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ABSTRACT

The probabilistic modal response of vegetation to stochastic precipitation variability is studied in a con-
ceptual climate—ecosystem model. It is found that vegetation can exhibit bimodality in a monostable climate—
ecosystem under strong rainfall variability and with soil moisture memory comparable with that of the
vegetation. The bimodality of vegetation is generated by a convolution of a nonlinear vegetation response and
a colored stochastic noise. The nonlinear vegetation response is such that vegetation becomes insensitive to
precipitation variability near either end state (green or desert), providing the potential for two preferred
modes. The long memory of soil moisture allows the vegetation to respond to a slow stochastic forcing such
that the vegetation tends to grow toward its equilibrium states. The implication of the noise-induced bi-
modality to abrupt changes in the climate—ecosystem is also discussed.

1. Introduction

Classical theories on the abrupt changes of the climate—
ecosystem have focused on the feedback mechanism and
the equilibrium response. With strong positive feedbacks,
the coupled system can exhibit multiple equilibria and
strong hysteresis behavior (Claussen 1998; Brovkin et al.
1998), providing a fundamental mechanism for abrupt
changes (Claussen et al. 1999). However, there is signif-
icant climate variability, notably in precipitation and in
arid regions where precipitation variability is significant
relative to its climatological mean. The role of strong cli-
mate variability on the abrupt change in a coupled climate—
ecosystem remains poorly understood. In general, a simple
random noise tends to act as a “mixing” on the coupled
state (e.g., Stommel and Young 1993; Rodriguez-Iturbe
et al. 1991) and therefore tends to suppress abrupt changes
(Liu et al. 2006, hereafter LIU). However, a more general
climate “noise’ forcing may exert a much more complex
impact that can be opposite to the mixing effect. Indeed,
a climate noise can induce new preferable states, or prob-
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abilistic modes, through its interaction with the dynamic
system as a multiplicative noise (Rodriguez-Iturbe et al.
1991) or through its increased memory as a colored noise
(Timmermann and Lohmann 2000; Monahan et al. 2002).
These noise-induced probabilistic modes provide another
mechanism for abrupt changes in the climate—ecosystem.

As a pilot study here, we will study the probabilistic
modes in a conceptual climate—ecosystem, with the fo-
cus on the generation of new probabilistic modes in a
monostable system. This study is motivated by our re-
cent attempt to understand the collapse of the Africa
monsoon—ecosystem in the mid-Holocene in the obser-
vation (deMenocal et al. 2000) and in a complex earth
system model (LIU). LIU proposed that, even in a
monostable climate—ecosystem, the ecosystem can col-
lapse abruptly when the coupled system is forced by
a strong stochastic forcing in the presence of a long
soil moisture memory. This type of abrupt change in a
monostable system, known as the stable collapse, is in
contrast to the classical mechanism of abrupt change in
a bistable climate—ecosystem (Claussen et al. 1999) and
other climate systems (e.g., Cessi 1994; Timmermann and
Lohmann 2000). However, LIU only presented a few
examples of the abrupt changes in a monostable system.
It remains unclear what mechanism is responsible for
this abrupt change and how the abrupt change depends
on model parameters. Here, we will further study the
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FIG. 1. Equilibrium states for b = 0. (a) Equilibrium vegetation response function (gray), equilibrium atmosphere for the weak feedback
case (d = 0.8, solid), and strong feedback case (d = 1.2, dash). (b) The potential function for the monostable (d = 0.8, solid) and bistable
(d = 1.2, dash) system. The three squares mark the equilibrium solutions, and R marks the approximate range of climatological rainfall by
which vegetation changes between green and desert states at quasi equilibrium.

mechanism of abrupt change in the monostable climate—
ecosystem systematically in terms of its probabilistic
states. It is shown that the random precipitation, the
nonlinear vegetation response, and the slow soil moisture
memory together generate a bimodality in the mono-
stable system similar to that in a bistable system. This
generation of bimodality provides a new mechanism for
the abrupt transition in a climate—ecosystem.

In the following, we will first introduce the coupled
climate—ecosystem model in section 2. We will then
examine the development of the bimodality, first in the
fully coupled system in section 3 and then in reduced
systems in section 4. A summary and implications will be
given in section 5.

