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ABSTRACT

The probabilistic modal response of vegetation to stochastic precipitation variability is studied in a con-

ceptual climate–ecosystem model. It is found that vegetation can exhibit bimodality in a monostable climate–

ecosystem under strong rainfall variability and with soil moisture memory comparable with that of the

vegetation. The bimodality of vegetation is generated by a convolution of a nonlinear vegetation response and

a colored stochastic noise. The nonlinear vegetation response is such that vegetation becomes insensitive to

precipitation variability near either end state (green or desert), providing the potential for two preferred

modes. The long memory of soil moisture allows the vegetation to respond to a slow stochastic forcing such

that the vegetation tends to grow toward its equilibrium states. The implication of the noise-induced bi-

modality to abrupt changes in the climate–ecosystem is also discussed.

1. Introduction

Classical theories on the abrupt changes of the climate–

ecosystem have focused on the feedback mechanism and

the equilibrium response. With strong positive feedbacks,

the coupled system can exhibit multiple equilibria and

strong hysteresis behavior (Claussen 1998; Brovkin et al.

1998), providing a fundamental mechanism for abrupt

changes (Claussen et al. 1999). However, there is signif-

icant climate variability, notably in precipitation and in

arid regions where precipitation variability is significant

relative to its climatological mean. The role of strong cli-

mate variability on the abrupt change in a coupled climate–

ecosystem remains poorly understood. In general, a simple

random noise tends to act as a ‘‘mixing’’ on the coupled

state (e.g., Stommel and Young 1993; Rodriguez-Iturbe

et al. 1991) and therefore tends to suppress abrupt changes

(Liu et al. 2006, hereafter LIU). However, a more general

climate ‘‘noise’’ forcing may exert a much more complex

impact that can be opposite to the mixing effect. Indeed,

a climate noise can induce new preferable states, or prob-

abilistic modes, through its interaction with the dynamic

system as a multiplicative noise (Rodriguez-Iturbe et al.

1991) or through its increased memory as a colored noise

(Timmermann and Lohmann 2000; Monahan et al. 2002).

These noise-induced probabilistic modes provide another

mechanism for abrupt changes in the climate–ecosystem.

As a pilot study here, we will study the probabilistic

modes in a conceptual climate–ecosystem, with the fo-

cus on the generation of new probabilistic modes in a

monostable system. This study is motivated by our re-

cent attempt to understand the collapse of the Africa

monsoon–ecosystem in the mid-Holocene in the obser-

vation (deMenocal et al. 2000) and in a complex earth

system model (LIU). LIU proposed that, even in a

monostable climate–ecosystem, the ecosystem can col-

lapse abruptly when the coupled system is forced by

a strong stochastic forcing in the presence of a long

soil moisture memory. This type of abrupt change in a

monostable system, known as the stable collapse, is in

contrast to the classical mechanism of abrupt change in

a bistable climate–ecosystem (Claussen et al. 1999) and

other climate systems (e.g., Cessi 1994; Timmermann and

Lohmann 2000). However, LIU only presented a few

examples of the abrupt changes in a monostable system.

It remains unclear what mechanism is responsible for

this abrupt change and how the abrupt change depends

on model parameters. Here, we will further study the
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mechanism of abrupt change in the monostable climate–

ecosystem systematically in terms of its probabilistic

states. It is shown that the random precipitation, the

nonlinear vegetation response, and the slow soil moisture

memory together generate a bimodality in the mono-

stable system similar to that in a bistable system. This

generation of bimodality provides a new mechanism for

the abrupt transition in a climate–ecosystem.

In the following, we will first introduce the coupled

climate–ecosystem model in section 2. We will then

examine the development of the bimodality, first in the

fully coupled system in section 3 and then in reduced

systems in section 4. A summary and implications will be

given in section 5.

2. The coupled climate–vegetation–soil model

We use a conceptual climate–vegetation system simi-

lar to those of Brovkin et al. (1998) and LIU. With proper

nondimensionalization, the nondimensional vegetation–

climate system can be written in vegetation cover

V (21 , V , 1) and annual rainfall R as

dV

dt
5 V

E
(R)�V, (1)

where VE(R) 5 tanhR and

R 5 R
E

(V) 1 N(t), (2)

where R
E

(V) 5 b 1 dV.

