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ABSTRACT

The vertical structure of tropical deep convection strongly influences interactions with larger-scale circu-

lations and climate. This paper focuses on investigating this vertical structure and its relationship with

mesoscale tropical weather states. The authors test the hypothesis that latent heating plus turbulent flux

convergence varies (in space and time) in association with weather state type.

The authors estimate mean-state vertical motion profile shape and latent heating plus turbulent flux

convergence for six weather states defined using cloud-top pressure and optical depth properties from the

International Satellite Cloud Climatology Project (ISCCP) dataset. Assuming two modes of vertical motion

profile variability, these modes are statistically extracted from reanalysis data using a principal component

analysis. Using these modes and the relationship between vertical motion, the dry static energy budget, and

mass continuity, the authors estimate vertical motion profile shape. In these estimates, the authors use Global

Precipitation Climatology Project (GPCP) [and Tropical Rainfall Measuring Mission (TRMM) 3B42] pre-

cipitation and Quick Scatterometer (QuikSCAT) surface convergence data in the ITCZ region from 2001 to

2006. Finally, these profile shapes are categorized by weather state type and spatiotemporally averaged to

generate mean-state vertical motion profiles and latent heating plus turbulent flux convergence.

The authors find that vertical motion profile shape varies by weather state. The isolated systems convective

regime exhibits more ‘‘bottom heaviness’’ than the other convectively active regimes, with maximum upward

vertical motion occurring in the lower troposphere rather than the middle to upper troposphere. The vari-

ability observed does not coincide with the conventional profile variability based on stratiform rain fraction.

1. Introduction

Understanding the relationship between tropical

convection and the large-scale atmospheric circulation is

vital to improving our understanding of tropical weather

and climate. Early studies of this relationship showed that

imposing anomalous heat sources in the equatorial region

induce an atmospheric circulation response (Matsuno

1966; Gill 1980). Latent heating variability, both in the

horizontal and vertical, plays a significant role in this re-

lationship. In this work, we examine vertical motion

profiles in various tropical weather states.

In the atmosphere, rising air parcels (theoretical

packets of air) cool less rapidly with height than they

would if they were dry because of the condensation of

water vapor. These buoyant updrafts, making up only

a small fraction of the area of a cloud field, induce

subsidence around them, rapidly warming the environ-

ment near clouds (Bretherton and Smolarkiewicz 1989).

The combination of the condensational processes and

the turbulent circulations associated with these pulses

make up part of the apparent heating of the tropical

atmosphere (Yanai et al. 1973), of which latent heating

is a significant component (Tao et al. 2006).

Vertical profiles of latent heating (the distribution of

latent heating in the vertical) are related to the vertical

distribution of condensation, evaporation, melting, and

freezing, as well as where clouds and precipitation de-

velop.We can use these profiles to gain insight into global

energy and moisture budgets. Latent heating profiles are

also closely related to vertical profiles of vertical motion;

such profiles provide information about the export of

moist static energy and the gross moist stability of the

atmosphere (Neelin and Held 1987; Back and Bretherton

2006; Raymond et al. 2009; Masunaga and L’Ecuyer

2014), and vertical motion profiles are also related to en-

sembles of deep convective clouds and their radiative ef-

fects (Bretherton and Hartmann 2009). Recent work also
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suggests that the amount of ‘‘bottom heaviness’’ associ-

ated with heating profiles (which we investigate here) is

correlated to climate sensitivity in climate model simula-

tions (Sherwood et al. 2014), and more accurate retrievals

will reduce error associated with this sensitivity. Thus, in

order to understand the relationship between convection

and the large-scale circulation, it is important to un-

derstand vertical latent heating profile variability.

Earlier studies considering the large-scale atmo-

spheric response to heating in the tropics assume a single

and spatially uniformmode of heating (Gill 1980; Geisler

1981; DeMaria 1985). Studies such as Hartmann et al.

(1984), Wu et al. (2000), and Schumacher et al. (2004)

showed the significance of considering variability in the

shape of latent heating profiles. More recent studies have

shown that substantial geographic variability exists with

respect to these heating profiles (Trenberth et al. 2000;

Zhang et al. 2004; Back and Bretherton 2006), which

should be considered when investigating the convection–

large-scale circulation relationship.

Vertical profiles of latent heating are difficult to re-

trieve. The earliest methods of retrieving apparent

heating by cumulus convection, of which latent heating

is the most variable component, involved the direct

calculation of apparent heating from sounding wind and

temperature data using the dry static energy budget

(Yanai et al. 1973). This method, still used during field

campaigns, requires calculating vertical motion from

a sounding array. With the increase in satellite tech-

nology and observation over the past few decades, we

are now able to collect and analyze observational data in

regions where observations were once limited. A variety

of algorithms have been constructed in order to estimate

latent heating profiles from satellite data.

For example, several latent heating profile retrieval

algorithms were derived using data from the Tropical

Rainfall Measuring Mission (TRMM) satellite, as one

primary goal of TRMM was to improve latent heating

profile retrieval (Tao et al. 2006). Four such algorithms

are the Convective-Stratiform Heating (CSH) product

(Tao et al. 1993, 2001, 2006), the Spectral Latent Heat-

ing (SLH) product (Shige et al. 2004, 2007, 2008, 2009),

the Precipitation Radar Heating (PRH) product

(Kodama et al. 2009), and the Training (TRAIN) algo-

rithm (Grecu and Olson 2006; Grecu et al. 2009). These

algorithms consider surface precipitation, percent strati-

form rain fraction, and, for the PRH product, vertical

profiles of reflectivity.

Hagos et al. (2010) investigates apparent heating

profiles (where latent heating is the most dominant com-

ponent) over the tropical ITCZ derived from different

datasets and algorithms (Fig. 3 in their study). It is clear

that the profile estimates differ significantly between the

various observational, model, and reanalysis datasets,

showing that these retrievals are not straightforward.

Along with this, several other studies (Zuluaga et al.

2010; Jiang et al. 2011; Ling and Zhang 2011) suggest

that shallow heating is particularly difficult to retrieve.

One view on latent heating profile variability is that

the profiles are tied to the fraction of stratiform rain

amount at a particular point (Zipser 1977;Houze andBetts

1981; Houze 1982, 1989, 1997, 2004; Mapes and Houze

1995; Schumacher et al. 2004; Jakob and Schumacher

2008; Johnson et al. 2013, manuscript submitted to

Meteor. Monogr.). A conceptual model of this latent

heating profile classification is shown in Fig. 1, adapted

from Schumacher et al. (2004). Times with a high per-

centage of stratiform rain fraction are associated with

a more top-heavy profile shape, where the maximum

magnitude of latent heating occurs in the upper

FIG. 1. From Schumacher et al. (2004): (top) Idealized latent

heating profilemodes; (bottom) idealized latent heating profiles for

various percent stratiform rain fraction cases (shallow convective

rain fraction held constant).
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troposphere. Times with a high percentage of convective

rain fraction (or low stratiform rain fraction) are asso-

ciated with a more bottom-heavy profile shape, though

convective heating profiles may vary geographically

and/or temporally (Houze 1989).