2. The coupled climate-vegetation—-soil model

We use a conceptual climate—vegetation system simi-
lar to those of Brovkin et al. (1998) and LIU. With proper
nondimensionalization, the nondimensional vegetation—
climate system can be written in vegetation cover
V (=1 <V < 1) and annual rainfall R as

dv

RS (M

where Vg(R) = tanhR and
R=R.(V)+N(), 2)

where R (V) = b+dV.

The vegetation cover V is relaxed toward its equilibrium
state Vg in a unit time; Vi is determined by the total
rainfall R through the nonlinear vegetation response
function tanhR. The V¢ approaches the green state V' ~ 1
for rainfall exceeding ~R¢, and approaches the desert
state V ~ —1 for rainfall below ~—R¢ (Fig. 1a), with
2R ~ 2 being a measure of the rainfall climatology that

enables the equilibrium vegetation to switch between the
green and desert states. Rainfall R consists of an equi-
librium response Rg and a stochastic variability N(¢); Rg
consists of a background rainfall b and a feedback pa-
rameter d, with d > 0 for positive vegetation feedback on
rainfall; N(f) represents the rainfall variability associated
with internal atmospheric instability. For simplicity, here
the total rainfall is no longer lower bounded.

A single equation for the coupled system can be de-
rived by inserting Eq. (2) into Eq. (1) as

‘2—‘: = tanh(dV + b + N(1)) = V

or

dv

G = U W) +SV.N). ©)

Here U is the equilibrium potential

\%4
%) —L (tanh[dv + b] — v) dv

V2 In[cosh(dV + b))
P “

and S is the stochastic forcing

S(V, N) = tanh(dV + b + N) — tanh(dV + b) (5)
that diminishes with N as S(V, N) 2=3 0.

In the absence of stochastic forcing, the coupled system
(3) is monostable for weak vegetation feedback d = 1 and
bistable for strong positive vegetation feedback d > 1.
The case of a small or zero b gives the potential of the
classical two-well potentials symmetrically around x = 0.
Figure 1 shows two examples for b = 0, one weak feedback
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(d = 0.8) and the other strong feedback (d = 1.2), with
the equilibrium atmospheric models shown in Fig. 1a (as
straight lines) and their potentials in Fig. 1b. The system
d = 0.8 has a single stable equilibrium at the medium
vegetation state (V = 0); the system d = 1.2 has two
stable equilibria (a green state V ~ 0.8 and a desert state
V ~ —0.8) and an unstable equilibrium (V = 0).

For the application to the coupled climate—ecosystem,
LIU suggested a further improvement to include the
effect of soil moisture memory. Conceptually, the rain-
fall R that forces vegetation in Eq. (2) should be thought
as the soil moisture because vegetation is determined
directly by soil moisture rather than rainfall. This dif-
ference between soil moisture and precipitation may not
be important for the equilibrium response but is critical
for the variability response and in turn new probabilistic
modes, as inferred from LIU. Intuitively, soil moisture
has a memory comparable with that of the vegetation such
that the direct stochastic forcing on vegetation should be
represented by a red noise in soil moisture, instead of
a white noise in rainfall. In LIU, the effect of soil moisture
memory is represented crudely as a running mean on
white noise precipitation variability. Here, the effect of
soil moisture memory will be represented more formally
by treating N as a red noise process. With a variance of
M? = o?%/(27) and a persistence time representative of
the soil moisture memory of 7, the N can be obtained
from a conceptual “‘soil moisture” equation forced by a
random rainfall variability of a variance o as

d_N:ﬂ+i(t)’ (6)

dt T T

where s(t) is a white noise process with a unit variance. It
is important to point out that in Eq. (6) N represents an
idealized one-way forcing of soil moisture on vegetation.
In more realistic scenarios, soil moisture dynamics is
much more complicated because it interacts with vege-
tation and surface climate. In the absence of the direct
vegetation—climate interaction, previous studies show
that vegetation—soil moisture interaction (e.g., Zeng
et al. 2005) or soil moisture—climate interaction (e.g.,
Rodriguez-Iturbe et al. 1991) alone may lead to strongly
nonlinear behavior and multiple preferred states in the
coupled system. Since our purpose here is to highlight
the new effect due to vegetation—climate feedback, we
will only use the idealized *‘soil moisture’” equation (6),
which has feedbacks from neither vegetation nor sur-
face climate. Keeping in mind this idealized nature of
our ‘“‘soil moisture’ variability N, here we will simply
call o and M the intensities of rainfall variability and
“soil moisture’ variability, respectively, and R the total
“soil moisture”. Equations (3) and (6) form our coupled
climate—vegetation—soil moisture system.
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3. Bimodality in the full model