The vegetation cover V is relaxed toward its equilibrium

state VE in a unit time; VE is determined by the total

rainfall R through the nonlinear vegetation response

function tanhR. The VE approaches the green state V ; 1

for rainfall exceeding ;RC, and approaches the desert

state V ; 21 for rainfall below ;2RC (Fig. 1a), with

2RC ; 2 being a measure of the rainfall climatology that

enables the equilibrium vegetation to switch between the

green and desert states. Rainfall R consists of an equi-

librium response RE and a stochastic variability N(t); RE

consists of a background rainfall b and a feedback pa-

rameter d, with d . 0 for positive vegetation feedback on

rainfall; N(t) represents the rainfall variability associated

with internal atmospheric instability. For simplicity, here

the total rainfall is no longer lower bounded.

A single equation for the coupled system can be de-

rived by inserting Eq. (2) into Eq. (1) as

dV

dt
5 tanh(dV 1 b 1 N(t))� V

or

dV

dt
5�U9(V) 1 S(V, N). (3)

Here U is the equilibrium potential

U(V) 5�
ðV

0

(tanh[dv 1 b]� v) dv

5
V2

2
� ln[cosh(dV 1 b)]

d
, (4)

and S is the stochastic forcing

S(V, N) [ tanh(dV 1 b 1 N)� tanh(dV 1 b) (5)

that diminishes with N as S(V, N)/
N!0

0.

In the absence of stochastic forcing, the coupled system

(3) is monostable for weak vegetation feedback d # 1 and

bistable for strong positive vegetation feedback d . 1.

The case of a small or zero b gives the potential of the

classical two-well potentials symmetrically around x 5 0.

Figure 1 shows two examples for b 5 0, one weak feedback

FIG. 1. Equilibrium states for b 5 0. (a) Equilibrium vegetation response function (gray), equilibrium atmosphere for the weak feedback

case (d 5 0.8, solid), and strong feedback case (d 5 1.2, dash). (b) The potential function for the monostable (d 5 0.8, solid) and bistable

(d 5 1.2, dash) system. The three squares mark the equilibrium solutions, and RC marks the approximate range of climatological rainfall by

which vegetation changes between green and desert states at quasi equilibrium.
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(d 5 0.8) and the other strong feedback (d 5 1.2), with

the equilibrium atmospheric models shown in Fig. 1a (as

straight lines) and their potentials in Fig. 1b. The system

d 5 0.8 has a single stable equilibrium at the medium

vegetation state (V 5 0); the system d 5 1.2 has two

stable equilibria (a green state V ’ 0.8 and a desert state

V ’ 20.8) and an unstable equilibrium (V 5 0).

For the application to the coupled climate–ecosystem,

LIU suggested a further improvement to include the

effect of soil moisture memory. Conceptually, the rain-

fall R that forces vegetation in Eq. (2) should be thought

as the soil moisture because vegetation is determined

directly by soil moisture rather than rainfall. This dif-

ference between soil moisture and precipitation may not

be important for the equilibrium response but is critical

for the variability response and in turn new probabilistic

modes, as inferred from LIU. Intuitively, soil moisture

has a memory comparable with that of the vegetation such

that the direct stochastic forcing on vegetation should be

represented by a red noise in soil moisture, instead of

a white noise in rainfall. In LIU, the effect of soil moisture

memory is represented crudely as a running mean on

white noise precipitation variability. Here, the effect of

soil moisture memory will be represented more formally

by treating N as a red noise process. With a variance of

M2 5 s2/(2t) and a persistence time representative of

the soil moisture memory of t, the N can be obtained

from a conceptual ‘‘soil moisture’’ equation forced by a

random rainfall variability of a variance s 2 as

dN

dt
5
�N

t
1

s§(t)

t
, (6)

where §(t) is a white noise process with a unit variance. It

is important to point out that in Eq. (6) N represents an

idealized one-way forcing of soil moisture on vegetation.