Research by Back and Bretherton (2006) hints that

stratiform rain fraction, as observed by radar echoes,

may not be the most useful way to understand geo-

graphic variability in vertical motion profiles. The au-

thors investigate vertical motion profiles within two

regions along the tropical ITCZ; Fig. 2 in our study re-

produces vertical motion profiles in the regions from

Fig. 3 of Back and Bretherton (2006). In the western

Pacific region (58–7.58N, 1408–1608E), the reanalyses

exhibit a top-heavy profile, while in the central-eastern

Pacific region (7.58–108N, 1208–1408W), a bottom-heavy

profile is simulated. Back and Bretherton (2006) find

that AGCMs forced by climatologically varying SSTs

consistently have these vertical motion profile charac-

teristics in these regions, and the ratio of 6-km to 2-km

reflectivity also supports this picture (see Fig. S1 of Back

and Bretherton 2006).

Furthermore, we find using TRMM 3A25 monthly

data that the west Pacific region exhibits a slightly lower

stratiform rain fraction (;50.4%) compared to the central-

east Pacific region (;54.3%). The bottom-heavy central-

eastern Pacific profiles are associated with a slightly higher

shallow rain fraction (;4.29%) compared to the western

Pacific (;2.82%). However, the difference in shallow

rain fraction is only a few percent. These findings, along

with our Fig. 2, suggest that stratiform rain fraction as

observed by radar may not be a good way to retrieve

geographic variability in latent heating profiles.

Houze (1989) documents that convective profiles

may vary within varying mesoscale convective system

environments within field campaign data, which may

play a role in the seeming contradiction we observe.

Shige et al. (2007) show that total heating profile ‘‘top

heaviness’’ is not always directly related to the strati-

form rain fraction (in comparing profiles between dif-

ferent geographic regions). This also differs from what

one may expect from using stratiform rain fraction for

profile retrieval.

The central-east Pacific region has about twice as

much surface convergence as the western Pacific region,

but both regions have similar amounts of rainfall. This is

consistent with our vertical motion profile findings, since

more bottom-heavy vertical motion profiles are associ-

ated with stronger lower-tropospheric convergence in

the ITCZ given similar amounts of rainfall; this is dis-

cussed in Back and Bretherton (2009b). Our goal is to

compare the bottom heaviness of vertical motion pro-

files spatiotemporally using satellite observations rather

than reanalysis or model data.

We use an innovative methodology to estimate ver-

tical motion profile shape (bottom heaviness) for six

FIG. 2. Adapted from Back and Bretherton (2006, 2009b): Daily averaged (with 3-day running mean applied) 2001–06 GPCP pre-

cipitation with black boxes outlining the western and central-east Pacific regions of interest. Vertical motion profiles in the (bottom left)

western Pacific and (bottom right) central-east Pacific regions investigated in Back and Bretherton (2006) for the years 2001–06. Mean-

state stratiform and shallow rain fraction amounts for each region computed from the TRMM 3A25 product are also shown.
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tropical mesoscale weather states that occur over the

tropical oceans, testing the hypothesis that latent heat-

ing (plus associated turbulent dry static energy flux

convergence) profile shapes vary, in space and time, in

association with weather state type. Our methodology is

inspired by the weak temperature gradient approxima-

tion (Sobel and Bretherton 2000). We assume that ap-

parent heating (Yanai et al. 1973) is large, compared to

changes in the temperature profile over longer-than-

diurnal time scales, and that it is predominantly bal-

anced by adiabatic cooling associated with large-scale

vertical motion. This assumption allows us to estimate

vertical motion profiles from observational data (using

reanalysis data only for deriving our basis functions).

We also show that stratiform rain fraction (and shallow

rain fraction) as observed by TRMM Precipitation

Radar (PR) cannot explain the variations in bottom

heaviness observed between weather states.

In this study, weather state type refers to any of six

weather states or cloud regimes described in Rossow

et al. (2005, 2013). To define these weather states, the

authors created two-dimensional histograms of cloud-

top pressure and optical depth data from the Inter-

national Satellite Cloud Climatology Project (ISCCP;

see Rossow and Schiffer 1999 for details) for each spa-

tiotemporal grid point considered and then performed

a clustering analysis on this data within the ITCZ region.

The dataset assigns a value between 0 and 6 for each

point, where values 1–6 represent a particular weather

state (Table 1), and 0 represents clear sky (we neglect

these points in our study). ISCCP has been used in pre-

vious studies for defining convectively active cloud sys-

tems (Machado and Rossow 1993; Jakob and Tselioudis

2003), but we use the most recent weather states from

studies such as Rossow et al. (2005, 2013). Furthermore,

while these weather states were initially classified based

on cloud-top properties only, a recent study by Tselioudis

et al. (2013) shows that ISCCP weather states have

a unique vertical cloud layer structure to them as well.

Histograms of optical thickness and cloud-top height

for each weather state are shown in Fig. 3. Table 1

provides a detailed description of each weather state

along with their short-hand names used in later sections

of this study. The top row (Fig. 3) shows the histogram

pattern associated with the convectively active tropical

mesoscale weather states. The top-left histogram is

associated with the most vigorous deep convective

systems with mesoscale anvils, covering the largest area

out of all of the convectively active weather states. The

top-middle panel is associated with less vigorous deep

convective systems (less area coverage compared to the

first weather state) with mesoscale anvils (thick cirrus

outflow); the less vigorous deep convection is closely

associated in space and time with the most vigorous

deep convective weather state (Rossow et al. 2005,

2013). The third convectively active regime (top-right

panel) is comprised of isolated, disorganized convec-

tion with some cumulus congestus and lower topped

clouds. The convectively inactive regimes (bottom row

of Fig. 3) consist of thin cirrus outflow that is not as-

sociated with convection, as well as mixed shallow cu-

mulus and stratus with low cloud tops, and finally

stratus clouds with some stratocumulus and thick but

low cloud tops.

The goal of our study is to estimate vertical motion

profile shape (bottom heaviness relative to other weather

states) within each of these six weather states. We also

wish to estimate latent heating plus convergence of tur-

bulent heat fluxes (e.g., the apparent heating by convec-

tion). Section 2 briefly summarizes the various datasets

used in this study. Section 3 shows the relationship be-

tween vertical motion, precipitation, and surface con-

vergence. Section 4 describes our methodology, including

the construction of vertical motion profile statistical

modes of variability and a discussion on how to estimate

vertical motion profile shape using these basis func-

tions along with the relationships discussed in section 3.

In section 5, we test our methodology. Section 6 shows

the results from estimating vertical motion profile shape

within the various ISCCP weather states and also ad-

dresses the validity of some of the key assumptions

used in this study. Section 7 further discusses how

stratiform rain fraction (and shallow rain fraction) is

related to bottom heaviness in these weather states.

Conclusions and potential future work are discussed in

section 8.

TABLE 1. Description of the six weather states summarized from Rossow et al. (2005, 2013).

Weather state description

Vigorous convective Most vigorous deep convection with mesoscale anvils; deep convection covers largest area

Thick cirrus Less vigorous deep convection with mesoscale anvil clouds (i.e., thick cirrus outflow)

Isolated systems Low cloud tops with medium optical thickness mixed with deep convective clouds with higher

cloud tops; some cumulus congestus

Thin cirrus Thin cirrus outflow likely from distant convection or from other nonconvective atmospheric features

Mixed trade shallow cumulus Mixed trade shallow cumulus (with some thin cirrus mixed in as well)

Marine stratus Stratus, stratocumulus clouds (low but thicker nonconvective clouds)
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2. Data

We summarize the datasets we use in this study in

Table 2. To construct vertical motion profile basis func-

tions (see section 4), we use the InterimEuropeanCentre

for Medium-Range Weather Forecasts (ERA-Interim)

(Dee et al. 2011) and National Centers for Environ-

mental Prediction–National Center for Atmospheric

Research (NCEP–NCAR) Reanalysis-1, as well as the

Tropical Global Ocean Atmosphere Coupled Ocean

Atmosphere Response Experiment (TOGA COARE;

Webster and Lukas 1992; Ciesielski et al. 2003) field ex-

periment [using data from the intensive observation pe-

riod (IOP) Intensive Flux Array (IFA)]. To estimate

vertical motion profiles, we combine these basis functions

with observed precipitation data from the Global

FIG. 3. Adapted from Rossow et al. (2005, 2013), two-dimensional histograms of cloud-top pressure (PC) and optical thickness (TAU)

for each weather state. (top) The convectively active weather states are the (left) vigorous deep convective, (middle) lesser deep con-

vective with thick cirrus, and (right) isolated systems weather states. (bottom) The convectively inactive weather states are the (left) thin

cirrus, (middle) mixed trade shallow cumulus, and (right) marine stratus weather states. Colder colors indicate a higher frequency of

occurrence.