The climate—ecosystem (3) and (6) is nontrivial as a
nonlinear stochastic differential equation because the
stochastic noise is nonlinear and is colored. There is no
general analytical approach for the probabilistic density
function (PDF) of such a system. Therefore, the PDF
will be obtained numerically using a forward Euler dis-
cretization (Kloeden and Platen 1992) as

V=V t AU (V) + SV, N )DIN,
At

(o
=N =Nt \/KE;W,H. (7)

Here At is the time step; subscript & is the value at time
kAt; {W,} is a sequence of Gaussian random variable
with a zero mean and unit variance. Each PDF is ob-
tained from an integration of 100 000 time units with
a time step At = 0.3. Our results are robust with respect
to the time step and integration length. Unless otherwise
specified, we will discuss the system of a medium back-
ground rainfall of b = 0, such that the PDF should be
symmetric about V' = 0.

The stationary PDF for the monostable system d = 0.8
is shown for 3 cases with extended soil memories of 7 =
0.3, 1, and 2 [Figs. 2a(1)-(3)], each case forced by 4
successively stronger rainfall variability o = 0.2, 0.5, 1,
and 2. Since this system has a single equilibrium at V' = 0
(Figs. 1a,b), one expects a unimodal PDF of V with the
peak at V' = 0. This is true, as seen for the weak forcing
of o = 0.2, regardless of the soil memory. As the forcing
increases to o = 0.5, the peak of the PDF is broadened
by the “mixing” effect of the noise. As the forcing fur-
ther increases to o = 1, the PDF changes dramatically
with the emergence of a bimodal PDF when soil mem-
ories are comparable or longer than that of the vegeta-
tion, as seen for 7 = 1 and 2 [Figs. 2a(2),(3)].

As a quantification of bimodality, we define an index
of double-peak intensity (DPI) for a symmetric PDF
p(V) as

max(p(V)lyo) + max(p(V)lyo)
2p(0)

The DPI is zero if the PDF has a single peak at V = 0 but
becomes positive when bimodality emerges. The larger
the DPI, the more prominent the double peak. In the
monostable system in Figs. 2a(2) and 2a(3), the bimodality
PDFs for o = 2 have DPI = 0.25 and 1, respectively.
The DPI is calculated systematically in Fig. 3a for the
monostable system d = 0.8 as a function of soil memory
(0.3 = 7 = 4) and forcing magnitude (0.2 = o = 3). As
discussed, Fig. 2a, DPI is small for either weak forcing
or short soil memory. For example, DPI < 0.5 foro =1

DPI =

L @®)



1450 JOURNAL OF CLIMATE VOLUME 23
MonoStable . o . " .
a) Full Noise b) Multiplicative Noise c) Additive Noise
15ral) 151 b1) 1.5rcl)
~ 1 1 1
> :
B -
tau=0.3 0.5 0.5 A h. 0.5
v AN = =
9 0 - o= = =
-2 2 -2 -1 0 1 2 -2 -1 0 1 2
15 a2) 15 b2) T 15 )
1 1 1
S
=4
tau=1 0.5
0
-2
15 a3)
1
S
o
tau=2 05

FIG. 2. Stationary PDFs for the monostable system d = 0.8. (a) Full model solution for soil memories (top) 7 = 0.3, (middle) 7 = 1, and
(bottom) 7 = 2. (b) Similar to (a) but for the reduced model of multiplicative noise; (c) similar to (a) but for the reduced model of additive
noise. In each panel, four rainfall magnitudes are used: o = 0.2 (dot), o = 0.5 (dash—dot), ¢ = 1 (dash), and o = 2 (solid), as marked in [a(3)].

or 7 = 1. With a further increase in both the forcing and
soil memory, DPI becomes significantly positive, in-
dicating a distinct bimodality. For large forcing and long
memory, the DPI increases monotonically with the forc-
ing amplitude but appears to saturate at a soil memory
75(0) that increases with the forcing magnitude. For the
system of d = 0.8 here, the saturation level increases with
the forcing roughly as 75(o) ~ o.