In more realistic scenarios, soil moisture dynamics is

much more complicated because it interacts with vege-

tation and surface climate. In the absence of the direct

vegetation–climate interaction, previous studies show

that vegetation–soil moisture interaction (e.g., Zeng

et al. 2005) or soil moisture–climate interaction (e.g.,

Rodriguez-Iturbe et al. 1991) alone may lead to strongly

nonlinear behavior and multiple preferred states in the

coupled system. Since our purpose here is to highlight

the new effect due to vegetation–climate feedback, we

will only use the idealized ‘‘soil moisture’’ equation (6),

which has feedbacks from neither vegetation nor sur-

face climate. Keeping in mind this idealized nature of

our ‘‘soil moisture’’ variability N, here we will simply

call s and M the intensities of rainfall variability and

‘‘soil moisture’’ variability, respectively, and R the total

‘‘soil moisture’’. Equations (3) and (6) form our coupled

climate–vegetation–soil moisture system.

3. Bimodality in the full model

The climate–ecosystem (3) and (6) is nontrivial as a

nonlinear stochastic differential equation because the

stochastic noise is nonlinear and is colored. There is no

general analytical approach for the probabilistic density

function (PDF) of such a system. Therefore, the PDF

will be obtained numerically using a forward Euler dis-

cretization (Kloeden and Platen 1992) as

V
k

5 V
k�1

1 Dt(�U9(V
k�1

) 1 S(V
k�1

, N
k�1

))N
k

5 N
k�1
� Dt

t
N

k�1
1

ffiffiffiffiffi
Dt
p s

t
W

k�1
. (7)

Here Dt is the time step; subscript k is the value at time

kDt; fWkg is a sequence of Gaussian random variable

with a zero mean and unit variance. Each PDF is ob-

tained from an integration of 100 000 time units with

a time step Dt 5 0.3. Our results are robust with respect

to the time step and integration length. Unless otherwise

specified, we will discuss the system of a medium back-

ground rainfall of b 5 0, such that the PDF should be

symmetric about V 5 0.

The stationary PDF for the monostable system d 5 0.8

is shown for 3 cases with extended soil memories of t 5

0.3, 1, and 2 [Figs. 2a(1)–(3)], each case forced by 4

successively stronger rainfall variability s 5 0.2, 0.5, 1,

and 2. Since this system has a single equilibrium at V 5 0

(Figs. 1a,b), one expects a unimodal PDF of V with the

peak at V 5 0. This is true, as seen for the weak forcing

of s 5 0.2, regardless of the soil memory. As the forcing

increases to s 5 0.5, the peak of the PDF is broadened

by the ‘‘mixing’’ effect of the noise. As the forcing fur-

ther increases to s 5 1, the PDF changes dramatically

with the emergence of a bimodal PDF when soil mem-

ories are comparable or longer than that of the vegeta-

tion, as seen for t 5 1 and 2 [Figs. 2a(2),(3)].

As a quantification of bimodality, we define an index

of double-peak intensity (DPI) for a symmetric PDF

p(V) as

DPI [
max(p(V)j

V.0
)1 max(p(V)j

V,0
)

2p(0)
� 1. (8)

The DPI is zero if the PDF has a single peak at V 5 0 but

becomes positive when bimodality emerges. The larger

the DPI, the more prominent the double peak. In the

monostable system in Figs. 2a(2) and 2a(3), the bimodality

PDFs for s 5 2 have DPI 5 0.25 and 1, respectively.

The DPI is calculated systematically in Fig. 3a for the

monostable system d 5 0.8 as a function of soil memory

(0.3 # t # 4) and forcing magnitude (0.2 # s # 3). As

discussed, Fig. 2a, DPI is small for either weak forcing

or short soil memory. For example, DPI , 0.5 for s # 1
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or t # 1. With a further increase in both the forcing and

soil memory, DPI becomes significantly positive, in-

dicating a distinct bimodality. For large forcing and long

memory, the DPI increases monotonically with the forc-

ing amplitude but appears to saturate at a soil memory

tS(s) that increases with the forcing magnitude. For the

system of d 5 0.8 here, the saturation level increases with

the forcing roughly as tS(s) ; s.

It is interesting that the bimodal PDF requires a

strong precipitation variability s $ 1, but not necessarily

a large soil moisture variability M 5 s/
ffiffiffiffiffi
2t
p

. Indeed, the

strong dependence of bimodality on s, rather than M,

can be seen clearly in Fig. 3a, where the heavy dash line

represents the boundary of M 5 1: significant bimodality

develops for M , 1 (lower part) as long as the soil

memory is sufficiently long. It is nevertheless interesting

in Fig. 3a that the critical soil moisture variability M ;

RC coincides approximately with the saturation level

tS(s) ; s.1 In the equilibrium vegetation response, the

transition between a green and desert state is possible

only if the total soil moisture R varies with a range

comparable or larger than RC ; 1 (see Fig. 1a). This is

not the case for the generation of bimodality by sto-

chastic forcing. For example, for the case of a long

memory t 5 2 [Fig. 2a(3)], significant bimodal PDF

emerges for M as low as 0.25 (at s ; 1).