TABLE 2. Summary of all datasets used. Note that the left of the two numbers in any given cell represents the original resolution, and the

right value represents the resolution to which we convert the data.

Horizontal resolution Vertical (pressure) levels Temporal resolution

ERA-Interim ;0.78–2.58 27 6-hourly to 3-day

NCEP 2.58 12 Daily to 3-day

TOGA COARE — 37 3-hourly

ISCCP 2.58 1 3-hourly to Daily

GPCP 1.08–2.58 1 Daily to 3-day

QuikSCAT 0.258–2.58 1 3-day

Blended QuikSCAT/NCEP 0.258–2.58 1 Daily to 3-day

TRMM 2A23 2.58 — Instantaneous to daily

TRMM 2A25 2.58 — Instantaneous to daily

TRMM 3B42 0.258–2.58 — Daily to 3-day

NEWS 2.58 — Instantaneous to 3-day
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Precipitation Climatology Project (GPCP;Huffman et al.

2001)One-DegreeDaily (1DD) dataset and surface wind

data from both the Quick Scatterometer (QuikSCAT)

surface wind and blended QuikSCAT/NCEP datasets

(Milliff et al. 2004; Lungu 2006). Note that we did not

consider space–time points in the QuikSCAT data that

were marked as rain-flagged points, because such points

may contain significant errors in surface wind speed

(discussed further in section 6). We also use the National

Aeronautics and Space Administration (NASA) Energy

and Water cycle Study (NEWS) version 1 Atmospheric

Heating Product (L’Ecuyer and Stephens 2003, 2007;

Grecu and Olson 2006; Grecu et al. 2009; L’Ecuyer and

McGarragh 2010) to compute vertically integrated net

radiative heating and use in ourmethodology, outlined in

section 4. Finally, we use TRMM algorithms 2A23 and

2A25 data to estimate stratiform and shallow rain frac-

tion in our analysis. For all reanalysis and observed

datasets, we reduce the spatial resolution to 2.58 so that

the resolution is consistent with the ISCCP dataset. We

also reduce the temporal resolution of all datasets (minus

ISCCP and TRMM 2A23 and 2A25) to a daily time scale

with a 3-day running mean applied such that each day in

each dataset is the center of the 3-day mean.

Note that the ISCCP weather state dataset is

a 3-hourly dataset (Table 2) and only includes daytime

observations; our analysis in subsequent sections does

not apply to convective systems and nonconvective

clouds that occur at night. We convert the temporal

resolution to a daily time scale. We do this by only

considering grid points where only one type of weather

state occurs at a grid point throughout a 24-h calendar

day. For example, if the vigorous deep convective

weather state occurs at a point for every non-clear sky

3-hourly observation on a particular calendar day, we

construct a v-profile for this point using daily average

magnitudes of precipitation and surface convergence

data for that grid point containing this weather state. If

a second type of weather state occurs during this ob-

servational period (i.e., any of the other weather states),

then the grid point is discarded. From this, our sample

size for each weather state is ;3% 2 14% of the total

number of samples from the original 3-hourly dataset

(range depending on the weather state considered).

Figure 4 shows the spatial distribution of the total

number of samples used per weather state. While the

percent of points used is low, the sample size for each

weather state is still large enough to provide a very good

estimate of themean state vertical motion profile in each

weather state.

We estimate vertical motion profiles for each weather

state in section 6. We will estimate such profiles using

the methodology explained in the next few sections.

3. Vertical motion profiles, surface convergence,
and precipitation

a. Latent heating profiles and vertical motion profiles

We construct vertical motion profiles by considering

the relationship between vertical motion v, surface

convergence, and precipitation. To describe the re-

lationship between v and precipitation, we consider the

dry static energy budget. Dry static energy is defined as

s 5 cpT 1 gz, where cp is the specific heat at constant

pressure, T is temperature, g is the gravitational con-

stant, and z is altitude. Dry static energy is roughly

conserved for dry adiabatic processes but is not con-

served for moist adiabatic or diabatic processes. The dry

static energy budget equation can be written as follows:

›s

›t
52

�
u
›s

›x
1 y

›s

›y
1v

›s

›p

�
1L(c2 e)

1 g
›

›p
(Fs

turb 1Frad)1 Sh , (1)

where u and y are the zonal and meridional wind, re-

spectively, v is vertical motion, L the latent heat of

condensation, and c and e are condensation and evap-

oration, respectively. The value ›Fs
turb ›p21 represents

the vertical convergence of the vertical eddy transport of

sensible heat, and ›Frad ›p21 represents radiative flux

convergence. The last term, Sh, is a residual pre-

dominantly associated with ice processes, as well as any

kinetic energy that is locally dissipated into heat.

In the ITCZ region, the most variable terms in Eq. (1)

are the vertical advection of dry static energy and latent

heating. This is because horizontal gradients of dry static

energy are small because of the large Rossby radius of

deformation and because latent heating is the most

variable diabatic heating term. Radiative heating and

turbulent fluxes are also variable though much less than

latent heating. Therefore, the variability associated with

vertical profiles of v is closely related to the variability

associated with vertical profiles of latent heating.

We vertically integrate each term in Eq. (1) via

Eq. (2):

[a]5

ðp
t

p
0

a
dp

g
, (2)

where a is the quantity being vertically integrated, and

p0 and pt represent the 1000- and 100-hPa pressure

levels, respectively. We assume that on diurnal and

longer time scales, ›s ›t21 is small (see Table 3) and that

all precipitation falls out as liquid, and we neglect Sh.

The vertically integrated s budget equation is then

written as follows:
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�
u
›s

›x
1 y

›s

›y

�
1

�
v
›s

›p

�
5LP1DFrad 1Fs

turb . (3)

The terms on the left-hand side of Eq. (3) represent

advection of s. The right-hand side terms (from left to

right) represent vertically integrated latent heat release

(where P is precipitation), divergence of radiative fluxes,

and turbulent heat fluxes at the surface (we neglect tur-

bulent fluxes at 100hPa).Radiative cooling varieswith the

amount of convection occurring. However, the dominant

balance in this equation is that diabatic heating variations

due to latent heating are approximately balanced by adi-

abatic cooling associatedwith large-scale verticalmotions.

We write the column-integrated version of this

statement as

LP 0 ’
�
v
›s

›p

�
, (4)

where P0 represents anomalous precipitation from the

amount needed to balance radiative cooling plus surface

fluxes of dry static energy (which are comparatively

small). Dry static energy increases with decreasing

pressure in the tropics. Hence, we can think of

TABLE 3. Root-mean-square error (Wm22) associatedwith each

neglected term in the dry static energy budget in this study. Note

that for the TOGA COARE results, the tendency and advection

terms were with respect to temperature, not dry static energy.