It is interesting that the bimodal PDF requires a
strong precipitation variability o = 1, but not necessarily
a large soil moisture variability M = o/+/27. Indeed, the
strong dependence of bimodality on o, rather than M,
can be seen clearly in Fig. 3a, where the heavy dash line
represents the boundary of M = 1: significant bimodality
develops for M < 1 (lower part) as long as the soil
memory is sufficiently long. It is nevertheless interesting
in Fig. 3a that the critical soil moisture variability M ~
R¢ coincides approximately with the saturation level
75(0’) ~ o." In the equilibrium vegetation response, the
transition between a green and desert state is possible

! Formally, o may be treated as the magnitude of equilibrium soil
moisture response of N, as seen in the soil moisture equation (6) at
equilibrium under a long-term rainfall forcing of constant s(r) = 1.
Therefore, it appears that bimodality in Fig. 3a emerges when the
rainfall variability is sufficiently strong such that its equilibrium soil
moisture response of N becomes comparable with R = 1, and the
soil memory becomes comparable or longer than the vegetation
memory 7 > 1.

only if the total soil moisture R varies with a range
comparable or larger than Rc ~ 1 (see Fig. 1a). This is
not the case for the generation of bimodality by sto-
chastic forcing. For example, for the case of a long
memory 7 = 2 [Fig. 2a(3)], significant bimodal PDF
emerges for M as low as 0.25 (at o ~ 1).

The bimodality in a monostable system resembles
somewhat that in a bistable system, for example, with d =
1.2 (Fig. 4a). This bistable system has a classical double-
well potential (Fig. 1b) and therefore is expected to ex-
hibit a bimodality. This is confirmed in Figs. 4a(1)-(3)
under a weak forcing o = 0.2, where a significant bimo-
dality exists regardless of the soil memory. As the forcing
intensifies, however, bimodality is suppressed by the mix-
ing associated with stochastic variability. With a short
memory 7 = 0.3 [Fig. 4a(1)], interestingly, bimodality is
suppressed for strong forcings. For a given forcing mag-
nitude, however, as the soil memory increases, bimodality
recovers [Figs. 4a(2),(3)]. Therefore, for strong forcing
o ~ O(1) and slow memory of 7 ~ O(1), the monostable
[Figs. 2a(2),(3)] and bistable [Figs. 4a(2),(3)] systems both
exhibit a similar bimodality. Unlike the monostable sys-
tem when the bimodality saturates with soil memory, the
bimodality intensifies with the soil memory in the bistable
system. This is seen clearly in the DPI in Fig. 3b: in the
limit of large forcing and long memory, DPI increases
monotonically with both the forcing and memory.
Therefore, DPI is usually larger in the bistable system than
in the monostable system for strong forcing, as expected.
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FI1G. 3. Double-peak intensity as a function of soil memory 7 and rainfall intensity o for the systems of (a) monostable d = 0.8 and (b)
bistable d = 1.2. The heavy dash line in (a) marks the intensity of soil moisture variability M = 1. Contour interval is 0.25 in (a) and 0.5 in (b).

4. Mechanism for bimodality

The bimodality in the monostable climate—ecosystem
can be contributed in principle by several factors. Soil
memory could contribute to the bimodality because a
colored noise may shift or induce new modes in a non-
linear system (Hinggi et al. 1990; Timmermann and
Lohmann 2000; Monahan et al. 2002). In the meantime,
the noise forcing is convoluted nonlinearly with the vege-
tation system through the vegetation function tanhR and
may also change the modality. To better understand the
bimodality, especially the roles of the colored noise versus
nonlinear noise forcing, we will simplify the full model
(3) and (6).

For a small noise, the vegetation—climate model (3) can
be approximated as an equation of multiplicative noise:

W _yvy+ BOING),

dt (a)

where the noise term S(V, N) is approximated by its
Taylor expansion with

d d
B(V) = WS(V, N)|N:0 = d_y tanhy|y:dv+b
1
- (9b)
ch2(dV + b)

This equation can be further simplified to an equation of
additive noise by fixing B as a constant By, such as B(0):
dv

== U'(V)+ BN().

dt (10)

Now, the vegetation cover is no longer constrained be-
tween —1 and 1 because of the linearization of the
vegetation response function. Nevertheless, these re-
duced systems can still shed light on the mechanisms of
bimodality.