The bimodality in a monostable system resembles

somewhat that in a bistable system, for example, with d 5

1.2 (Fig. 4a). This bistable system has a classical double-

well potential (Fig. 1b) and therefore is expected to ex-

hibit a bimodality. This is confirmed in Figs. 4a(1)–(3)

under a weak forcing s 5 0.2, where a significant bimo-

dality exists regardless of the soil memory. As the forcing

intensifies, however, bimodality is suppressed by the mix-

ing associated with stochastic variability. With a short

memory t 5 0.3 [Fig. 4a(1)], interestingly, bimodality is

suppressed for strong forcings. For a given forcing mag-

nitude, however, as the soil memory increases, bimodality

recovers [Figs. 4a(2),(3)]. Therefore, for strong forcing

s ; O(1) and slow memory of t ; O(1), the monostable

[Figs. 2a(2),(3)] and bistable [Figs. 4a(2),(3)] systems both

exhibit a similar bimodality. Unlike the monostable sys-

tem when the bimodality saturates with soil memory, the

bimodality intensifies with the soil memory in the bistable

system. This is seen clearly in the DPI in Fig. 3b: in the

limit of large forcing and long memory, DPI increases

monotonically with both the forcing and memory.

Therefore, DPI is usually larger in the bistable system than

in the monostable system for strong forcing, as expected.

FIG. 2. Stationary PDFs for the monostable system d 5 0.8. (a) Full model solution for soil memories (top) t 5 0.3, (middle) t 5 1, and

(bottom) t 5 2. (b) Similar to (a) but for the reduced model of multiplicative noise; (c) similar to (a) but for the reduced model of additive

noise. In each panel, four rainfall magnitudes are used: s 5 0.2 (dot), s 5 0.5 (dash–dot), s 5 1 (dash), and s 5 2 (solid), as marked in [a(3)].

1 Formally, s may be treated as the magnitude of equilibrium soil

moisture response of N, as seen in the soil moisture equation (6) at

equilibrium under a long-term rainfall forcing of constant §(t) [ 1.

Therefore, it appears that bimodality in Fig. 3a emerges when the

rainfall variability is sufficiently strong such that its equilibrium soil

moisture response of N becomes comparable with RC 5 1, and the

soil memory becomes comparable or longer than the vegetation

memory t . 1.
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4. Mechanism for bimodality

The bimodality in the monostable climate–ecosystem

can be contributed in principle by several factors. Soil

memory could contribute to the bimodality because a

colored noise may shift or induce new modes in a non-

linear system (Hänggi et al. 1990; Timmermann and

Lohmann 2000; Monahan et al. 2002). In the meantime,

the noise forcing is convoluted nonlinearly with the vege-

tation system through the vegetation function tanhR and

may also change the modality. To better understand the

bimodality, especially the roles of the colored noise versus

nonlinear noise forcing, we will simplify the full model

(3) and (6).

For a small noise, the vegetation–climate model (3) can

be approximated as an equation of multiplicative noise:

dV

dt
5�U9(V) 1 B(V)N(t), (9a)

where the noise term S(V, N) is approximated by its

Taylor expansion with

B(V ) 5
›

›N
S(V, N)j

N50
5

d

dy
tanhyj

y5dV1b

5
1

ch2(dV 1 b)
. (9b)

This equation can be further simplified to an equation of

additive noise by fixing B as a constant B0, such as B(0):

dV

dt
5�U9(V) 1 B

0
N(t). (10)

Now, the vegetation cover is no longer constrained be-

tween 21 and 1 because of the linearization of the

vegetation response function. Nevertheless, these re-

duced systems can still shed light on the mechanisms of

bimodality.