ERA-Interim NCEP–NCAR TOGA COARE�
›s

›t

�
13.0 13.2 20.3

�
u
›s

›x
1 y

›s

›y

�
32.5 29.0 17.8

Fs
turb 12.1 12.5 9.32

Total 35.2 40.2 27.5

FIG. 4. Spatial distribution of the total number of daily weather state samples we use within the ITCZ from 2001 to 2006. Each daily

weather state sample requires that only the same weather state occurs within a spatial grid box for a 24-h period (cannot have two or more

weather state types in grid box over 24-h period).
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anomalous latent heating as roughly proportional to the

area under a curve showing v as a function of pressure.

Again, we can assume this dominant balance because of

our steady state assumption and because the vertically

integrated horizontal dry static energy advection and tur-

bulent heat flux terms are small. The root-mean-square

error over the tropical oceans associated with these ne-

glected terms is shown in Table 3 (note that the tendency

and horizontal advection terms from TOGACOARE are

with respect to temperature, not dry static energy). This

magnitude is small relative to LP 0 [and thus v ›s ›p21 by

Eq. (4)], since the root-mean-square of LP 0 in the ITCZ

region is approximately equivalent to;202Wm22. Thus,

our assumptions made with respect to the vertically in-

tegrated dry static energy budget are reasonable.

b. Vertical motion profile, precipitation, and surface
convergence relationship

A conceptual model outlining the relationship be-

tween v-profiles, precipitation, and surface convergence

is shown in Fig. 5. Some arbitrary choices were made in

this illustration in order to make clear to the reader vi-

sually how precipitation and surface convergence affect

v-profile shape; these profiles are not unique (i.e., not

the only possible profile shapes that result in these re-

lationships). The specific choices that we use in our

quantitative analysis for estimating v-profiles are de-

scribed in the next section. This subsection qualitatively

outlines the relationship between these variables.

The top panel shows the effects of precipitation rate

given a fixed amount of surface convergence. The blue

and red curves show v-profiles for a low and high pre-

cipitation case, respectively. As shown in Eq. (4), the

area under the v(p) curve (i.e., area between v 5 0 and

the v curve) is constrained by precipitation such that

a v–profile with more area under the v(p) curve cor-

responds to more precipitation, and less area under the

curve corresponds to less precipitation.

The bottom panel of Fig. 5 shows the effects of surface

convergence for a fixed precipitation rate. The relationship

between surface convergence and verticalmotionwe use is

2

�
›u

›x
1

›y

›y

�
5

›v

›p
5

vpb 2vp0

pb 2 p0
, (5)

where pb and p0 represent the pressure at 975hPa (925hPa

for the NCEP–NCAR reanalysis) and 1000hPa, re-

spectively. Note that in subsequent sections, we use the

term surface convergence to describe both 10-mhorizontal

convergence (retrieved by QuikSCAT) as well as 975–

1000-hPa convergence. In the tropics, trade cumulus clouds

mix the trade cumulus boundary layer well in the ITCZ

region (Stevens et al. 2002; Back andBretherton 2009a), so

convergence from 975hPa to 1000hPa is very well corre-

lated with surface convergence. Thus, Eq. (5) is used to

relate surface convergence to vertical motion throughout

the rest of our study.

In the bottom panel of Fig. 5, note that the v-profiles

chosen for this panel are analogous to the west and

central-east Pacific v-profiles from Fig. 2, because these

profiles nicely illustrate differences in profile shape for

(approximately) fixed precipitation but differing mag-

nitudes of surface convergence. The blue and red curves

show v-profiles for a low and high surface convergence

scenario, respectively. Surface convergence acts as a con-

straint on the bottom heaviness of a v-profile such that

more surface convergence is associated with a more

bottom-heavy v-profile, and less surface convergence is

associated with less bottom heaviness in a v-profile (i.e.,

moremiddle- to top-heaviness), given rainfall is held fixed.

Based on the relationships shown in Fig. 5, we can usev,

precipitation, and surface convergence in order to esti-

mate v-profile shape. We do this by assuming two statis-

tical modes of v-profile variability in the tropics and using

observed precipitation and surface convergence to

FIG. 5. Illustration of (top) the relationship between the shape of

the vertical motion profile and the magnitude of precipitation, and

(bottom) the relationship between the vertical motion profile

shape and the magnitude of surface convergence.
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constrain the magnitude of these modes. Section 4 de-

scribes how we construct the modes of variability that we

use as basis functions and also howwe estimatev-profiles.

Other modes of variability could be considered in

order to further constrain (and improve) our v-profile

estimates. For example, a third mode of variability

could be considered to improve the accuracy of our

results. This would require a third constraint, such as

an expression describing the ratio between 6-km and

2-km radar reflectivity. While we could have consid-

ered this ratio, the Precipitation Radar swath width

is such that our estimates would only apply to a much

smaller area. We also choose to assume only two

modes of variability to maintain the simplicity of our

methodology.

4. Methodology

a. Generating basis functions

We will use our assumed two modes of v-profile vari-

ability to define a vector space such that each vectorwithin

this vector space represents a possible v-profile estimate.

The vectors (v-profiles) are linear combinations of two

basis functions (statistical modes of variability), which we

chose empirically (these basis functions are not related to

the profiles in Fig. 5, which were arbitrarily chosen for

illustration). The amount of influence that each basis

function has on each space–time grid point that we

consider is related to the amount of surface convergence

and precipitation observed at that point. We wish to

choose basis functions that can describe the maximum

amount of observed variability in the profile of v. We

note that whileMasunaga and L’Ecuyer (2014) similarly

use basis functions to estimate large-scale vertical mo-

tions, we use basis functions statistically extracted from

reanalysis data rather than idealized functions.

Ideally, observations would be used to generate basis

functions, because the goal of our methodology is to be

able to estimate observed v-profiles using observational

data rather than reanalysis. Unfortunately, since consis-

tent observations of v do not exist throughout the entire

ITCZ domain we consider, reanalysis data serve as our

best option for generating basis functions. We also try

using TOGA COARE observations to construct basis

functions, though we note that the TOGA COARE

dataset does not include geographic variability; this may

be a shortcoming of using these basis functions. We do

not necessarily expect the latent heating profiles within

each of the reanalysis datasets to be accurate in every

location, though the ERA-Interim and NCEP–NCAR

products do attempt to capture all physical processes that

affect the shape and magnitude of latent heating profiles.

This includes processes such as condensation, evapora-

tion, melting, and freezing of water. Furthermore, using

two reanalysis-generated sets of basis functions also al-

lows us to examine the robustness of results to basis

function choice. We also examine the sensitivity of our

results to basis function choice in section 6.

To find basis functions, we perform a principal

component analysis on daily ERA-Interim and NCEP–

NCAR v data in the tropical ITCZ region over ocean

points only (158S to 158N latitude; all longitudes). We

also perform this analysis on TOGA COARE v data.

The results of this analysis are shown in Fig. 6. For all

three cases, the first mode, shown as blue profiles in

Fig. 6, shows upward vertical motion throughout the

middle and upper troposphere, while the second mode,

shown as red curves, shows maximum upward vertical

motion in the lower troposphere and maximum

downward vertical motion in the upper troposphere.