To isolate the effect of the colored noise, we will fur-
ther simplify the soil moisture equation (6) in the limit of

a diminishing memory 7 — 0. Now, the stochastic soil
moisture forcing N(f) approaches a white noise (variance
M?) and the PDF for the reduced model of multiplicative
noise (9) is determined by the Fokker-Planck equation
(in Stratonovich calculus):

booan

ap 9 , Byi,By & (B

2= N VN + — N

dt v {(U 2 )T av \2?
where By(V) = B(V)M (Gardiner 1997). The stationary
PDF can be derived analytically as

p(V) = pyexp(=¥(V)),

where pg is a normalization constant and the stochastic
potential ¥ is

(12a)

Vou'(v
(V)= J ZBZ ((V)) dv +1In(B,)
N
_ 1 {ﬁ L {Vsh(4y)_5ch(4y)
M2 8 2d| 8 32

+ Vsh(2y) — ch(2y)}} + In(B,), (12b)

where y = dV + b for the special case of an additive
noise (10), the PDF can be derived similar as in (12a) but
with the stochastic potential proportional to the equi-
librium potential U as

20(V)

R,

(13)

In which BON = B()M

Figures 5a and 5b show PDFs for the monostable
system d = 0.8 in the reduced models of multiplicative
(12) and additive (13) noises, respectively, while Figs. 5c
and 5d show the corresponding PDFs for the bistable
system d = 1.2. The reduced model of additive noise is
simple: the PDF has the same modality as the equilib-
rium potential, which exhibits a single peak at V = 0 for
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FIG. 4. Stationary PDF for the bistable system d = 1.2 in the full
model with soil memories (top) 7 = 0.3, (middle) 7 = 1, and
(bottom) 7 = 2. In each panel, four rainfall intensities are used:
o = 0.2 (dot), o = 0.5 (dash-dot), o = 1 (dash), and o = 2 (solid),
as marked in [a(3)].

the monostable system (Fig. 5b) but double peaks at
V ~ =0.8 for the bistable system (Fig. 5d). In both sys-
tems, the peak of the PDF spreads when the random
forcing intensifies, reflecting the mixing effect on the
PDF induced by the white noise forcing as shown in the
last term of the Fokker-Planck Eq. (11).

In the reduced model of multiplicative noise, an in-
creased noise induces two new modes (PDF peaks) at
green and desert states in the monostable system while
the old mode V = O is suppressed (Fig. 5a). This is easy to
understand in Eq. (9): the multiplicative factor B(V) is
maximum at V' = 0 and diminishes for a large magnitude
of |V]. The strong noise forcing near V = 0 “pushes’’ the
system away from the equilibrium state V' = 0 such that
this state no longer supports a PDF peak. In the mean-
time, once pushed far away from V = 0 on either side,

JOURNAL OF CLIMATE
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vegetation tends to stay there because there is little
noise forcing, generating a new PDF peak.” This effect
of multiplicative noise contributes critically to the bi-
modality in the full model, as will be discussed later.

The effect of colored noise on the reduced system is
further examined numerically for the case of multiplicative-
colored noise in (9) and (6) and additive-colored noise in
(10) and (6). With the colored noise, there is no longer
a general analytical solution to the PDF (Jung and
Hinggi 1987; Monahan et al. 2002). Therefore, we will
use numerical integration, as for the full model. The
PDFs for the reduced models of multiplicative-colored
and additive-colored noises are shown in Figs. 2b and 2c,
respectively, for the monostable system d = (.8, as in the
full model in Fig. 2a. For both reduced models, one
striking difference from the full model is the insensitivity
of PDF to soil memory. Indeed, for different soil mem-
ories, the PDFs for the multiplicative-colored noise are
similar to that of white noise in the analytical solution
(Fig. 5a), changing from unimodal at weak forcing to bi-
modal at strong forcing; the PDFs for the additive-colored
noise are also similar to that under white noise forcing
in the analytical solution (Fig. 5b), with a single peak at
V = 0. This suggests that the effect of colored noise alone
is insufficient for the generation of bimodality.