To isolate the effect of the colored noise, we will fur-

ther simplify the soil moisture equation (6) in the limit of

a diminishing memory t / 0. Now, the stochastic soil

moisture forcing N(t) approaches a white noise (variance

M2) and the PDF for the reduced model of multiplicative

noise (9) is determined by the Fokker–Planck equation

(in Stratonovich calculus):

›p

dt
5

›

›V
U9�

B
N

›
V

B
N

2

� �
p

� �
1

›2

›2V

B2
N

2
p

� �
, (11)

where BN(V) 5 B(V)M (Gardiner 1997). The stationary

PDF can be derived analytically as

p(V ) 5 p
0

exp(�C(V)), (12a)

where p0 is a normalization constant and the stochastic

potential C is

C(V) [

ðV 2U9(v)

B2
N(v)

dv 1 ln(B
N

)

5
1

M2

3V2

8
1

1

2d

Vsh(4y)

8
� 5ch(4y)

32

��

1 Vsh(2y)� ch(2y)

��
1 ln(B

N
), (12b)

where y 5 dV 1 b for the special case of an additive

noise (10), the PDF can be derived similar as in (12a) but

with the stochastic potential proportional to the equi-

librium potential U as

C(V ) 5
2U(V)

B2
0N

(13)

In which B0N 5 B0M.

Figures 5a and 5b show PDFs for the monostable

system d 5 0.8 in the reduced models of multiplicative

(12) and additive (13) noises, respectively, while Figs. 5c

and 5d show the corresponding PDFs for the bistable

system d 5 1.2. The reduced model of additive noise is

simple: the PDF has the same modality as the equilib-

rium potential, which exhibits a single peak at V 5 0 for

FIG. 3. Double-peak intensity as a function of soil memory t and rainfall intensity s for the systems of (a) monostable d 5 0.8 and (b)

bistable d 5 1.2. The heavy dash line in (a) marks the intensity of soil moisture variability M 5 1. Contour interval is 0.25 in (a) and 0.5 in (b).
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the monostable system (Fig. 5b) but double peaks at

V ; 60.8 for the bistable system (Fig. 5d). In both sys-

tems, the peak of the PDF spreads when the random

forcing intensifies, reflecting the mixing effect on the

PDF induced by the white noise forcing as shown in the

last term of the Fokker–Planck Eq. (11).

In the reduced model of multiplicative noise, an in-

creased noise induces two new modes (PDF peaks) at

green and desert states in the monostable system while

the old mode V 5 0 is suppressed (Fig. 5a). This is easy to

understand in Eq. (9): the multiplicative factor B(V) is

maximum at V 5 0 and diminishes for a large magnitude

of jVj. The strong noise forcing near V 5 0 ‘‘pushes’’ the

system away from the equilibrium state V 5 0 such that

this state no longer supports a PDF peak. In the mean-

time, once pushed far away from V 5 0 on either side,

vegetation tends to stay there because there is little

noise forcing, generating a new PDF peak.2 This effect

of multiplicative noise contributes critically to the bi-

modality in the full model, as will be discussed later.

The effect of colored noise on the reduced system is

further examined numerically for the case of multiplicative-

colored noise in (9) and (6) and additive-colored noise in

(10) and (6). With the colored noise, there is no longer

a general analytical solution to the PDF (Jung and

Hänggi 1987; Monahan et al. 2002). Therefore, we will

use numerical integration, as for the full model. The

PDFs for the reduced models of multiplicative-colored

and additive-colored noises are shown in Figs. 2b and 2c,

respectively, for the monostable system d 5 0.8, as in the

full model in Fig. 2a. For both reduced models, one

striking difference from the full model is the insensitivity

of PDF to soil memory. Indeed, for different soil mem-

ories, the PDFs for the multiplicative-colored noise are

similar to that of white noise in the analytical solution

(Fig. 5a), changing from unimodal at weak forcing to bi-

modal at strong forcing; the PDFs for the additive-colored

noise are also similar to that under white noise forcing

in the analytical solution (Fig. 5b), with a single peak at

V 5 0.3 This suggests that the effect of colored noise alone

is insufficient for the generation of bimodality.

The PDF of the full model appears to resemble that of

additive noise for short soil memory, being unimodal

regardless of the forcing magnitude [Fig. 2a(1) versus

Fig. 2c(1)], but it resembles that of multiplicative noise

for slow soil memory, developing from unimodal to bi-

modal with the magnitude of the forcing [from Figs.