The ERA-Interim and NCEP–NCAR modes are

similar to the v-profile variability shown in Back and

Bretherton (2009b) and Zhang et al. (2010). However,

the TOGA COARE first mode is more top heavy. This

is likely due to a lack of geographic variability in

the dataset. This leads to excessively bottom-heavy

v-profile estimates using our methodology (shown in

section 6). The amount of variance explained by basis

functions 1 and 2 is ;74.5% and 14.3% for the ERA-

Interim basis functions, ;81.9% and 8.49% for NCEP–

NCAR, and ;86.2% and 9.00% for TOGA COARE.

These modes can be shown to be statistically distinct

from each other using North’s rule (North et al. 1982;

not shown), even with the very conservative assumption

that ;100 degrees of freedom exist in our analysis.

FIG. 6. Basis functions generated via principal component anal-

ysis of ERA-Interim (solid), NCEP–NCAR (solid with x symbols),

and TOGA COARE (solid with circle symbols) vertical motion

data from 2001–06.
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b. Constraining vertical motion profiles from
precipitation and surface convergence observations

To estimate v-profiles, (notation adapted from Back

and Bretherton 2009b), we assume two modes of

v-profile variability:

v(x, y, t, p)5 o1(x, y, t)V1(p)1 o2(x, y, t)V2(p) , (6)

where V1 and V2 represent the basis functions, and o1
and o2 are the amplitudes of each basis function. Ver-

tical motion at each grid point is thus a linear combi-

nation of the two basis functions constructed from our

principal component analysis. The amplitudes describe

how much influence each basis function has in shaping

the v-profile. To solve for the magnitudes of o1 and o2,

we use observed precipitation and surface convergence

in order to construct a closed system of equations with o1
and o2 as two unknown variables.

We can substitute Eq. (6) into Eq. (3) and neglect Fs
turb

to get the following:

LP(x, y, t)5Ms1o1(x, y, t)1Ms2o2(x, y, t)2DFrad , (7)

where we define Ms1 and Ms2 as

Msi 5

ðp
t

p
0

Vi

›s

›p

dp

g
; i5 1, 2. (8)

Here, Ms1 and Ms2 represent the gross dry stability of

modes 1 and 2, respectively. The gross dry stability is

a measure of the amount of adiabatic cooling per unit

amplitude of vertical motion (Yu et al. 1998; Back and

Bretherton 2009b). Recall that the amount of precip-

itation is equal to the amount of vertically integrated la-

tent heating due to condensation, which is in turn related

to the amount of adiabatic cooling associated with large-

scale verticalmotion viaEq. (4). Thus, Eq. (7) is analogous

to Eq. (4), though Eq. (7) is based only on the two most

dominant statistical modes of v-profile variability.

We also use surface convergence in order to constrain

v. We define the magnitude of surface convergence for

each basis function as

ci 5
DVi(p)

Dp
; i5 1, 2, (9)

where D corresponds to the difference between the 975-

and 1000-hPa levels. From this, surface convergence at

any grid point is

$ � u(x, y, t)5 o1(x, y, t)c11 o2(x, y, t)c2 , (10)

where u is the 10-m wind. Since Eqs. (7) and (10) both

contain o1 and o2 as unknowns, we can now solve for o1

and o2 and then use Eq. (6) to construct a v-profile for

each grid point. Equations (7) and (9) can be rearranged

to derive the following values for o1 and o2, written in

matrix form:

�
o1
o2

�
5

�
Ms1 Ms2

c1 c2

�21�
LP1DFrad

$ � u
�
. (11)

The values Ms1 and Ms2 are calculated from a mean-

state deep tropical dry static energy profile (i.e., space–

time average over all longitudes from 158S to 158N
latitude) and the basis functions, while c1 and c2 are

calculated directly from the basis functions.

5. Testing our methodology

To test our methodology, we examine the same

western Pacific (WP) and central-east Pacific (EP) re-

gions as in Fig. 2. Figure 7 shows the reanalysis mean-

state v-profiles for each of these regions (solid lines, as

in Fig. 2) using the ERA-Interim (top-left and top-right

panels) and NCEP–NCAR (bottom-left) reanalyses.

We first test whether truncating v-profiles to two modes

alters v-profiles in these regions substantially. The

panels of Fig. 7 have dashed lines, which show reanalysis

profiles truncated to the two most dominant modes of

v-profile variability. Note that the top-right panel shows

the truncated ERA-interim v-profiles using basis func-

tions constructed from the TOGA COARE dataset.

The truncated reconstructions demonstrate that the two

most dominant modes of v are enough to describe var-

iability in top heaviness seen in Fig. 2.

We then compare reanalysis v-profiles to recon-

structions, or v-profiles we compute with our method-

ology using purely reanalysis precipitation (calculated as

a residual), surface convergence, radiative cooling, the

basis functions, and Msi as input into Eq. (11) for each

region. We do this to test how accurately we can re-

construct v-profiles from the reanalyses we use to con-

struct our basis functions. Our methodology is linear;

averaging surface convergence and precipitation before

computing a profile produces the same results as com-

puting v-profiles for every point and then averaging

them. Figure 7 shows these reconstructions for ERA-

Interim data and basis functions (top left), ERA-Interim

data with TOGA COARE basis functions (top right),

NCEP–NCAR data and basis functions (bottom left),

and TOGA COARE data using TOGA COARE,

ERA-Interim, and NCEP–NCAR basis functions

(bottom right).

The reconstructed profiles in each region using re-

analysis basis functions look similar to the reanalysis

v-profiles, suggesting that our methodology has the
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potential to work reasonably well. The reconstructions

using the NCEP–NCAR reanalysis data performed

better at reconstructing NCEP–NCAR reanalysis pro-

files than did the corollary ERA-Interim reconstructions

of ERA-Interim reanalysis profiles. This may suggest that

there is something more complex in the ERA-Interim

dataset compared to NCEP–NCAR, such that our meth-

odology works better with NCEP data. However, the

western Pacific reconstruction using ERA-interim data

and TOGACOARE basis functions (top-right panel) has

a more bottom-heavy v-profile. It seems that using the

TOGA COARE basis functions to estimate v-profiles

within the entire ITCZ region does notwork because these

basis functions are calculated from a dataset that only

considers data in a limited region in the western Pacific.

Thus, our study will not consider v-profile estimates using

TOGACOAREbasis functions any further. Note that the

TOGA COARE v-profile reconstructions from both re-

analysis basis functions (bottom-right panel of Fig. 7) are

quite similar to the observed TOGA COARE v-profile,

suggesting that we can reasonably reconstruct v–profiles

despite our choice of basis functions in TOGA COARE.

Figure 7 also shows estimated v-profiles, which were

constructed using the reanalysis basis functions and

observed GPCP precipitation and QuikSCAT surface

convergence as well as observed radiative heating (from

the NEWS dataset) rather than reanalysis data for these

quantities. Although we find that our methods re-

produce the essential features of the reanalysis profile

shapes using reanalysis data, our estimations using ob-

served precipitation and surface convergence data ap-

pear to be somewhat too bottom heavy. One reason why

these estimations are more bottom heavy compared to

the reanalysis data may be because the QuikSCAT-

computed surface convergence values in the ITCZ are

stronger in magnitude compared to the reanalysis-

derived surface convergence values (not shown). As

shown in Fig. 5, an increase in the magnitude of surface

convergence at a given point is associated with more

bottom heaviness.