The PDF of the full model appears to resemble that of
additive noise for short soil memory, being unimodal
regardless of the forcing magnitude [Fig. 2a(1) versus
Fig. 2¢(1)], but it resembles that of multiplicative noise
for slow soil memory, developing from unimodal to bi-
modal with the magnitude of the forcing [from Figs.
2a(2),(3) to Figs. 2b(2),(3)]. This can be understood as
follows. In the full vegetation equation (1), the effect of
diminishing B(V) at large |V/| in the reduced model of
multiplicative noise can be traced to the nearly constant
equilibrium vegetation response tanhR near the green
and desert states V ~ *1 for large rainfall anomaly |R| >
|Rc| (Fig. 1a). Physically, if the vegetation is near the
green state, it tends to stay there because precipitation is
already more than sufficient such that a rainfall anomaly
would have little impact on the vegetation. (A similar
argument can be made on the desert state). In contrast,
the vegetation is unlikely to stay near its equilibrium
state V = 0, where it is easily “pushed” around by the
noise. Effectively, then, vegetation tends to form two

2 This effect of multiplicative noise in generating bimodality
can be seen somewhat similar to that in a climate—soil model
(Rodriguez-Iturbe et al. 1991).

* Similarly in the bistable case d = 1.2. For different soil memory,
the PDFs remain similar to those under a white noise forcing (Figs.
Sc,d) for both the multiplicative noise and additive noise (not
shown).
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FIG. 5. Analytical solution of the stationary PDF forced by a white noise in the reduced models of (left) multiplicative
and (right) additive noises: (a),(b) monostable (d = 0.8) and (c),(d) bistable (d = 1.2). In each panel, PDFs forced by
four moisture variability intensities are plotted £ = 0.2 (dot), 0.5 (dash—dot), 1 (dash), and 2 (solid), as marked in (a).

preferred states in the green and desert states in the full
model, even if the system is monostable in its equilib-
rium at the medium state. Furthermore, the slow soil
memory, and in turn, the slow noise, enables the vege-
tation to follow the nonlinear equilibrium vegetation
response [as in Eq. (1)], which enables the stochastic
noise to force the vegetation in a nonlinear way, which
is critical for bimodality. Otherwise, with a fast noise,
vegetation will be forced to change rapidly with little
chance of approaching the nonlinear equilibrium re-
sponse. Then, the PDF will be diffused as in the case of
a white noise. Thus, in the full system, it is the combined
effect of soil moisture memory and nonlinear stochastic
forcing on vegetation that generates the bimodality.

5. Summary and discussion

We have studied the modal response of the vegetation
states to precipitation variability in a conceptual climate—
ecosystem model. The vegetation is found to exhibit bi-

modality in a monostable climate—ecosystem when forced
by strong rainfall variability in the presence of a slow soil
moisture memory. A systematic analysis suggests that
the bimodality is generated by a nonlinear vegetation
response to climate forcing and the resulting nonlinear
response to colored stochastic forcing. The nonlinear
vegetation response is such that vegetation becomes in-
sensitive to rainfall changes once it reaches the green or
desert state, generating two preferred modes there. The
long memory of soil moisture slows down the precipitation
noise such that vegetation has sufficient time to adjust
toward the nonlinear equilibrium vegetation response.
Overall, our study suggests an important role of sto-
chastic forcing in the bimodality of the climate—ecosystem.
With a weak forcing, bimodality is determined completely
by the stability of the equilibrium system and corresponds
exactly to the regime of bistability (d > 1). This corre-
spondence between bimodality and bistability is changed
significantly by a strong stochastic forcing. With a short
memory, stochastic forcing suppresses bimodality into
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FIG. 6. Double-peak intensity for vegetation cover V as a function of stability parameter d and precipitation
intensity o for (a) short (7 = 0.2) and (b) long (7 = 2) soil memory. Solid contours start from 1 to 9 with an interval of 2
(values above 9 are not shown). The dash—dot contour is for DPI = 0.1. The dot line d = 1 is the stationary boundary
between monostable (d < 1) and bistable (d > 1) systems. (c),(d) Similar to (a) and (b), but for the ratio of double-
peak intensity between total soil moisture (R) and vegetation cover (V') (for DPI of vegetation cover greater than
0.1). Contours start from 0.01 with an interval of 0.02. In (a),(b) the rainfall variability suppresses bimodality for short
soil memory but enhances bimodality for long soil memory, respectively; in (c),(d) the bimodality is usually much
weaker in the total soil moisture than in vegetation cover, especially in the monostable regime.