2a(2),(3) to Figs. 2b(2),(3)]. This can be understood as

follows. In the full vegetation equation (1), the effect of

diminishing B(V) at large jVj in the reduced model of

multiplicative noise can be traced to the nearly constant

equilibrium vegetation response tanhR near the green

and desert states V ; 61 for large rainfall anomaly jRj.
jRCj (Fig. 1a). Physically, if the vegetation is near the

green state, it tends to stay there because precipitation is

already more than sufficient such that a rainfall anomaly

would have little impact on the vegetation. (A similar

argument can be made on the desert state). In contrast,

the vegetation is unlikely to stay near its equilibrium

state V 5 0, where it is easily ‘‘pushed’’ around by the

noise. Effectively, then, vegetation tends to form two

FIG. 4. Stationary PDF for the bistable system d 5 1.2 in the full

model with soil memories (top) t 5 0.3, (middle) t 5 1, and

(bottom) t 5 2. In each panel, four rainfall intensities are used:

s 5 0.2 (dot), s 5 0.5 (dash–dot), s 5 1 (dash), and s 5 2 (solid),

as marked in [a(3)].

2 This effect of multiplicative noise in generating bimodality

can be seen somewhat similar to that in a climate–soil model

(Rodriguez-Iturbe et al. 1991).
3 Similarly in the bistable case d 5 1.2. For different soil memory,

the PDFs remain similar to those under a white noise forcing (Figs.

5c,d) for both the multiplicative noise and additive noise (not

shown).
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preferred states in the green and desert states in the full

model, even if the system is monostable in its equilib-

rium at the medium state. Furthermore, the slow soil

memory, and in turn, the slow noise, enables the vege-

tation to follow the nonlinear equilibrium vegetation

response [as in Eq. (1)], which enables the stochastic

noise to force the vegetation in a nonlinear way, which

is critical for bimodality. Otherwise, with a fast noise,

vegetation will be forced to change rapidly with little

chance of approaching the nonlinear equilibrium re-

sponse. Then, the PDF will be diffused as in the case of

a white noise. Thus, in the full system, it is the combined

effect of soil moisture memory and nonlinear stochastic

forcing on vegetation that generates the bimodality.

5. Summary and discussion

We have studied the modal response of the vegetation

states to precipitation variability in a conceptual climate–

ecosystem model. The vegetation is found to exhibit bi-

modality in a monostable climate–ecosystem when forced

by strong rainfall variability in the presence of a slow soil

moisture memory. A systematic analysis suggests that

the bimodality is generated by a nonlinear vegetation

response to climate forcing and the resulting nonlinear

response to colored stochastic forcing. The nonlinear

vegetation response is such that vegetation becomes in-

sensitive to rainfall changes once it reaches the green or

desert state, generating two preferred modes there. The

long memory of soil moisture slows down the precipitation

noise such that vegetation has sufficient time to adjust

toward the nonlinear equilibrium vegetation response.

Overall, our study suggests an important role of sto-

chastic forcing in the bimodality of the climate–ecosystem.

With a weak forcing, bimodality is determined completely

by the stability of the equilibrium system and corresponds

exactly to the regime of bistability (d . 1). This corre-

spondence between bimodality and bistability is changed

significantly by a strong stochastic forcing. With a short

memory, stochastic forcing suppresses bimodality into

FIG. 5. Analytical solution of the stationary PDF forced by a white noise in the reduced models of (left) multiplicative

and (right) additive noises: (a),(b) monostable (d 5 0.8) and (c),(d) bistable (d 5 1.2). In each panel, PDFs forced by

four moisture variability intensities are plotted S 5 0.2 (dot), 0.5 (dash–dot), 1 (dash), and 2 (solid), as marked in (a).
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the bistable regime while, for a long memory, stochastic

forcing expands bimodality into the monostable regime.

This can be seen in the DPI as a function of the feedback

parameter and the intensity of stochastic forcing in Fig. 6.

For a short memory (t 5 0.2, Fig. 6a), bimodality is

suppressed almost completely across d 5 1 deep into the

unstable regime, except for the very unstable regime

under a very weak forcing (the lower-right corner). In

contrast, for a long memory (t 5 2, Fig. 6b), signifi-

cant bimodality emerges across d 5 1 back deep into

the monostable regime, especially for strong stochastic

forcing on weakly stable systems. As a result, bimodality

no longer corresponds to bistable regime. Instead, the

boundary of bimodality is smeared across the bound-

ary of stability (d 5 1) with a short forcing suppressing

bimodality and a long forcing favoring bimodality.