Another reason for the more bottom-heavy v-profile

estimates from our methodology is because the GPCP

precipitation dataset exhibits a lower magnitude of mean-

state precipitation in the western Pacific region compared

to the reanalysis residual precipitation. For example, Fig. 7

in our analysis shows that the v-profile reconstructions

versus the estimates using observed rainfall data are

slightly more top heavy. In this case, the spatiotemporally

averaged precipitation rate for the western Pacific is

greater in the reanalysis dataset compared to the observed

precipitation datasets (;11mmday21 of precipitation us-

ing ERA-Interim reanalysis versus ;8.60mmday21 for

GPCP, respectively). Splitting of our dataset into 6-month

and yearly temporal bins also shows that the profile

FIG. 7. The 2001–06 v-profiles for the WP and EP regions defined in Fig. 2 using (top left) ERA-Interim, (bottom left) NCEP–NCAR,

and (top right) TOGA COARE basis functions and reanalysis data. Blue lines represent various v-profiles in the western Pacific ITCZ,

and red lines the central-east Pacific ITCZ. (bottom right) Reconstructions of the mean state TOGA COARE v-profile using the ERA-

Interim, NCEP–NCAR, and TOGA COARE basis functions. See text for details.
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estimates using GPCP precipitation are more bottom

heavy than the reconstructions (not shown). Revisiting

Fig. 5, less precipitation along with more surface conver-

gence (from the QuikSCAT surface convergence) is as-

sociated with more bottom heaviness. Thus, our v-profile

shape estimates can vary significantly depending on the

precipitation and surface convergence datasets used.

Given the inherent limitations in observed vertical

motion profile shape, and the uncertainties in the basis

functions, we conclude that our methodology is working

reasonably well. Therefore we use this methodology in

the next section to estimate v-profile shapes for each

ISCCP tropical mesoscale weather state.

6. Mean-state vertical motion profiles within
ISCCP tropical weather states

a. Weather state vertical motion profiles

To estimate the ISCCP weather state v-profiles, we

compute v-profiles for all spatiotemporal points in the

ITCZ region using our methodology from section 4. We

then find all v-profiles that correspond to each weather

state event and compute the corresponding mean-state

v-profile. We do this analysis using the basis functions from

reanalyses, and we use QuikSCAT observed surface con-

vergence and GPCP and TRMM 3B42 observed pre-

cipitation. We do not use reanalysis precipitation or surface

convergence because the reanalyses do not model pre-

cipitation associated with mesoscale convection well

(Rossow et al. 2013) and because the goal of our method-

ology is to use observational data when possible. Finally, we

only focus on grid points where a weather state occurs con-

sistently throughout a 24-h period (discussed in section 2).

Vertical motion profiles for each weather state are

plotted in Fig. 8. The left-side panels show the estimated

v-profiles using the ERA-Interim basis functions, and

the right-side panels show profiles estimated using the

NCEP–NCAR basis functions. The top panels use

GPCP observational precipitation in these estimations,

while the bottom panels use TRMM 3B42 precipitation.

Figure 8 shows that each weather state contains

a unique v-profile shape. The vigorous deep convective

and less vigorous convective regime (thick cirrus out-

flow), which again are associated with each other closely

in space and time, both exhibit a top-heavy v-profile.

Both the magnitude of surface convergence and pre-

cipitation for the less vigorous regime with thick cirrus is

FIG. 8. The 2001–06 estimated mean-state vertical motion profile shapes for each ISCCP weather state using basis functions generated

from the (left) ERA-Interim, and (right) NCEP–NCAR reanalysis basis functions. The convectively active weather state profile shapes

are solid curves, and the convectively inactive weather states are dashed curves. The bold profiles with shading represent the mean-state

profiles using GPCP/TRMM 3B42 precipitation and QuikSCAT-computed surface convergence as input into our methodology, with the

shading representing the magntiude of the root-mean-square error associated with using Eq. (7). Thin profiles represent the mean-state

profiles estimated using GPCP precipitation and QuikSCAT/NCEP blended surface convergence data. Mean-state profiles are estimated

using (top) GPCP-observed precipitation and (bottom) TRMM 3B42 precipitation.
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significantly less than the vigorous convective regime,

and thus less area between the profile and v 5 0 is

present in the thick cirrus case.

Unlike the two most vigorous convectively active

weather states discussed above, the isolated systems

weather state, associated with disorganized convection

(Rossow et al. 2013) exhibits a bottom-heavy v-profile

shape (Fig. 8). This weather state has a higher magni-

tude of surface convergence in the mean state compared

to the thick cirrus weather state but not as much surface

convergence as the vigorous deep convective weather

state. The isolated systems weather state is the only

convectively active weather state that is significantly

bottom heavy. Note that the thick cirrus weather state

occurs frequently in the western Pacific region, and the

isolated systems weather state occurs frequently in the

central-east Pacific region (Fig. 2).

The mixed trade shallow cumulus and marine stratus

weather states exhibit profiles containing downward

vertical motion throughout the troposphere. The thin

cirrus weather state exhibits minimal upward vertical

motion because the mean precipitation associated with

this weather state is offset by radiative cooling. The

mean state profiles for these three convectively inactive

weather states is expected since these weather states are

not heavily precipitating. In these cases, warming by

precipitation formation is less than radiative cooling,

and downward vertical motion is required to help bal-

ance radiative cooling.

Our v-profile estimates are qualitatively similar to

those simulated within the Modern-Era Retrospective

Analysis for Research and Application (MERRA) re-

analysis dataset shown in Stachnik (2013) (not shown).

Considering only the convectively active weather states,

their WS3 is more bottom heavy than WS1 and WS2,

similar to our results in our Fig. 8. Similarly, both their

and our study show that the thick cirrus (WS2) regime is

relatively more top heavy than the most vigorous con-

vective weather state (WS1).

b. Sensitivity to basis function choice

Figure 9 shows mean-state weather state v-profiles

(bottom panel) using two sets of idealized basis func-

tions (top panel) chosen to examine the sensitivity of our

results to basis function choice. The isolated systems

weather state still exhibits more bottom heaviness than

the other convectively active weather state v-profiles,

and the less vigorous deep convection with mesoscale

anvils (thick cirrus outflow) weather state is still more

top heavy than the vigorous deep convective weather

state. Figure 9 thus suggests that the bottom heaviness of

the isolated systems weather state and the top heaviness

of the thick cirrus weather state, relative to the other

convectively active weather states, is likely a function of

the mean-state precipitation and surface convergence,

which come from observational data, rather than the

basis functions chosen.

c. Latent heating profiles

Figure 10 shows mean weather state profiles of latent

heating plus convergence of dry static energy due to

turbulent fluxes [L(c 2 e) and g(›/›p)(Fs
turb) terms in

Eq. (1)], retrieved usingERA-interim basis functions and

GPCP precipitation. This is the component of apparent

heating directly due to convection (moist and dry), not

including associated radiative effects. As in Figs. 8 and 9,

the isolated systems weather state is most bottom heavy,

and the less vigorous convective regime with thick cirrus

outflow is more top heavy than the vigorous deep con-

vective weather state. The less vigorous regimewith thick

cirrus outflow is also more top heavy than the vigorous

deep convective weather state, since it has less of a low-

level peak vertical velocity compared to the upper level

vertical velocity. These results are consistent with what

we see using the NCEP basis functions or idealized basis

functions and/or TRMM 3B42 precipitation in the re-

trieval. Hence, they are quite robust.

d. Error associated with mean-state profiles

1) ERROR DUE TO NEGLECTED TERMS IN DRY

STATIC ENERGY BUDGET

We consider the error associated with neglected terms

in the dry static energy budget by calculating the root-

mean-square error (RMSE) associated with neglecting

the horizontal advection of dry static energy terms,

along with the dry static energy tendency and surface

turbulent heat flux terms. The RMSE for each mean-

state v-profile is shown as shaded regions for each pro-

file in the reanalysis cases (Fig. 8). The figure shows that

the addition or subtraction of such terms does not

change the shape of the profiles, nor does this signifi-

cantly change the amount of area contained within the

mean-state v-profile curves. Thus, it appears that our

use of a first-order vertically integrated dry static energy

budget is reasonable.

