rate Γ is given by (3.6.5) and therefore can be calculated from the above formulas. The definition in Section 3.7.2 can then be used to obtain θ . The following algorithm, however, was derived by Bryden (1973), using experimental compressibility data, to give θ (in °C) as a function of salinity S, temperature (in °C), and pressure p (in bars) for 30 < S < 40, 2 < t < 30, and 0

$$\theta(S, t, p) = t - p(3.6504 \times 10^{-4} + 8.3198 \times 10^{-5}t - 5.4065 \times 10^{-7}t^{2} + 4.0274 \times 10^{-9}t^{3}) - p(S - 35)(1.7439 \times 10^{-5} - 2.9778 \times 10^{-7}t) - p^{2}(8.9309 \times 10^{-7} - 3.1628 \times 10^{-8}t + 2.1987 \times 10^{-10}t^{2}) + 4.1057 \times 10^{-9}(S - 35)p^{2} - p^{3}(-1.6056 \times 10^{-10} + 5.0484 \times 10^{-12}t).$$

A check value is $\theta(25, 10, 1000) = 8.4678516$, and the standard deviation of Bryden's polynomial fit was 0.001 K. Values in Table A3.1 are given in millidegrees, the intrinsic interpolation errors being 2, 0.3, and 0 millidegrees for pressure, temperature and salinity interpolation, respectively.

A3.6 Speed of Sound

The speed of sound c_s can be calculated from the equation of state, using (3.7.16) Values given in Table A3.1 use algorithms derived by Chen and Millero (1977) on the basis of direct measurements. The formula applies for 0 < S < 40, 0 < t < 40, 0 with a standard deviation of 0.19 m s⁻¹. Values in the table are given in meters per second, the intrinsic interpolation errors being 0.05, 0.10, and 0.04 m s⁻¹ for pressure, temperature, and salinity interpolation, respectively.

A3.7 Freezing Point of Seawater

The freezing point t_f of seawater (in °C) is given (Millero, 1978) by

$$t_{\rm f}(S,p) = -0.0575S + 1.710523 \times 10^{-3} S^{3/2} - 2.154996 \times 10^{-4} S^2 - 7.53 \times 10^{-3} p. \tag{A.3.14}$$

The formula fits measurements to an accuracy of ± 0.004 K.

$\frac{\partial c_s}{\partial S}$	1.37 1.34 1.31 1.29	1.22	1.38 1.38 1.38 1.30 1.26 1.27 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30
c _s (m s ⁻¹)	1439.7 1449.1 1458.1 1466.6 1478.7	1489.8 1500.2 1509.8 1518.7 1526.8 1541.3	1547.6 1456.1 1466.1 1476.5 1477.5 1477.1 1556.4 1528.3 1472.8 1482.3 1499.8 1510.8 1510.6 1510.6 1510.6 1510.5 1510.6 1510.6 1510.7 15
$\frac{\partial \theta}{\partial S}$	00000	0000000	0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
θ (10 ⁻³ °C)	-2000 0 2000 4000 7000	10000 13000 16000 19000 22000 25000	31000 -2029 -45 1939 3923 6901 9879 12858 15838 18819 -2076 -107 1862 -2140 -221 1665 3610 -221 -221 -221 -2316 -246 -246 -246 -279 -279 -279 -279 -279 -279 -279 -279
$\frac{\partial c_p}{\partial S}$	6.2		4
$\frac{c_p}{(\text{J kg}^{-1} \text{K}^{-1})}$	3989 3987 3985 3985 3985	3986 3988 3991 3993 3996 3998	3953 3953 3953 3954 3955 3956 3957 3957 3957 3957 3957 3957 3957 3957
da ds	33.33	20 11 11 11 11 11	28 18 8 2 4 7 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$\alpha \times (10^{-7} \mathrm{K}^{-1})$	254 526 781 1021	1357 1668 1958 2230 2489 2734 3196	3413 3413 552 799 1031 1259 1844 2111 2363 2603 834 834 1058 1100 1100 1101 1101 11351 1150 1151 1151
90	0.814 0.808 0.801 0.796	0.788 0.775 0.775 0.769 0.764 0.760 0.750	0.745.0 0.789.0 0.789.0 0.789.0 0.781.0 0.769.0 0.781.
$\rho - 1000$ (kg m ⁻³)	28.187 28.106 27.972 27.786	27.419 26.952 26.394 25.748 25.022 24.219 23.343	21.384 21.384 32.988 32.988 32.988 32.393 31.988 31.988 30.126 29.359 37.187 36.903 37.187 40.191 41.649 46.017 46.017 46.017 46.017 46.017 46.017 46.017 46.017 47.643 56.293 56.293 56.293 57.908
t (°C)	40041	7 10 13 19 22 25 28	3 K
. v	35 35 35 35	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
p (bar)	0000	0000000	0 1100 1100 1100 1100 1100 1100 1100 1