Therefore, to understand the bimodality of the climate–

ecosystem, it is important to understand not only the

stability of the equilibrium state, but also the charac-

teristics of the noise forcing and its interaction with the

coupled system.

It is also interesting to examine the bimodality of the

total soil moisture R. This may have implications to the

abrupt changes in the observation (LIU) and may also

be relevant to the bimodality of soil moisture in the

observation (D’Odorico and Porporato 2004). Since the

soil moisture variability directly driven by precipitation

variability N is Gaussian, here Eq. (2) shows that the

bimodality of R can only be generated by the vegetation

feedback dV. Therefore, the bimodality in R should in-

crease with the feedback parameter d. It is, however,

unclear how much the bimodality of R varies relative to

that of V. Figures 6c and 6d show the ratio of the DPI of

R with the DPI of V for the cases of a short and long soil

FIG. 6. Double-peak intensity for vegetation cover V as a function of stability parameter d and precipitation

intensity s for (a) short (t 5 0.2) and (b) long (t 5 2) soil memory. Solid contours start from 1 to 9 with an interval of 2

(values above 9 are not shown). The dash–dot contour is for DPI 5 0.1. The dot line d 5 1 is the stationary boundary

between monostable (d , 1) and bistable (d . 1) systems. (c),(d) Similar to (a) and (b), but for the ratio of double-

peak intensity between total soil moisture (R) and vegetation cover (V ) (for DPI of vegetation cover greater than

0.1). Contours start from 0.01 with an interval of 0.02. In (a),(b) the rainfall variability suppresses bimodality for short

soil memory but enhances bimodality for long soil memory, respectively; in (c),(d) the bimodality is usually much

weaker in the total soil moisture than in vegetation cover, especially in the monostable regime.
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memory. For a short soil memory, there is virtually no

bimodality in R because the DPI of R is two orders

smaller than that of V (Fig. 6c),4 the latter being very

small itself (Fig. 6a) because of the suppression of

bimodality by fast rainfall variability. For a long soil

memory, the bimodality in R increases significantly with

the instability parameter d (Fig. 6d), suggesting a rapid

increase of the bimodality of R relative to that of V. In

the monostable regime, the bimodality is very weak in R

because the DPI of R is two orders smaller than that for

V. Across the stability boundary into the unstable re-

gime (d . 1), the DPI for R increases much faster than

that for V, by over 10 times, from a DPI ratio of 0.01 at

d 5 1 to larger than 0.1 for d about 1.1 to 1.5 if the

rainfall variability s is not too strong. It is interesting

that a further increase of instability d beyond ;1.5 leads

to a decrease of the DPI ratio, which may be caused by

a too fast increase of DPI of V (Fig. 6b) there. Finally, as

the noise intensifies, the bimodality of R is always de-

creased relative to that of V because of the increased

contribution from the Gaussian N.

Our study may have important implications regarding

the understanding of abrupt climate changes. In addition

to the classical mechanism of positive feedback and mul-

tiple equilibria, our result suggests that abrupt changes of

the ecosystem can also be induced by stochastic climate

variability if the stochastic forcing is sufficiently slow

and strong and acts nonlinearly on the coupled system.

Therefore, to understand abrupt changes, we should

study not only the stability the mean state but also the

characteristics of the noise and its interaction with the

nonlinear system. As for a coupled climate–ecosystem,

our study provides a theoretical support for the proposal

of LIU: the ecosystem can collapse abruptly in a mono-

stable coupled climate–ecosystem in the presence of

strong rainfall variability and slow soil memory. Fur-

thermore, in contrast to a bistable system for which abrupt

changes occur in both climate variables (such as pre-

cipitation, soil moisture) and ecological variables (such as

vegetation cover), the abrupt change in a monostable

system is shown most clearly in the ecological variable,

rather than climate variables. Therefore, the relative

magnitude of abrupt transition between the climate and

ecosystem variables may provide a useful index to judge

the nature of the abrupt change in a coupled climate–

ecosystem.
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