2) QUIKSCAT OBSERVATIONS VERSUS BLENDED

DATA

Recall that QuikSCAT rain-flagged data points are

discarded in our analysis, because such points may be

contaminated and provide potentially inaccurate wind

information. A downside to neglecting these points in

our analysis is that many of the convectively active

weather states are associated with higher amounts of

precipitation, and thus, we lose some information we
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could use in constructing the weather state v-profiles.

One way to alleviate such an issue is to blend the data

with high-resolution reanalysis data. This was done in

the construction of the QuikSCAT/NCEP Blended

Ocean Winds dataset by Milliff et al. (2004). In this

product, any rain-flagged points not considered in our

previous analysis are now substituted with reanalysis

data, and we can now consider such points in our analysis.

Figure 8 also shows mean-state v-profiles for each

weather state using GPCP precipitation and blended

QuikSCAT/NCEP surface convergence in the top

panels and TRMM 3B42 precipitation and the blended

surface convergence data in the bottom panels (rather

than purely QuikSCAT-computed surface convergence

data). These v-profiles are shown as thin-line profiles in

each figure. The profiles are very similar to those esti-

mated using QuikSCAT-only surface convergence.

While the mixed trade shallow cumulus weather state

does differ between the blended and pure QuikSCAT

cases, the profiles still exhibit divergence as expected.

Physically, the fact that the mean-state v-profiles esti-

mated using the blended data do not differ from the

estimates using the QuikSCAT surface convergence

data is a result of surface convergence changing slowly in

space. Therefore, our results appear robust whether we

neglect rain-flagged points or input reanalysis-derived

surface convergence data in these rain-flagged points.

e. Variability of weather state profile results

We asses the amount of precipitation and surface

convergence variability for each weather state, pro-

viding insight about the amount of v-profile variability

for each regime. First, Table 4 shows the 95% confi-

dence intervals (lower and upper bounds) associated

with each mean-state v-profile. These values were

computed via statistical bootstrapping about the mean-

state precipitation and surface convergence values as-

sociated with each weather state. Since the range of the

FIG. 9. As in Fig. 8, but mean-state weather state v-profiles are estimated using two sets of

idealized basis functions. (top) The two sets of basis functions used to estimate the v-profiles.

(bottom) The v-profile estimates using GPCP precipitation. In (bottom), the thick lines rep-

resent the v-profile estimates using the sine basis functions, and the thin lines represent profile

estimates using the piecewise function basis functions.
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upper and lower limits is small, the table shows that

the mean-state precipitation and surface convergence

values for each weather state are very well constrained.

Figure 11 shows the amount of variability in observed

precipitation and surface convergence for each weather

state. The upper and lower limits of each bar represent

the 25th and 75th percentile values associated with each

variable, and the intersection represents the mean state

for each weather state. The figure shows that there are

significant differences between the 25th and 75th per-

centile values and the mean for both precipitation and

surface convergence for eachweather state. For both the

convectively active (top panels) and inactive weather

states (bottom panels), the range of precipitation and

surface convergence values are about the same order of

magnitude as the mean precipitation and surface con-

vergence values themselves. It is not suprising that such

variability exists with respect to the v-profiles for each

weather state, because there is significant variability

resulting from the clustering analysis used to define

these weather states. Table 4 and Fig. 11 show that

while the mean state profiles are well constrained, the

v-profile variability for each weather state is large.

7. Stratiform rain fraction associated with each
weather state

We estimate stratiform rain fraction for each weather

state using the TRMM 2A25 PR product to further in-

vestigate the relationship between the shape of our

v-profile estimates and percent stratiform rain fraction

associated with each profile. We bin the instantaneous

stratiform and precipitation rain rate data into 2.58 daily
averaged grid boxes and compare with the daily aver-

aged 2.58 ISCCP weather state data. The vigorous deep

convective weather state has the highest stratiform rain

fraction at ;54.3%, while the other top-heavy weather

state, thick cirrus, has only ;37.8%. The isolated sys-

tems weather state has a slightly higher stratiform rain

fraction, ;41.1%, than thick cirrus. The thin cirrus,

mixed trade shallow cumulus and marine stratus

weather states have stratiform rain fractions of;31.4%,

;20.2%, and ;29.3%, respectively.

These results are interesting, because differences in

stratiform rain fraction do not seem to be predicting

top heaviness. Despite having similar mean stratiform

rain fraction percentages, the thick cirrus and isolated

systems weather states exhibit significantly different

mean-state v-profile shapes (as shown in Fig. 8). This is

consistent with our earlier discussion regarding the

geographic location of the thick cirrus and isolated sys-

tems weather states, because these weather states are

common in the western Pacific (lower stratiform rain

fraction) and central-east Pacific (higher stratiform rain

fraction) regions respectively (Fig. 4). As Fig. 12 shows,

observed stratiform rain fraction in the eastern Pacific

FIG. 10. As in Fig. 8, but profiles now represent mean-state

weather state latent heating plus convergence of dry static energy

due to turbulent fluxes; profiles were retrieved using ERA-interim

basis functions and GPCP precipitation.

TABLE 4. The 95% confidence limits on mean-state surface convergence and precipitation values for each weather state v-profile along

with 2001–06 mean-state TRMM algorithm 2A25 stratiform rain fraction and TRMM algorithm 2A23 shallow rain fraction for each

ISCCP weather state.

Vigorous

convective

Thick

cirrus

Isolated

systems

Thin

cirrus

Mixed trade

shallow cumulus

Marine

stratus

Surface convergence

(s21 3 1025)

0.606–0.623 0.0946–0.111 0.299–0.310 0.0479–0.0611 20.172 to 20.169 20.149 to 20.143

GPCP precipitation

(mmday21)

20.2–20.3 7.32–7.46 4.79–4.85 3.02–3.10 0.555–0.564 0.462–0.478

TRMM 3B42 precipitation

(mmday21)

22.4–22.7 6.13–6.32 5.66–5.74 3.47–3.57 0.795–0.805 0.606–0.624

Stratiform rain

fraction (%)

54.3 37.8 41.4 31.4 20.2 29.3

Shallow rain fraction (%) 0.947 4.51 4.64 6.64 17.5 20.2

15 OCTOBER 2014 HANDLOS AND BACK 7681



is comparable (or higher in some regions) versus the

western Pacific. Also, the vigorous deep convective and

thick cirrus weather states both exhibit roughly equally

top-heavy v-profiles, with thick cirrus slightly more top

heavy, despite a significantly larger stratiform rain

fraction amount in the vigorous deep convective regime.

We also look at the shallow rain fraction percentage

associated with each weather state using the TRMM

2A23 PR product to examine the idea illustrated in

Fig. 1 that more shallow rain is associated with a more

bottom-heavy latent heating profile. The shallow rain

fraction is less than 1% in the vigorous deep convective

weather state, but for the other two convectively active

weather states, the shallow rain fraction is very similar

(i.e., 4.51% for the thick cirrus versus 4.64% for the

isolated systems weather state). Since the shallow rain

fraction is not significantly larger in the isolated systems

regime compared to the other convectively active re-

gimes, shallow rain fraction does not seem to explain the

bottom heaviness of the isolated systems v-profile.