the bistable regime while, for a long memory, stochastic
forcing expands bimodality into the monostable regime.
This can be seen in the DPI as a function of the feedback
parameter and the intensity of stochastic forcing in Fig. 6.
For a short memory (7 = 0.2, Fig. 6a), bimodality is
suppressed almost completely across d = 1 deep into the
unstable regime, except for the very unstable regime
under a very weak forcing (the lower-right corner). In
contrast, for a long memory (7 = 2, Fig. 6b), signifi-
cant bimodality emerges across d = 1 back deep into
the monostable regime, especially for strong stochastic
forcing on weakly stable systems. As a result, bimodality
no longer corresponds to bistable regime. Instead, the
boundary of bimodality is smeared across the bound-
ary of stability (d = 1) with a short forcing suppressing
bimodality and a long forcing favoring bimodality.
Therefore, to understand the bimodality of the climate—

ecosystem, it is important to understand not only the
stability of the equilibrium state, but also the charac-
teristics of the noise forcing and its interaction with the
coupled system.

It is also interesting to examine the bimodality of the
total soil moisture R. This may have implications to the
abrupt changes in the observation (LIU) and may also
be relevant to the bimodality of soil moisture in the
observation (D’Odorico and Porporato 2004). Since the
soil moisture variability directly driven by precipitation
variability N is Gaussian, here Eq. (2) shows that the
bimodality of R can only be generated by the vegetation
feedback dV. Therefore, the bimodality in R should in-
crease with the feedback parameter d. It is, however,
unclear how much the bimodality of R varies relative to
that of V. Figures 6¢ and 6d show the ratio of the DPI of
R with the DPI of V for the cases of a short and long soil
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memory. For a short soil memory, there is virtually no
bimodality in R because the DPI of R is two orders
smaller than that of V (Fig. 6¢),* the latter being very
small itself (Fig. 6a) because of the suppression of
bimodality by fast rainfall variability. For a long soil
memory, the bimodality in R increases significantly with
the instability parameter d (Fig. 6d), suggesting a rapid
increase of the bimodality of R relative to that of V. In
the monostable regime, the bimodality is very weak in R
because the DPI of R is two orders smaller than that for
V. Across the stability boundary into the unstable re-
gime (d > 1), the DPI for R increases much faster than
that for V, by over 10 times, from a DPI ratio of 0.01 at
d = 1 to larger than 0.1 for d about 1.1 to 1.5 if the
rainfall variability o is not too strong. It is interesting
that a further increase of instability d beyond ~1.5 leads
to a decrease of the DPI ratio, which may be caused by
a too fast increase of DPI of V (Fig. 6b) there. Finally, as
the noise intensifies, the bimodality of R is always de-
creased relative to that of V because of the increased
contribution from the Gaussian N.

Our study may have important implications regarding
the understanding of abrupt climate changes. In addition
to the classical mechanism of positive feedback and mul-
tiple equilibria, our result suggests that abrupt changes of
the ecosystem can also be induced by stochastic climate
variability if the stochastic forcing is sufficiently slow
and strong and acts nonlinearly on the coupled system.
Therefore, to understand abrupt changes, we should
study not only the stability the mean state but also the
characteristics of the noise and its interaction with the
nonlinear system. As for a coupled climate—ecosystem,
our study provides a theoretical support for the proposal
of LIU: the ecosystem can collapse abruptly in a mono-
stable coupled climate—ecosystem in the presence of
strong rainfall variability and slow soil memory. Fur-
thermore, in contrast to a bistable system for which abrupt
changes occur in both climate variables (such as pre-
cipitation, soil moisture) and ecological variables (such as
vegetation cover), the abrupt change in a monostable
system is shown most clearly in the ecological variable,
rather than climate variables. Therefore, the relative
magnitude of abrupt transition between the climate and
ecosystem variables may provide a useful index to judge
the nature of the abrupt change in a coupled climate—
ecosystem.

* The ratio of the DPIs between R and V depends on time scale of
average. A time average should reduce the contribution of N rel-
ative to that of Vif N is faster than V and, in turn, increase the DPI
for R and, in turn, the ratio. Therefore, in the discussion of the ratio
of DPIs here, we should focus more on its relative changes with
other parameters than its absolute value.
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