These results suggest that combining stratiform and

shallow rain fraction still does not seem to be predicting

top heaviness of vertical motion or of latent heating

(plus turbulent convergence of dry static energy fluxes)

profiles.

Figure 13 shows the time-averaged geographic vari-

ability in the level of maximum upward vertical motion

within each grid point in the ITCZ domain with respect

to v-profile estimates using ERA-Interim (top panel)

and NCEP–NCAR (top-middle panel) reanalysis

v data, as well as v-profiles estimated from observa-

tions using ERA-Interim (middle-bottom panel) and

NCEP–NCAR (bottom panel) basis functions for the

estimations, respectively. In all cases, a gradient exists

across the rainy regions of the Pacific ITCZ such that the

pressure of maximum upward vertical motion increases

from the western to the eastern Pacific. Since Fig. 12

shows increasing stratiform rain fraction eastward in the

Pacific, this means higher amounts of mean stratiform

rain fraction are present in regions with more bottom-

heavy vertical motion profiles. Figures 12 and 13 re-

inforce that using the stratiform rain fraction variability

is not the best way to retrieve geographic variability in

v-profile and latent heating profile shape. This may be

because geographic variability in stratiform and con-

vective heating must be considered.

The majority of the rainiest regions along the ITCZ

appear to consist of time-averaged v-profiles that are

FIG. 11. Variability in QuikSCAT surface convergence and

GPCP precipitation data within each weather state. The center

point of each plot represents the mean-state surface convergence

and precipitation values associated with each weather state. The

error bar limits represent the 25th and 75th percentile limits. (top)

The convectively active weather states and (bottom) the con-

vectively inactive weather states.

FIG. 12. Geographic distribution of the TRMM 2A25 computed 2001–06 mean stratiform rain

fraction (%) across the ITCZ domain.
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bottom heavy (or exhibit a maximum in upward vertical

motion), except in the western Pacific, where time-

averaged v-profiles are top heavy. This is not the case

in the v data taken from the ERA-Interim and NCEP–

NCAR reanalysis datasets, where several regions (i.e.,

the central Pacific) exhibit profiles that have amaximum

in upward vertical motion in the middle troposphere.

The use of only two basis functions may be a reason why

our v-profile estimates are too bottom heavy, or there

may be other ways of generating basis functions (or

correcting them) that would not have this issue. Other

factors that likely play a role in our estimates being so

bottom heavy are that surface convergence observations

are larger than in reanalysis, precipitation patterns are

different, and the energy budgets in the reanalysis do not

close.

8. Conclusions

The goals of this study were to investigate the hy-

pothesis that latent heating (plus turbulent flux con-

vergence) profile shape varies (in space and time) in

association with weather state type and to compare the

bottom heaviness of different tropical weather states as

defined byRossow et al. (2005, 2013).We use reanalysis-

constructed basis functions representing the two most

dominant statistical modes of v-profile variability (as-

suming that these two modes explain all v-profile vari-

ability) and estimate the v-profiles as a linear combination

of these two modes based on observed GPCP precip-

itation, TRMM 3B42 precipitation, and QuikSCAT sur-

face convergence data. We find that each weather state is

associated with a unique mean-state v-profile shape and

convective-heating shape that is well constrained, de-

spite the fact that significant profile variability is ex-

hibited in profiles associated with each weather state.

We examine the sensitivity of our results to basis func-

tion choice and conclude that the relative bottom

heaviness in the isolated systems weather state as well as

the top heaviness associated with the thick cirrus

weather state relative to the more vigorous deep con-

vective weather state is consistent regardless of basis

function choice.

More basis functions could be used in order to further

constrain (and improve) our v-profile estimates. For

example, a third mode of variability could be included to

improve the accuracy of our results. A third basis func-

tion would require a third constraint, such as an ex-

pression describing the ratio between 6-km and 2-km

radar reflectivity. However, the Precipitation Radar

(PR) swath width is such that estimates would only ap-

ply to a much smaller area. We also choose to assume

only two modes of variability to maintain the simplicity

of our methodology. Future work may include in-

vestigation of additional constraints.

Our findings suggest that when considering geo-

graphic variability, higher stratiform rain fractions, as

observed by radar, are not necessarily associated with

FIG. 13. Geographic distribution of the 2001–06 time-averaged maximum in upward vertical motion using the (top) ERA-Interim

reanalysis v data, (topmiddle) NCEP–NCAR reanalysisv data, (middle bottom) estimated v-profile data from observations using ERA-

Interim-derived basis functions, and (bottom) estimated v-profile data from observations using NCEP–NCAR-derived basis functions.
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more elevated latent heating profiles. The isolated sys-

tems weather state is associated with a slightly higher

stratiform rain fraction compared to thick cirrus despite

the isolated systems mean-state v-profile being much

more bottom heavy. Time-averaged v-profiles geo-

graphically vary such that regions of bottom-heavy

v-profiles are common in regions of higher stratiform

rain fraction, and vice versa (Figs. 12 and 13).

Back and Bretherton (2009a,b) explored the controls

on geographic variability in vertical motion profile top

heaviness. They argued that the top heaviness of a pro-

file is due to an interplay between the local SST gradi-

ents and the local SST compared to SST in other

convecting regions of the tropics. The SST gradients

contribute to convergence at low levels via the mecha-

nism proposed by Lindzen and Nigam (1987), while the

local SST, compared to the SST in other deeply con-

vecting regions influences how deep convection de-

velops. Regions with strong local SST gradients and

cooler SST values are associated with more surface

convergence but less deep tropospheric heating, leading

to a more bottom-heavy v-profile and the development

of convection predominantly within the lower to middle

troposphere. Regions with lesser magnitudes of SST

gradients but warmer SSTs are associated with more

top-heavy v-profiles and deep convection.

The investigation of heating profiles froma cloud system

perspective is scientifically interesting and worth pursuing,

and interesting questions remain about how different

cloud systems are related to vertical motion top heaviness.

Controls on vertical motion bottom heaviness may be re-

lated to climate sensitivity (Sherwood et al. 2014), which

suggests this is an important research area to pursue. Back

and Bretherton (2009a,b) suggested that large-scale dy-

namical considerations can be used to understandmuch of

the climatological geographic variability in v-profiles over

the tropical oceans. However, the relationship between

this view and the cloud system perspective would be in-

teresting to further clarify and explore.

Our methodology is designed to be applied to any

investigation of vertical motion and apparent heating

profiles in the tropical ITCZ region. We recommend

that our methodology be compared with other vertical

motion and apparent heating profile retrievals, including

algorithms developed via TRMM, in order to improve

overall latent heating profile retrievals. Our estimates

could be used in models to simulate and further in-

vestigate the large-scale atmospheric response due to

anomalous heating in the tropics. For example, our

methodology may be useful in single-column modeling

studies, where it is important to specify accurate non-

zero v-profiles when modeling a particular region in the

tropics (Sobel and Bretherton 2000). The estimates

would also be useful for investigating the evolution and

variability of the vertical profile of v and latent heating

with respect to phenomena in the ITCZ region, such

as the Madden–Jullian oscillation (Zhang et al. 2010;

Jiang et al. 2011) and the El Niño–Southern Oscillation

(ENSO; L’Ecuyer and Stephens 2007). Finally, we could

also apply our estimates to studying moist static energy

budgets, as in Masunaga and L’Ecuyer (2014), and the

gross moist stability, which could be used to further

understand feedbacks between the large-scale circula-

tion and deep convection.
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